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CYP51 enzymes (sterol 14a-demethylases) are cytochromes
P450 that catalyze multistep reactions. The CYP51 reaction
occurs in all biological kingdoms and is essential in sterol bio-
synthesis. It removes the 14a-methyl group from cyclized sterol
precursors by first forming an alcohol, then an aldehyde, and
finally eliminating formic acid with the introduction of a D14–
15 double bond in the sterol core. The first two steps are typical
hydroxylations, mediated by an electrophilic compound Imech-
anism. The third step, C–C bond cleavage, has been proposed to
involve either compound I (i.e. FeO3

1) or, alternatively, a proton
transfer-independent nucleophilic ferric peroxo anion (com-
pound 0, i.e. Fe3

1O2
–). Here, using comparative crystallographic

and biochemical analyses ofWT human CYP51 (CYP51A1) and
its D231A/H314A mutant, whose proton delivery network is
destroyed (as evidenced in a 1.98-Å X-ray structure in complex
with lanosterol), we demonstrate that deformylation of the 14a-
carboxaldehyde intermediate requires an active proton relay
network to drive the catalysis. These results indicate a unified,
compound I-based mechanism for all three steps of the CYP51
reaction, as previously established for CYP11A1 and CYP19A1.
We anticipate that our approach can be applied to mechanistic
studies of other P450s that catalyze multistep reactions, such as
C–C bond cleavage.

Cytochrome P450 (CYP) enzymes are heme–thiolate coordi-
nated monooxygenases that catalyze a vast variety of reactions
involving xenobiotic and endogenous compounds. CYP51 (ste-
rol 14a-demethylases) play a crucial role in the production of
sterols in all phyla and are important drug targets (1–3). The
CYP51 reaction includes three steps (Fig. 1) (i.e. three cyto-
chrome P450 catalytic cycles [Fig. 2]); the first two steps are for-
mal hydroxylations, and the third step is a C–C bond cleavage.
Whereas it is now generally agreed that most P450 reactions

use compound I (4) (step 6 in Fig. 2, FeO31) as the active iron
species, the C–C bond cleavage (lyase) mechanism in themulti-
step reactions is still under debate (5). Akhtar and his associates
proposed that catalysis involves nucleophilic attack of a ferric
peroxo anion (Fe31O2

–; compound 0, step 4 in Fig. 2) (6–10),
but the reliability of the 18O isotope incorporation andMS data

has been questioned because of technical concerns about ambi-
ent formic acid (and the difficulties in discerning 2HCO2H
from endogenous H13CO2H) (5, 11). In more recent studies, a
ferric peroxide mechanism has been supported by a kinetic sol-
vent isotope effect (12) and resonance Raman spectroscopy (13,
14) for the substrate-induced lyase reaction of CYP17A1,
although evidence for a compound I pathway has also been pre-
sented (15, 16). Compound I was identified as the active oxi-
dant for the lyase step of CYP19A1 (steroid aromatase) using
resonance Raman spectroscopy (17), kinetic solvent isotope
effects (18), and 18O isotope labeling (11) and for CYP11A1
(P450scc) using electron paramagnetic resonance/electron nu-
clear double resonance spectroscopy (19), 18O isotope labeling
(20), and resonance Raman spectroscopy (21). For the third
step of the CYP51 reaction, theoretical studies have proposed
the operation of a ferric peroxo anion (compound 0) (22), but
definitive experimental evidence so far has been lacking.
A distinguishing difference between the two types of mecha-

nisms is that the formation of compound I requires a specific
proton relay network (to minimize the unwanted production of
hydrogen peroxide via nonspecific proton donation to dioxy-
gen in P450 enzymes) (23–26), whereas the ferric peroxo-anion
abstracts hydrogens from substrates and does not depend on
proton delivery (13). It has been generally accepted (going back
to the 1980s [27–29]) that the proton delivery network involves
a conserved P450 threonine in the I helix, a preceding charged
residue, and a solvent-accessible residue(s) of opposite charge
in the middle of helix F (3, 30, 31). The conserved threonine is
Thr-315 in human CYP51 (also called CYP51A1) and corre-
sponds to Thr-252 in P450cam (24). A preceding charged resi-
due is always a His in CYP51 versus an acidic residue (Asp/Glu)
in other P450s, and a solvent-accessible charged residue(s) in
the helix F is always Asp/Glu in CYP51 versus Lys/Arg in other
P450s.
In the ligand-free and inhibitor-bound CYP51 structures

(which all display a very high overall similarity), this histidine
and the carboxylate of an F helix acidic side chain are always
salt bridged (e.g. His-294/Glu-205 in Trypanosoma cruzi and
His-314/Asp-231 in human CYP51 orthologs). However, as we
recently reported, binding of the substrate (obtusifoliol) to the
T. cruzi CYP51 I105F mutant induces a large-scale conforma-
tional switch that causes the His-294/Glu-205 salt bridge
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opening, allowing the charged side chains to participate in pro-
ton delivery (32).
Mutation of each of the corresponding salt bridge-forming

residues in human CYP51 strongly affects catalysis of lanos-
terol, with the double mutant (D231A/H314A) displaying a
decrease in kcat of more than two orders of magnitude. There
were no changes in the stability, spectral properties (absolute
absorbance and CO complex formation upon chemical reduc-
tion), or apparent substrate binding affinity of the mutants, but
the amplitude of the type I spectral response to lanosterol (low-
to-high spin state transition in the heme iron) increased in the
order WT , D231A , H314A , D231A/H314A (32). The
D231A/H314A mutant is the first example of a CYP51 that,
upon the addition of substrate, is found completely in the high-
spin form (Fig. 3), although without structural evidence it has
remained unclear whether it indeed forms a stoichiometric

enzyme–substrate complex in solution or if the heme iron
acquires the ability to exist in the high-spin (water-free penta-
coordinated) form even without the substrate.
In this report, we determined the 1.98-Å X-ray structure of

the human CYP51 D231A/H314A mutant in complex with la-
nosterol and applied comparative crystallographic and bio-
chemical analyses of this mutant and WT human enzymes to
probe the CYP51 mechanism. We found that the activity of the
mutant toward the 14a-aldehyde substrate is affected as much
as its activity with lanosterol, leading to the conclusion that
proton transfer is critical for the third step of the CYP51 reac-
tion and compound I is the active oxidant.

Results and Discussion

Crystallographic analysis

The enzyme-substrate complex was crystallized in the ortho-
rhombic C2221 space group, and the final structure was refined
to 1.98-Å resolution with an Rfree of 22% and Rwork of 19% (Ta-
ble 1). The atomic coordinates and structure factors have been
deposited in the Protein Data Bank under accession code
6UEZ. The asymmetric unit consisted of two P450 molecules,
each of them revealing a clear electron density for onemolecule
of lanosterol bound within the CYP51 active site (Fig. 4A and
Fig. S2).
Substrate binding mode—The binding mode of lanosterol in

the human structure was found to be essentially the same as the
binding mode of obtusifoliol in the T. cruzi CYP51 I105F mu-
tant (32) (Fig. 4, B and C). The C3-OH group of the sterol nu-
cleus is directed toward the substrate access channel entrance
approaching b-strand 1–4 and forming an H-bond with the
main-chain oxygen of Ile-379 (corresponds to Met-358 in T.
cruziCYP51), the aliphatic arm occupies the deepest portion of
the active site reaching helices C and I, and the C14a-methyl
group is located 4 Å above the heme iron, indicative of a catalyt-
ically competent orientation.
Structural response to substrate binding—The active-site

volumes of both protozoan and human substrate-bound CYP51
enzymes are very similar (1,200 and 1,300 Å3), and so is the
large-scale conformational switch seen in the superimposed
ligand-free/obtusifoliol-bound T. cruzi CYP51 (of the four P450
molecules in the asymmetric unit in that structure, three are
obtusifoliol-bound and one is ligand-free) and inhibitor-bound/
lanosterol-bound human CYP51 (Fig. 5). The rearrangements
involvemost of the structural segments of the CYP51 active site.
The 5–6-Å inward movement of the HI arm and helix C
changes the topology of the area to create a tighter interface
with NADPH-CYP reductase (CPR), and the side-chain flip of

Figure 1. The three steps of the CYP51 reaction. *, lanosterol is the natural CYP51 substrate in vertebrates and in some yeasts. The other CYP51 substrates
are 24,25-dihydrolanosterol, 24-methylene-dihydrolanosterol, C4-norlanosterol, and obtusifoliol. **, 3b-hydroxy-4,4-dimethyl-cholesta-8,14,24-triene. Exam-
ples of other P450s catalyzingmultistep reactions are shown in Fig. S1.

Figure 2. The cytochrome P450 catalytic cycle. Binding of the substrate
(1) displaces the water molecule from the sixth (distal) coordination site of
the ferric heme iron, changing its spin state from hexa-coordinated low to
penta-coordinated high, increasing its redox potential, and facilitating the
first electron transfer from the protein redox partner (2). The ferrous iron
complex binds molecular oxygen (3), which triggers acceptance of the sec-
ond electron producing the nucleophilic ferric peroxo anion (4) (compound
0, or Fe31–O2

2). The ferric peroxo complex is then protonated to form the
ferric hydroperoxo state (5), the second protonation of the distal oxygen
atom causing the O-O bond scission, release of a water molecule, and gener-
ation of a highly reactive electrophilic Fe41-oxo cation radical (FeO31, or
compound I) (6). The compound I mechanism requires two protons delivered
from the protein surface to the iron-bound dioxygen via the active proton
delivery network. In the compound 0 mechanism, the dioxygen abstracts
protons from the substrate, forming a peroxo-hemiacetal intermediate and,
thus, being independent of proton delivery.
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Lys-156 out of the active site is analogous to that of Arg-124 in
T. cruzi CYP51, the residue we have shown to directly partici-
pate in the electron transfer (32). In both, the H-bond with the
heme propionate is lost and a positively charged group is now
exposed above the proximal P450 surface (Fig. 5, upper, and Fig.
S3). The 5–7-Å movement of the FG arm downstream of helix I
(Fig. 5, lower, and Fig. 6) closes the entrance into the substrate
access channel and increases the distance between the backbones
of residues 231 and 314. In the human CYP51 mutant, where
these two residues are now alanines, there are no charged side
chains in the vicinity capable of enabling the transfer of protons
from solvent to the iron-bound dioxygen required for the forma-
tion of compound I (formally Fe31O).

Biochemical analysis

Electron transfer—Both WT human CYP51 and the D231A/
H314A mutant were readily reduced chemically with sodium
dithionite, regardless of the presence of the substrate, and the
P450 concentrations determined from the difference spectra of
the CO complexes corresponded to the concentrations calcu-
lated from the absolute absorbance spectra. The efficiency of
enzymatic reduction with NADPH via CPR, however, was
facilitated by the presence of the substrate, 100% in the mutant
versus 65% in the WT sample, whereas without lanosterol the
amount of detectable CO complexes did not exceed 15% in ei-
ther case (Fig. 7A). These results support the conclusion that a
crystallographically detectable substrate-induced large-scale
conformational change does take place in solution, and the 35%
lower enzymatic reduction of the WT sample is because of a
lower lanosterol-bound fraction (33% versus 100% in themutant).
Slightly faster rates of NADPH oxidation by theWT enzyme

(24 versus 16 min21) (Fig. 7B) were observed, because WT
CYP51 performed lanosterol 14a-demethylation while the mu-
tant was catalytically inactive. In the absence of the substrate,
the rates of NADPH consumption were comparable for WT
CYP51 and the mutant, both one order of magnitude slower.
Thus, the structural and biochemical data indicate that the
D231A/H314A mutation did not affect (but rather enhanced)
the ability of human CYP51 to bind substrate, interact with the
electron donor protein CPR, and accept electrons. The lack of
charged residues that enable the proton flow is the only
observed reason for the dramatic loss of enzymatic activity.
Deformylation of lanosterol 14a-carboxaldehyde—The mu-

tant provided a unique opportunity to elucidate themechanism
of the C–C bond cleavage because, if this step in CYP51 cataly-
sis is performed by a nucleophilic peroxo oxidant, it should not
require protons from the solvent, and the ability of the D231A/
H314A mutant to catalyze deformylation of the 14a-carboxal-
dehyde intermediate of lanosterol (as opposed to its ability to
hydroxylate lanosterol) should be comparable with or higher
than that of theWT. If this reaction occurs via compound I, for
which the formation transfer of protons from the solvent is crit-
ical (Fig. 2), the ability of the D231A/H314Amutant to catalyze
deformylation of the 14a-carboxaldehyde intermediate should
remain low.

Figure 3. The D231A/H314 mutation enhances spectrally detectable binding of substrate to human CYP51. A, absolute absorbance spectra before
(blue) and after (black) titration with lanosterol. B, high-spin-form content in the protein samples (n = 26 S.D.).

Table 1
Data collection and refinement statistics

Complex
D231A/H314A human
CYP51, lanosterol

Data collection
Space group C2221
Cell dimensions
a, b, c (Å) 91.180, 165.070, 154.030
a, b, g (°) 90.00, 90.00, 90.00

Wavelength, Å 1.12713
Resolution (outer shell), Å 43.60–2.03 (2.03–1.98)
No. of molecules per asymmetric unit 2
Rmerge (outer shell) 0.056 (0.934)
I/s (outer shell) 16.1 (1.1)
Completeness (outer shell), % 89.6 (52.8)
Redundancy (outer shell) 8.6 (5.7)

Refinement
No. of reflections
Total 68,672
Test set 3792

Rwork/Rfree 0.191/0.222
RMSD from ideal geometry
Bond lengths, Å 0.002
Bond angles, ° 1.27

Ramachandran plot
Residues in favorable/allowed regions, % 98/100
Outliers, % 0
Wilson B-factor 45.1

No. of atoms (mean B-factor, Å2) 7790 (53.0)
No. of residues per molecule A/B
Protein (mean B-factor, Å2) 446/445 (58/55)
Heme (mean B-factor, Å2) 1/1 (39/38)
Lanosterol (mean B-factor, Å2) 1/1 (41/40)
Water (mean B-factor, Å2) 225/290 (58)

PDB code 6UEZ
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We observed that catalytic turnover of the WT enzyme
with the aldehyde intermediate as the substrate (kcat of 95
min21) was twice as high as that with lanosterol (kcat of 46
min21), which is expected in that the reaction occurs in one
final step instead of three (Km of ;5 mM in each case). The
activity of the mutant was low, as in the case of lanosterol
(kcat of 0.6 min21) (Fig. 8A), revealing the same decreased
reaction velocity, with Km values being too low to measure
accurately (32) and longer reaction time required for detect-
able product to be formed. The data strongly suggest that all
three steps of CYP51 catalysis have the same compound I-
mediated mechanism.
It has been proposed that for a C–C bond cleavage reac-

tion to proceed through the ferric peroxo oxidant instead of
compound I, a P450 substrate must bear a hydroxyl group
juxtaposed to the Fe-O-O– fragment, which was found to
be the case for CYP17A1/17OH-pregnenolone but not for

CYP19A1 (14, 17). This is also not the case for CYP51, as in
the CYP51 substrates the only OH group (at the C3 carbon) is
located 8 Å from the C14a-aldehyde group and H-bonded with
the main chain carbonyl oxygen in the b 1-4 strand (Fig. 4C).
Thus, the current evidence supports compound I mechanisms in
three of the four major steroid C–C bond cleavage reactions (Fig.
1 and Fig. S1).
It should be noted that in CYP17A1, some of the evidence

suggests the interaction of the substrate hydroxyl group with
compound I (5, 16). However, in the case of CYP17A1, the
18O labeling work is not unambiguous in discerning between
the two pathways (5, 15), and the reported spectral inter-
mediates have not been shown to be catalytically competent
(5, 13, 14, 17), so more experimental work on this enzyme is
in order. Overall, the number of P450 reactions that can be
attributed to compound 0 ferric peroxo anion C–C bond
cleavage and other types of transformation has decreased

Figure 4. The D231A/H314 mutation does not affect the substrate binding mode in CYP51. A, the 2Fo-Fc electron density map (1.5 s) for the active-site
area of the D321A/H314Amutant of human CYP51. Lanosterol, heme, and some of the protein residues are marked. The snapshot was taken in Coot. B, super-
imposed structures of obtusifoliol-bound I105F T. cruzi CYP51 (pink, PDB code 6FMO) and lanosterol-bound D231A/H314A human CYP51 (yellow). Shown is
the distal P450 face. The RMSD of Ca is 1.2 Å. C, substrate-contacting residues in human (left) and T. cruzi CYP51 (right). The active-site volumes are 1,200 Å3

and 1,300 Å3, respectively. The complete list of the residues located within 4.5 Å of the sterol molecules can be found in Table S1.
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(5, 33–35), although the possibility exists that some facile
reactions do involve this species.

Conclusions

To clarify whether the third step of CYP51 catalysis can pro-
ceed through a proton-independent ferric peroxo anion-medi-
ated mechanism, we applied a combined crystallographic and
biochemical approach. The work was conceived based on our
previous findings that substrate binding induces a large-scale
conformational switch in the structure of CYP51 from the pro-
tozoan pathogenT. cruzi (32). Among the changes was a 4–6-Å
movement of the FG arm that led to the opening of the His-
294/Glu-205 salt bridge, a process expected for the activation
of the CYP51 proton delivery network.
Mutation of the corresponding residues in human CYP51

(His-314 and Asp-231) to alanine, without changing the appa-
rent lanosterol binding affinity, caused a decrease of two orders
of magnitude in the rate of lanosterol 14a-demethylation yet
increased the amplitude of the mutant spectral response to la-

nosterol binding. Cocrystallization of the mutant with lanos-
terol produced a 1.98-Å structure of the enzyme-substrate
complex, providing convincing evidence that the large confor-
mational switch accompanying substrate binding must be gen-
eral for CYP51 across phylogeny, physiologically relevant, and
required for catalysis.
The D231A/H314A mutation did not cause any apparent

disturbances in substrate binding (including the spectralKd val-
ues), protein folding, stability, conformational dynamics, or the
ability to accept electrons from NADPH via its electron donor
partner CPR, and the disruption of the proton delivery net-
work (Fig. 8B) is judged to be the only observable reason for the
loss of catalytic activity. Because proton delivery is a critical step
in the activation of iron-linked molecular oxygen, required for
splitting of the O–O bond and formation of compound I, the
finding that the mutant catalytic rates are dramatically affected
both for lanosterol (hydroxylation, the first step of the three step
reaction) and for the 14a-carboxaldehyde intermediate (C–C
bond cleavage, the third step [a proposed reaction scheme is
shown in Fig. 9]) strongly supports the view that CYP51

Figure 5. The substrate-induced conformational switch is the same in protozoan and human CYP51. Superimposed structures of obtusifoliol-bound
(magenta) and ligand-free (blue) T. cruzi CYP51 (PDB code 6FMO), RMSD of Ca of 1.83 Å, maximal XYZ displacement of 7.55 Å (A), and lanosterol-bound (violet,
PDB code 6UEZ) and VFV-bound (green, PDB code 4UHI) human CYP51, RMSD of Ca of 1.98 Å,maximal XYZ displacement of 9.44 Å (B).Middle, the overall distal
P450 view. The arrowsmark the areas of themolecules enlarged above (rearrangements for electron delivery) and below (rearrangements for proton delivery).
The conserved salt bridges are shown as red dashes.
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enzymes follow the same compound I-mediated mechanism
during all three steps of the reaction.
On the basis of our work here and previous studies with

CYP11A1 and CYP19A1, we conclude that the C–C bond
cleavage mechanisms involve compound I in at least three of
the four major steroid P450s that perform multistep reac-
tions The approach we used should be applicable in distin-
guishing between Fe31-O2

2 and FeO31 as catalytically active
species for other P450 cytochromes that catalyze multistep
reactions.

Experimental procedures

Protein expression and purification

All proteins were expressed in Escherichia coli (HMS-174,
Novagen) in a pCW expression vector. The expression and pu-
rification of human CYP51 (full-length WT and the D231A/
H314A mutant) was performed as described previously (32).
For crystallization purposes, the 50-amino-acid membrane
anchor sequence at the N terminus of D231A/H314A was
replaced with an MAKKTSSKGKL fragment (36). The expres-
sion and purification of rat NADPH-cytochrome P450 reduc-

tase (CPR) and T. brucei CYP51 and CPR were performed as
described previously (37, 38).
Spectroscopic characterization—UV-visible spectra were

recorded at room temperature (23 °C) using a dual-beam Shi-
madzu UV-240IPC spectrophotometer. P450 concentrations
were determined from the Soret band absorbance in the abso-
lute spectrum, using an absolute molar extinction coefficient
(e417) of 117 mM

21 cm21 for the low-spin oxidized form of the
protein or a difference molar extinction coefficient (De446–490)
of 91mM

21 cm21 for the reduced carbonmonoxide complex in
the difference spectra (Fe21-CO versus Fe21). The spin states
of P450 samples were estimated from the absolute spectra as
the DA393–470/DA418–470 ratio, with values of 0.4 and 2.1 corre-
sponding to 100% low- and 100% high-spin iron, respectively
(36, 39). NADPH oxidation rates were monitored at 340 nm
(De340, 6.22mM

21 cm21).
Crystallization, structure determination, and analysis—The

human CYP51 D231A/H314A mutant [5 mM in 20 mM potas-
sium phosphate buffer (pH 7.4) containing 500 mM NaCl, 5.6
mM tris(2-carboxyethyl)phosphine, and 10% (v/v) glycerol]
was gradually saturated with lanosterol (using a 1 mM stock
solution in 45% [w/v] 2-hydroxypropyl-b-cyclodextrin [HPCD]),
incubated for 20 min at room temperature, centrifuged to
remove the precipitate, concentrated using an Amicon Ultra
50K (Millipore) to 500 mM, diluted 2-fold with 5 mM phos-
phate buffer (pH 7.4), and mixed with 23 mM cyclohexylpen-
tanoyl-N-hydroxyethylglucamide (Ana-trace). Crystals were
obtained at 26 °C by vapor diffusion in hanging drops using 2
ml protein mixture and 2 ml of mother liquid consisting of 100
mM calcium acetate (pH 7.3), 18% (w/v) PEG 3350, and 0.1
mM EDTA. The crystals were transferred in three steps of
increasing glycerol concentration to a cryoprotectant solu-
tion containing 25% (v/v) glycerol in mother liquor and flash-
cooled in liquid nitrogen. X-ray diffraction data were col-
lected from a single crystal at the 21-ID-D beamline at the
Advanced Photon Source, Argonne National Laboratory, at a
wavelength of 1.12713 Å and using a Dectris Eiger 9M detec-
tor. The diffraction images were processed with HKL-2000,
and the initial electron density map was obtained by molecu-
lar replacement using the coordinates of the VFV-bound
human CYP51 (PDB entry 4UHI) as a search model in Phaser
MR (CCP4 Program Suite [40]). The structure was built with
Coot (41) and refined with Refmac5 (CCP4 Suite). Details of
the data collection and refinement statistics are listed in Ta-
ble 1. Structure superimposition and root mean square devia-
tion (RMSD) calculation were performed in lsqcab (CCP4
Suite). Active-site volumes were calculated in BioVia Discov-
ery Studio Visualizer 2019. Molecular graphics were rendered
using Chimera.
Preparation of lanosterol 14a-carboxaldehyde—The 14a-

carboxaldehyde intermediate of lanosterol (i.e. the substrate for
the third step of the CYP51 reaction, the C–C bond cleavage)
was prepared using a feature of T. bruceiCYP51, i.e. that of pro-
ducing a large amount of this intermediate if lanosterol is used
as the substrate (38). The reaction mixture contained 10 mM T.
brucei CYP51, 5 mM T. brucei CPR, and 50 mM lanosterol (for
this purpose, 0.5 mM solutions of unlabeled and [3-3H]-labeled
lanosterol [;4000 dpm/nmol] were mixed in 45% HPCD at a

Figure 6. Movement of the FG arm closes the substrate entry. Green,
VFV-bound human CYP51 (PDB code 4UHI); violet, lanosterol-bound D231A/
H314A human CYP51. A, ribbon representation. B, distal P450 face in surface
representation. Four water molecules (green spheres), three within 4.5 Å of
A231 and A314 and one that marks the location of the substrate entrance,
are all positioned outside the protein globule. Similar to the structure of
obtusifoliol-bound T. cruzi CYP51 (32), there are no open channels in the
area. An enlarged fragment of the surface and a stick/ribbon representation
of the corresponding protein segments in both lanosterol-bound human
CYP51molecules can be seen in Fig. S4.
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10:1 molar ratio). The radiolabeled lanosterol was added to be
able to quantify the amount of aldehyde by its peak area. The
reaction was started by the addition of 1 mM NADPH, con-
ducted at 37 °C for 2 h, and the 14a-carboxaldehyde interme-
diate was separated by reverse-phase HPLC and collected as
described previously (38), except that the time of the linear
gradient (vide infra) was extended to 40 min (Fig. S5). The
aldehyde fraction was dried under a nitrogen stream, dis-
solved in 45% (w/v) HPCD, and used as a substrate for com-
parative analysis of WT and D231A/H314A human CYP51
(Fig. S6).
Reconstitution of human CYP51 catalytic activity—The

standard reaction mixture (500 ml) contained 0.25 mM human

CYP51, 1.0 mM CPR, 100 mM L-a-1,2-dilauroyl-sn-glycero-3-
phosphocholine, 0.4 mg/ml isocitrate dehydrogenase, and 25
mM sodium isocitrate in 50 mM potassium phosphate buffer
(pH 7.2) containing 10% (v/v) glycerol (36). After addition of
the radiolabeled [3-3H]-lanosterol (;4,000 dpm/nmol) or la-
nosterol 14a-carboxaldehyde (;400 dpm/nmol), the mixture
was preincubated for 30 s at 37 °C in a shaking water bath, and
the reaction was initiated by the addition of 100 mM NADPH
and stopped by extraction of the sterols with 5 ml of ethyl ace-
tate. The extracted sterols were dried, dissolved in CH3OH,
and analyzed by a reverse-phase HPLC system (Waters)
equipped with a b-RAM detector (INUS Systems) using a
NovaPak octadecylsilane (C18) column (particle size, 4 mm, 3.9

Figure 7. Electron transfer efficiency in the D231A/H314A mutant and WT human CYP51. A, enzymatic reduction with NADPH in the presence of CPR.
Left, spectral changes introduced by binding of carbonmonoxide to the ferrous CYP51. Right, efficiency of enzymatic reduction relative to the chemical reduc-
tion with sodium dithionite. B, NADPH oxidation. Left, decrease of the 340-nm absorbance upon NADPH consumption. Left, a sample of absorbance spectra;
right, time course graphs. Right, rates of NADPH consumption. The mixture contained 2 mM CYP51, 4 mM CPR, 150 mM NADPH, and either 0 or 8 mM lanosterol
(S); n = 26 S.D.
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mm 3 150 mm) and a linear gradient from H2O:CH3CN:
CH3OH (1.0:4.5:4.5, v/v/v) (solvent A) to CH3OH (solvent B),
increasing from 0 to 100% B for 30 min at a flow rate of 1.0 ml/
min. For steady-state kinetic analysis, the reactions wererun for
1 min (WT) and 30 min (D231A/H314A) at 37 °C, and the ste-

rol concentration range was 3.1–38 mM. Michaelis-Menten
parameters were calculated using hyperbolic fitting in Prism
v.6 (GraphPad, La Jolla, CA), with the reaction rates (nmol
product formed/nmol P450/min) plotted versus total sub-
strate concentration.

Figure 8. The third step of CYP51 reaction proceeds via the compound I mechanism. A, catalytic parameters of WT and D231A/H314A human CYP51
with lanosterol and its 14a-carboxaldehyde intermediate as substrates. Points are shown as means of two determinations6 S.D. Examples of HPLC profiles
are shown in Fig. S6. B, proton relay network in CYP51 catalysis: closed in ligand-free and inhibitor-bound structures (4UHI), open (active) upon substrate bind-
ing (6FMO), and destroyed bymutagenesis (6UEZ).

Figure 9. Proposed compound I-mediatedmechanism for the third step of CYP51 reaction (adapted from reference 5).Ă
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