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Abstract

RNA recognition frequently results in conformational changes that optimize intermolecular 

binding. As a consequence, the overall binding affinity of RNA to its binding partners depends not 

only on the intermolecular interactions formed in the bound state but also on the energy cost 

associated with changing the RNA conformational distribution. Measuring these “conformational 

penalties” is, however, challenging because bound RNA conformations tend to have equilibrium 

populations in the absence of the binding partner that fall outside detection by conventional 

biophysical methods. In this study we employ as a model system HIV-1 TAR RNA and its 

interaction with the ligand argininamide (ARG), a mimic of TAR’s cognate protein binding 

partner, the transactivator Tat. We use NMR chemical shift perturbations and relaxation dispersion 

in combination with Bayesian inference to develop a detailed thermodynamic model of coupled 

conformational change and ligand binding. Starting from a comprehensive 12-state model of the 

equilibrium, we estimate the energies of six distinct detectable thermodynamic states that are not 

accessible by currently available methods. Our approach identifies a minimum of four RNA 

intermediates that differ in terms of the TAR conformation and ARG occupancy. The dominant 

bound TAR conformation features two bound ARG ligands and has an equilibrium population in 

the absence of ARG that is below detection limit. Consequently, even though ARG binds to TAR 

with an apparent overall weak affinity Kd
app ≈ 0.2mM , it binds the prefolded conformation with a 

Kd in the nM range. Our results show that conformational penalties can be major determinants of 

RNA-ligand binding affinity as well as a source of binding cooperativity, with important 

implications for a predictive understanding of how RNA is recognized and for RNA-targeted drug 

discovery.
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INTRODUCTION

The ability of non-coding RNAs to adopt a multitude of conformations underlies their 

cellular roles in gene expression and regulation.1–6 These dynamic transitions occur on time 

scales ranging from picoseconds to tens of seconds and can feature global changes in the 

orientation of helical elements and local base pair reshuffling that remodel both secondary 

and tertiary structure.5,7 Although such alternative conformational states can be short-lived 

and/or poorly populated in the isolated RNA, they can become long-lived and appreciably 

populated to play regulatory roles through interactions with binding partners.8 The high 

prevalence of conformational changes in RNA on molecular recognition9–11 implies that 

binding energies are highly dependent on RNA conformational penalties.12,13 However, the 

relative magnitudes of these energetic penalties are difficult to experimentally quantify due 

to challenges in detecting extremely low population species in the absence of ligand. 

Detection and characterization of such transient species is further complicated by highly 

cooperative interactions that can deceivingly appear two-state.14,15 Significant advances in 

nuclear magnetic resonance (NMR) spectroscopy16–20 have allowed characterization of 

protein and more recently RNA conformational dynamics occurring on the microsecond to 

millisecond time scale by relaxation dispersion (RD) techniques including R1ρ,21–23 CPMG,
24,25 and CEST,8,26 but challenges remain with respect to detection limitations and 

complicated data analysis. Developing a predictive understanding regarding the role of RNA 

conformational thermodynamics is of critical importance27 for RNA-targeted drug 

discovery28–30 and bioengineering.31–33

Prior studies have successfully determined complex mechanisms by globally fitting data 

collected as a function of multiple independent variables in order to reshape the population 

distribution of relevant conformational states.34–38 We apply this strategy in our study of 

trans-activation response element (TAR) RNA from human immunodeficiency virus type-1 

(HIV-1), which is one of the first paradigmatic examples of RNA adaptive recognition. Its 

conformation-dependent binding interaction with the viral protein Tat is required for full-

length transcription elongation39–41 and has therefore been the subject of numerous studies 

aimed at understanding the principles behind dynamic ligand recognition. TAR is also a drug 

target for the development of anti-HIV therapeutics and it has been shown that the ligand-

bound RNA conformation is an important determinant of the ligand’s inhibitory activity.
42–44 Previous NMR-derived structures show that unliganded TAR adopts a mainly bent 

(average bend angle ~47°) and flexible inter-helical conformation in which bulge residue 
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U23 stacks on A22, while spacer bulge residues C24 and U25 are looped out and flexible.
45–48 The ligand argininamide (ARG) has been used extensively in TAR binding studies 

because it recapitulates the functional structural changes that TAR undergoes upon binding 

to the HIV-1 Tat arginine-rich motif (ARM).45,49–53 ARG binding arrests inter-helical 

motions and stabilizes a coaxial conformation in which bulge residue U23 forms a base 

triple with helical residues A27 and U38, and junctional residues A22 and U40 become 

stably hydrogen bonded.49,53

Several studies measuring TAR binding to Tat-like peptides or ARG-derived compounds 

have reported evidence for two binding sites,43,54–57 while others report single apparent 

affinities,44,50,58–61 and it remains unclear what role the other Tat arginine residues located 

in the arginine-rich RNA binding domain (RBD, residues G48-R57)62 play in vivo. Overall, 

the results in the literature hint at conformational heterogeneity present in the TAR·ARG 

bound state that has not been fully explored. Here, we show that bulge-dependent binding 

occurs at two sites on TAR and that the tightest affinity occurs on the base tripled TAR state. 

The apical loop of the TAR construct used for all experiments in this study is replaced with a 

UUCG loop to simplify the analysis and ensure that no dispersion is present in the 

unliganded state.63 This substitution has been shown to have minimal effects on ARG 

binding or ARG-dependent conformational equilibria.53,64 We globally fit NMR chemical 

shift perturbation (CSP) data to a six-state model and then test the predictions generated 

from our model using NMR RD in the presence of ligand.

RESULTS AND DISCUSSION

Qualitative Inspection of Chemical Shift Perturbations′ Ligand and Temperature 
Dependence Reveals Three Conformations and Two Binding Sites.

We carried out NMR 2D HSQC experiments as a function of both ligand concentration and 

temperature to quantitatively dissect the coupled conformational change and binding 

reactions that occur when the small-molecule ligand, ARG (Figure 1B), binds to TAR RNA 

(Figure 1A). Chemical shifts are exceptionally sensitive to local electronic environment, 

making them excellent reporters of conformational change and proximity to ligands, 

although distinguishing the two can be challenging. Close inspection of the raw CSP data 

(Figure 1C) enables us to build basic elements of a binding model on the basis of the 

following three criteria.

1. Nonlinear trajectories observed in the 2D HSQC spectra65 in Figure 1C under 

the fast-exchange limit are indicative of multi-site binding.66–68 The data is 

consistent with fast exchange because no significant line broadening is observed 

at any of the ligand concentrations and temperatures tested (Figures 1C and S2).

2. Temperature-dependent chemical shifts69–72 at low ligand concentration (see 

residue U23-C1′ in Figure 1C) are indicative of conformational equilibria 

between multiple unliganded RNA species.

3. Temperature-dependent chemical shifts at high ligand concentration (see residue 

G28-C8 in Figure 1C) are indicative of conformational equilibria between 

multiple ARG-bound RNA species.
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In addition to the perturbations addressed by these observations, ARG-dependent 

perturbations are also observed across a wide variety of residues including helical regions 

outside the apparent binding sites, raising the immediate question of whether these distant 

perturbations are due to long-range conformational effects or whether they reflect weak 

interaction with three or more ARG molecules. Strong temperature but no ligand 

dependencies are observed in the chemical shifts of resonances in the UUCG loop even 

though bulge-dependent equilibria are expected to be independent of the apical loop for the 

TAR sequence used here.64 This observation suggests that more than two conformational 

equilibria may contribute to the observed chemical shifts. A model that accounts for all of 

these additional RNA species would be under-determined without a substantial amount of 

additional data, and the equations may not have analytical solutions (for ligand binding to ≥ 

two non-identical sites).73 To circumvent this issue and focus on ligand-dependent CSPs that 

probe ARG binding, we used a bulgeless TAR variant to help identify the resonances 

reporting only on bulge-dependent ARG binding and conformational change.

Bulge Deletion Identifies Chemical Shifts Not Perturbed by Two Primary Binding Sites.

Quantitative interpretation of the observed CSP temperature and ligand dependencies 

depends on the assumption that the underlying data reports on the explicit equilibria 

included in the binding model. Ideally, the binding model would include all equilibria but 

due to experimental and computational limitations, we are forced to build minimal 

complexity models. Because we have chosen to model the bulge-dependent binding and 

conformational equilibria presumed to be critical for functionally important TAR-Tat 

interactions in the cell,39,40,74,75 it is important for accurate modeling that we exclude CSPs 

from global fitting that are bulge-independent. To identify these resonances, we carried out 

NMR CSP mapping experiments on a construct lacking the UCU bulge (ΔbulgeTAR) as a 

function of temperature and ARG concentration. Specifically, comparison of the NMR 

spectra between the two constructs both in the absence (Figure S3A) and presence (Figure 

S3B) of ARG reveals that ARG-induced perturbations in the lower helix do not depend on 

the bulge. Importantly, when we compare the NMR spectra of TAR and ΔbulgeTAR in the 

presence of ARG, any peaks in the ARG-bound spectra that do not overlay between TAR 

and ΔbulgeTAR identify a specific bulge-dependent binding site or a binding-dependent 

conformational change that can only occur in the construct with the trinucleotide bulge. The 

aromatic resonances for A20 and G21 are nearly identical for both RNA variants under 

ARG-saturating conditions (Figure S3B), which indicates that the lower helix does not 

report on bulge-dependent binding. As expected, resonances near the bulge that are known 

to play a role in ARG recognition (A22, G26, A27, U38, C39, U40)49 have large chemical 

shift differences (Δδ = δΔbulge·ARG − δTAR·ARG) in the presence of ARG. More interesting, 

however, are resonances located farther away from the bulge that do not overlay well in the 

ARG-bound spectra, namely G28-C8 and C29-C6. This result provides support for a second 

bulge-dependent binding site in the upper helix above the bulge, (Figure 2B and Figure S4) 

consistent with a recently published NMR study that showed the TAR·Tat RBD complex 

was stabilized by two arginine residues: R52 below the bulge and R49 above the bulge.76 

Additionally, these results suggest that using a simplified small-molecule system to study 

RNA–protein binding can faithfully capture key features of the larger system and is an 

effective approach for dissecting complex binding equilibria. For the purpose of accurately 
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modeling the TAR bulge-dependent binding equilibria, we exclude resonances from global 

fitting whose chemical shifts are sensitive to bulge-independent binding or to melting as 

discussed further in the Supporting Information.

Global Bayesian Fitting Provides Posterior Probability Distributions of Thermodynamic 
and Structural Parameters.

Global fitting of the TAR CSPs caused by changes in ligand concentration and temperature 

to a thermodynamic model can provide estimates of reaction energies and chemical shift 

fingerprints (i.e., structural information) of the various populated RNA species. Each data 

point collected at a given temperature and ARG concentration for a given resonance is 

modeled as the observed chemical shift position δobs. For systems exchanging between n 
states on the fast NMR time scale, the δobs at a given ligand concentration and temperature 

is an ensemble-averaged value given by

δobs = ∑
i = 1

n
piδi (1)

for states i = 1, …, n. The population of a given species pi, expressed as

pi = e−ΔGi/RT

Q = e−ΔGi/RT

∑i = 1
n e−ΔGi/RT (2)

is the probability of the system being in state i, where ∑i = 1
n pi = 1, R is the ideal gas 

constant, T is the absolute temperature in Kelvin, and ΔGi is the Gibbs free energy 

difference between state i and a reference state. The partition function Q = ∑i = 1
n e−ΔGi/RT

represents the sum of the statistical weights of all microstates distinguishable by binding site 

occupancy and cooperatively formed conformational minima (see Methods for model-

dependent Q derivations).

Because the raw data establish a mechanism that involves multiple RNA conformational 

states and multiple liganded states, we employed a Bayesian approach that has several 

advantages over least-squares fitting methods, particularly for estimation of correlated 

parameters in multi-component biophysical models.77–80 Least-squares methods that obtain 

point estimates for parameter values rely on the assumption that the error in the data is 

normally distributed around the mean value, but this assumption need not be true for more 

complicated systems in which the variance in the data has complex sources (Methods) and 

parameters are often correlated. A Bayesian approach, by contrast, estimates complete joint 

probability distributions for each parameter and in so doing estimates the associated 

uncertainty over all potential parameter space, providing more reliable estimates of 

parameter uncertainty. Additionally, Bayesian inference has the advantage over standard 

approaches in its ability to formally incorporate prior knowledge with the observed data, 

which together are used to maximize the log likelihood of the proposed model, or the 

conditional probability of observing the data given the model. This approach is represented 

by Bayes’s rule, p(θ|y) ∝ p(y|θ) p(θ), where p(θ|y) is the posterior probability distribution, 
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p(y|θ) is the likelihood, and p(θ) is the prior probability distribution for a specified model 

with parameters θ and data y. Our implementation of Bayesian fitting is described in 

Methods.

A Six-State Thermodynamic Model Matches the Information Content of the CSP Data.

The model we developed for data fitting assumes explicit conformational changes and 

binding equilibria to quantitatively interpret the observed CSP temperature and ligand 

dependencies. As noted earlier, the curvature observed in the ligand-dependent 2D CSP 

trajectories provides evidence for at least two binding sites, and the temperature-dependent 

CSPs at both low and high ligand concentrations indicate conformational equilibria between 

at least three species. Taken together, these observations suggest the existence of a minimum 

of 12 distinct RNA species: three conformational states (referred to herein as states A, B, 

and C) and three bound forms of each conformational state, corresponding to ARG bound to 

site α or β, or both. This scheme is depicted in Figure 1D.

Ideally, there would be sufficient information in the experimental data to determine all of the 

equilibrium constants. Unfortunately, because some states are insufficiently populated to 

allow estimation of their contributions to observed CSPs, we are forced to reduce the 

complexity of the model to six RNA species: only the unliganded form of the A 

conformation (A), only the fully liganded form of the C conformation (CL2), and all 

possible liganded states of the B conformation (B, BLα, BLβ, and BL2). Our rationale for 

including these states and not the other six is described in detail in the Supporting 

Information. Although our model-fitting approach does not strictly require any prior 

assumptions regarding the structural identities of the A, B and C conformations, we propose 

that they correspond to the flexible, bent inter-helical form of TAR10,46,47,81 (state A); the 

coaxially stacked state observed at high Mg2+ concentration82–85 where junctional residues 

A22 and U40 below the bulge remain unpaired (state B); and the coaxially stacked state 

stabilized with a A22·U40 base pair and U23-A27·U38 base triple49 (state C), as depicted in 

Figure 1E. These predictions are based on earlier NMR studies that report hydrogen bond 

alignments between A22-U40 and U23-A27 in excess ARG but not in Mg2+,53 where both 

ARG and Mg2+ similarly reduce the TAR helix bend angle relative to the unliganded state 

according to transient electric birefringence, NMR, and circular dichroism studies.47,59,84,86

At intermediate ARG concentrations there must be significantly populated singly bound 

species, which must have either the B or C conformations, or both. As noted above, the 

minimal model must include one or more singly bound species in the same conformational 

state as the doubly bound species. The non-sigmoidal binding curves observed for several 

resonances would not be observed if the two binding sites were on different conformational 

states. Given the assumption that the unliganded C state is negligible, the B conformation is 

the best candidate for the singly bound species, i.e., BLα and/or BLβ as opposed to CLα 

and/or CLβ. We fit for Ka
Bα and Ka

Bβ distributions but also consider the possibility that CLα 

and/or CLβ become sufficiently populated to contribute to the observed CSPs and therefore 

also test fits including Ka
Cα and/or Ka

Cβ. We conclude that the models including CLα and/or 

CLβ do not fit the data significantly better than the simpler and less parametrized model with 
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only BLα and BLβ. This conclusion is consistent with our preference for a model whose 

complexity is matched to the information content of the data. Additional experiments 

beyond the scope of the present study might provide sufficient information to determine the 

populations of some of the six species not included in our minimal model. An example of 

such an experiment would be relaxation kinetics, which have the capacity to detect 

transiently populated species whose equilibrium populations are undetectable.37

The Unliganded C Conformation of TAR Is Poorly Populated But Has High Affinity for ARG.

For the six-state model, the fitting equation is given by

δobs = ∑
i = 1

n = 6
piδi = δApA + δBpB + δBLαpBLα + δBLβpBLβ + δBL2pBL2 + δCL2pCL2 (3)

where the population of each species is found as described in Methods. The populations and 

therefore the observed chemical shifts are a function of the site binding affinities for 

BLα Ka
Bα = 1/Kd

Bα  and BLβ Ka
Bβ = 1/Kd

Bβ  and equilibrium constants for A ⇌ B (KAB) and 

BL2 CL2 KBL2CL2 . Because the slopes of chemical shifts versus ligand concentration do 

not vary significantly with temperature for all resonances, (representatives shown in inset in 

Figure 1C), we assume that the site binding constants are insensitive to temperature at the 

experimental conditions tested and the only detectable temperature dependency arises from 

conformational equilibria given by

Keq = eΔH/R 1/Tm − 1/T
(4)

where ΔH is the enthalpy change and Tm is the melting temperature in Kelvin for a given 

conformational transition. Here, the parameter vector θ is given by 

θ = Ka
Bα, Ka

Bβ, ΔHAB, ΔHBL2CL2, Tm
AB, Tm

BL2CL2, δr, i, ϵj  where δr,i represents the vector of 

basis chemical shifts for species i (i = A, B, BLα, BLβ, BL2, and CL2) per resonance r, and 

ϵj is the measurement error in δobs in units of ppm for chemical shift groups j (j = C6/C8, 

C1′, C2, H2/H6/H8/H1′, H1/H3, and overlapped resonances). The error terms were grouped 

according to scale of raw chemical shift values, as described in Methods.

As listed in Table 1, the site binding affinities estimated from the marginal posterior 

distributions are 66 (+7/−6) μM and 550 (+50/−40) μM for the α and β sites on state B, 

respectively. The enthalpy change of the stacking equilibrium (A ⇌ B) is estimated to be 

−7.9 (+0.5/−0.4) kcal mol−1, while the derived entropy change for the same reaction is quite 

unfavorable at −29.4 (+0.4/−1.2) cal mol−1 K−1. This reduction in entropy is expected for a 

stacking reaction. The BL2 ⇌ CL2 equilibrium is slightly less exothermic at −2.9 

(+0.4/−0.4) kcal mol−1 and also less entropically unfavorable at 9.9 (+1.6/−1.3) cal mol−1 K
−1. The derived free energy change for both reactions is slightly positive (unfavorable) at 25 

°C (Figure 3C, red), but as depicted in Figure 4, both A and B are significantly populated in 

the absence of ligand and both BL2 and CL2 are significantly populated at high ARG 

concentrations. Figure 4 also shows that the only other significantly populated species is 
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BLα, whose population reaches ~35% at the midpoint of the apparent binding curve, but is 

poorly populated at low and high ARG concentrations.

In addition to the six-state model, we tested several models (Figure S5) as potential fits to 

the data. Although fits to models with species n ≥ 7 were not statistically superior to the 

simpler, less parametrized six-state model, they provide additional support for the existence 

of tight binding to an undetectable C species. For instance, the Kd to at least one site on the 

C conformation was consistently estimated to be below 0.009 mM for fits to n ≥ 7-state 

models. Under such conditions, the population of the singly bound C conformation would be 

below 5%, so its contribution to δobs would be negligible and largely indeterminable, which 

is consistent with the highly uncertain distributions obtained for δCLα and/or δCLβ in those 

fits. Overall, these results are consistent with a model in which binding to at least one of the 

sites on the C conformation is much tighter than binding to that site in the B conformation.

Fitted CSPs Give Insight into Structures of Intermediate Species.

To answer the question of whether the A ⇌ B equilibrium reports on coaxial stacking, we 

compared the fitted chemical shifts for the B state with measured chemical shifts for TAR in 

Mg2+ and additionally for ΔbulgeTAR in ionic strength conditions comparable to those in 

the CSP titration (Figure 5A). It is known that Mg2+ shifts the equilibrium to >90% stacked,
84,85,87 so we would expect the chemical shifts of the fitted B state to match those seen in 

Mg2+ if temperature perturbs the same stacking equilibrium. However, a complication with 

this previously used assumption is that Mg2+ also makes direct contacts with resonances 

near the bulge, so it may be difficult to separate the chemical shift contributions due to 

stacking/unstacking versus those due to localization of Mg2+. The bulgeless variant, 

however, provides a cleaner fingerprint of the chemical shift for the stacked state since it is 

presumably never unstacked. The disadvantage of this comparison is that it provides no 

information on the stacked chemical shift for bulge residues U23, C24, and U25 because 

they are absent in the variant. As shown in Figure 5A, many of the B-state shifts agree in 

direction and approximate magnitude with shifts for ΔbulgeTAR, supporting the hypothesis 

that the A ⇌ B equilibrium is the unstacked ⇌ stacked equilibrium. Interestingly but 

perhaps not surprisingly, the chemical shifts of resonances thought to be in close contact 

with Mg2+ ions (C24-C1′, C24-C6, U25-C1′, U25-C6, G26-C8, A27-C8) are in opposite 

direction to the chemical shifts for TAR·Mg2+. Relative to the A state, C39-C6 shifts upfield 

and C39-C1′ shifts downfield in B, consistent with the base becoming more stacked and the 

sugar pucker becoming more A-form, as would be expected for residues directly above the 

bulge in the coaxially stacked B state.

Comparing the chemical shifts for CL2 relative to BL2 gives insight into the structural 

differences between the stacked/base triple state and the stacked state. Relative to the BL2 

state, resonances in CL2 that lose stacking interactions on the basis of downfield chemical 

shifts include U23-C6, G26-C8, G28-C8/H8, C29-H6, while resonances that become more 

stacked in the base-tripled state include A22-H2, C24-C6, U25-C6, and C29-C6 (Figure 

5B). U25-C1′ has a large upfield chemical shift in CL2 indicating a shift from C3′-endo to 

C2′-endo (deviating away from RNA A-form geometry). C39-C6 remains unchanged 

between the BL2 and CL2 states, while its sugar (C39-C1′) becomes slightly more helical 
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(downfield chemical shift), although it is already adopting a more A-form geometry in BL2 

relative to unliganded A and B. The upfield shift in H2 of A22 is consistent with increased 

stacking and stabilization of the A22-U40 base pair in CL2.

Testing the Model and Characterizing a Binding Intermediate by NMR RD.

Our model predicts detectable populations of the intermediate species BLα at intermediate 

ligand concentrations, so we can exploit this information to gain insight into the kinetics of 

ligand binding using NMR R1ρ RD. Additionally, R1ρ experiments allow independent 

determination of chemical shifts for comparison to those obtained from analysis of the 

CSPs. Measurements were first carried out in the absence of ARG. Consistent with previous 

results,63 no dispersion is observed in the free TAR construct at temperatures between 5 and 

25 °C. Because our model predicts populations of roughly 30% and 15% for the unliganded 

B state at 5 and 25 °C, respectively (Figure 6A), and sufficiently large 13C chemical shifts 

(Δω = ωB − ωA > 1 ppm) for several resonances (Figure 5A), the absence of dispersion 

indicates that the A ⇌ B transition must be fast (τ = 1/kex ≤ 1 μs) and outside the detection 

limits. Our CSP experiments revealed that binding occurs on the fast exchange NMR time 

scale (kex (s−1) > Δω (rad s−1))68 at all tested temperatures and therefore we can predict that 

for average chemical shift differences of 2 ppm in 13C on a 700 MHz spectrometer, the 

exchange process (kex = k1 + k−1) will be faster than ~2000 s−1. A simplified description of 

ligand binding between one ligand and one receptor with a single site yields k1 = kon[L] and 

k−1 = koff. Thus, the total observed exchange (kex = kon[L] + koff) scales with increasing free 

ligand concentration [L]. Experiments were carried out at low ligand concentration to avoid 

reaching exchange rates too fast to be detected by RD.

To test the predictions from the CSP analysis, we carried out off-resonance R1ρ 
measurements at 1.5 mM RNA and 0.2 mM ARG which should give rise to chemical 

exchange corresponding to 9% of the BLα species and 1% of the BLβ species for resonances 

with large enough 13C chemical shifts relative to the ground state (Δω = ωBLα − ωGS> 1 

ppm and Δω = ωBLβ − ωGS > 1 ppm). We note here that because the observed ground state 

(GS) is in fast exchange between A ⇌ B as described above, the GS chemical shift is not 

simply ωA; rather it is given by ωGS = ωA(1 − pB) + ωBpB, where pB is calculated from the 

Bayesian-fitted parameters according to

pB = KAB
1 + KAB

= eΔHAB/R 1/TmAB − 1/T

1 + eΔHAB/R 1/TmAB − 1/T
(5)

At 5 °C, we observe apparent two-state dispersion profiles at four resonances located near 

the primary bulge binding site (Figure 6B). No ligand-dependent dispersion was observed at 

25 °C, likely because the reaction is too fast for detection by R1ρ, as reaction rates scale with 

increasing temperature. Global fitting of the data at 5 °C revealed the apparent on-rate 

constant to be 3 × 106 M−1 s−1 and the apparent off-rate for binding to be about 8000 s−1. 

The kon
app and koff

app  values were calculated using eq 19 and eq 20 as described in Methods. 

The population obtained by RD (5.4 ± 0.5%) is in fairly close agreement with the predicted 

9%, although it is important to note that there is no RD evidence for the 1% predicted 
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exchange with a third species. This could be explained by the chemical shifts for the BLβ 
state being too small (<1 ppm) for RD detection, as we do not have accurate estimations for 

the BLβ chemical shifts from the global fitting of the CSP data (Supporting Information). 

Nevertheless, the chemical shifts obtained by RD are in strikingly good agreement with the 

chemical shifts for species BLα determined from the CSP fitting (Figure 6C), further 

supporting that the RD is reporting on the binding to the α site on the B conformation.

Furthermore, the apparent dissociation constant Kd
app  can be calculated from the RD fitted 

parameters using Kd
app = koff

app /kon
app  for a two-state system. In this case, because of the fast A 

⇌ B pre-equilibrium, the Kd
app is scaled by the population of the B state, so 

Kd
app = KABkoff

app/ 1 + KAB kon
app , where KAB (at 5 °C) is obtained from the CSP results. The 

result for Kd
app obtained by RD (0.22 ± 0.05 mM) is in fairly good agreement with the 0.1 

mM measured for Kd
Bα by the global CSP analysis. Measure ments were also carried out at 

high ligand concentration (10 mM ARG) to probe the kinetics for base triple formation (BL2 

⇌ CL2) since our model predicts a sufficiently high population of CL2 pCL2 ≈ 40 − 60% , but 

no dispersion was observed at all tested temperatures (Figure S11). It is possible that base 

triple formation is too fast and outside the detection limits of RD, and more experiments in 

the future will be needed to explore this hypothesis further.

CONCLUSION

Returning to the complete 12-state model introduced earlier, we can begin to make 

predictions about this more detailed mechanism based on the analysis of our simpler six-

state model. As a consequence of thermodynamic linkage and free energy conservation, not 

all equilibrium constants in the full 12-state model are independent, i.e.,

Ka
CαKa

Cβ =
Ka

BαKa
BββBL2CL2
KBC

(6)

Our fitted minimal model provides estimates at 25 °C for Ka
Bα, Ka

Bβ, and βBL2CL2 (1.4 × 104 

M−1, 1.8 × 103 M−1 and 0.84, respectively). Our inability to detect any form of C except 

CL2 gives an upper limit for KBC of 0.05, and substitution of these estimates into eq 6 gives 

an estimate for the product of the two C-state binding constants of at least 3 × 1012 M−2. 

This estimate implies that the upper limit for both binding dissociation constants Kd
Cα and 

Kd
Cβ must be 0.6 μM, assuming that they are equal. If they are not the same, then one of the 

C sites must be even tighter (Figure S12).

Because this affinity is much tighter than that of the B conformation (Kd
CαKd

Cβ < Kd
BαKd

Bβ by 

4 orders of magnitude), the probability of finding a doubly bound C species (CL2) is much 

higher than finding a singly bound C species (CLα or CLβ). In other words, it is much more 
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thermodynamically favorable for ARG to bind to both sites on conformation C than it is to 

have only one ligand bound. The same is not true for the B conformation, whose ligand 

binding is sufficiently weak that the most energetically favorable species is the singly bound 

B state (BLα) at intermediate ARG concentrations (see population of BLα in Figure 4).

Considering our results in the context of energetic penalties previously measured for RNA 

systems, the enthalpy we measure for A ⇌ B (ΔHAB ≈ −7.9 kcal mol−1) is in fairly close 

agreement with the enthalpy reported for formation of a single terminal AU-AU base stack 

(ΔHstack = −6.82 ± 0.72 kcal mol−1).88 Since formation of the TAR B state involves coaxial 

stacking between the upper and lower helix, our data is consistent with the conclusion that 

the ΔH measured for A ⇌ B reflects the enthalpy of stacking. This occurs between 

junctional bases at the bulge that are likely to be as flexible as the terminal bases studied 

previously.88 Additionally, consistent with our results of ~ 7 kcal mol−1 penalty for forming 

the C conformation in the absence of ligand (Figure 7), no evidence has ever been observed 

suggesting the base triple is detectable in the free RNA, and an RDC-informed MD 

ensemble also never observed the base triple for either HIV-1 or HIV-2 TAR.89,90

Our results suggest that preferentially tight affinity to high-energy RNA states may be a 

ubiquitous mechanism by which ligands confer selectivity to otherwise promiscuous RNA 

binding partners. The binding energy from binding to a tight-affinity ligand can explain how 

the RNA overcomes the high conformational energetic penalty for formation of the binding-

competent conformation. Lack of selectivity is among the main challenges in RNA drug 

design and in understanding processes regulated by RNA. Our study provides direct 

evidence that undetectable RNA species are the key thermodynamic players in a 

paradigmatic example of RNA adaptive recognition and underscores the importance of 

developing methods to study low-populated states that have gone undetected. While the 

presented approach only provides thermodynamic information regarding binding 

intermediates, its integration with other methods such as NMR RD and stopped-flow 

techniques may afford a deeper and more complete kinetic characterization of the binding 

reaction. In addition, extending NMR measurements to other sugar resonances should be 

straightforward, and this will afford the opportunity to structurally characterize the 

intermediates to higher resolution.91,92 We predict that the mechanism uncovered here is not 

limited to TAR and anticipate that further experiments using the approach outlined here can 

help to quantitatively characterize multi-state RNA–ligand interactions.

METHODS

Sample Preparation.

HIV-1 TAR RNA capped with a UUCG loop (sequence 

GGCAGAUCUGAGCUUCGGCUCUCUGCC) and bulgeless mutant (sequence 

GGCAGAGAGCUUCGGCUCUCUGCC) were prepared by in vitro transcription using 

DNA templates containing the T7 promoter (Integrated DNA Technologies). DNA templates 

were annealed in 3 mM MgCl2 by heating to 95 °C for 5 min and cooling on ice for 30 min. 

The transcription reaction was carried out at 37 °C for 12 h with T7 RNA polymerase (New 

England BioLabs) using 13C/15N-labeled nucleotide triphosphates (Cambridge Isotope 

Laboratories, Inc.). RNA was purified using 20% (w/v) denaturing polyacrylamide gel 
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electrophoresis (PAGE) with 8 M urea and 1× TBE buffer followed by excision from the gel 

by electroelution in 1× TAE buffer and further purified by ethanol precipitation overnight at 

−20 °C. Purified RNA was dissolved in water to 50 μM RNA and annealed by heating to 95 

°C for 5 min and cooling on ice for 1 h. Prior to NMR experiments, 13C/15N-labeled RNA 

samples were exchanged into phosphate NMR buffer (15 mM NaH2PO4/Na2HPO4, 25 mM 

NaCl, 0.1 mM EDTA, 10% (v/v) D2O at pH 6.4) to the desired RNA concentrations (0.2 

mM for HSQC titrations and 1.5 mM for RD). Concentrations were measured using a 

nanodrop UV spectrometer by the absorbance reading of heat-denatured RNA at 260 mm.

NMR CSP Experiments.

NMR experiments were carried out on Bruker Avance III 600 MHz and Bruker Avance III 

700 MHz spectrometers equipped with a 5 mm triple resonance cryogenic probe. 

Assignments for TAR in the unbound and ARG-bound states were previously published.93 

CSPs as a function of temperature and ligand concentration were monitored for aromatic and 

aliphatic resonances using 2D [13C,1H] heteronuclear single quantum coherence (HSQC) 

spectra and for imino resonances using 1D [1H] SOFAST spectra. For each titration point, 

successive additions of ARG (L-argininamide dihydrochloride, Sigma) from a concentrated 

stock dissolved in phosphate NMR buffer were added directly to an NMR sample tube 

containing 450 μL of 0.2 mM 13C/15N-labeled RNA, and the tube was inverted at least six 

times to ensure homogeneous mixing. The increase in total sample volume due to ARG 

addition remained less than 5% of the starting volume and therefore had a negligible effect 

on the RNA concentration. A total of seven titration points per temperature were used for the 

TAR titration and six for the bulgeless mutant titration. Experiments for both constructs 

were carried out at six different temperatures (1, 2.5, 5, 10, 15, and 25 °C). The temperature 

of the NMR probe was calibrated using a methanol sample and spectra was internally 

referenced relative to a trace amount of 2,2-dimethyl-2-silapentane-5-sulfonate (DSS). 

Spectra were processed using NMRPipe,94 and peak positions were measured using Sparky.
95

NMR RD Experiments.
13C R1ρ measurements were carried out at 25 and 5 °C on a Bruker Avance III 700 MHz 

spectrometer using 1.5 mM 13C/15N-labeled RNA. On- and off-resonance measurements 

were collected at the spin lock powers (Ω) and spin lock offsets (ω1) listed in Table S1 using 

a 1D acquisition scheme which uses Hartmann–Hahn cross-polarization transfer to 

selectively excite a single peak at a time as described previously.22,63,92 To account for 

sample heating effects due to high-power spin locks,96 the pulse sequence contains a heat-

compensation element that applies far off-resonance 13C spin locks during the recycle delay 

after acquisition at the highest field strength for a time Trelax 
max − Trelax  such that the net 

amount of radiofrequency (RF) introduced into the sample is constant across all relaxation 

delay times.21,64 For preparation of samples, ARG from a concentrated stock dissolved in 

phosphate NMR buffer was added directly to the NMR sample tube containing 1.5 mM 13C/
15N-labeled RNA following the procedure used for titration experiments to achieve the 

desired ARG concentrations (0.2 and 10 mM). Raw data was processed using NMRPipe to 
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determine peak intensities at each delay time point, which were then fit to a mono-

exponential function to estimate the R1ρ values needed for further analysis via eq 18.

Statistical Thermodynamic Framework.

As described in the Results and Discussion section, qualitative analysis of the CSP data led 

us to conclude that the minimum complexity system necessary to explain the temperature 

and ligand dependencies must include three conformational states (A, B, C) each potentially 

capable of binding two ligands. To further minimize complexity, the two binding sites (α 
and β) are assumed to be independent; that is, occupancy at one site does not detectably 

influence the intrinsic affinity at the other site. The partition function Q for such a system 

can be derived by rewriting the following microscopic association and conformational 

equilibrium constants:

Ka
Aα = ALα

[A][L] = AL2
ALβ [L] Ka

Aβ = ALβ
[A][L] = AL2

ALα [L]

Ka
Bα = BLα

[B][L] = BL2
BLβ [L] Ka

Bβ = BLβ
[B][L] = BL2

BLα [L]

Ka
Cα = CLα

[C][L] = CL2
CLβ [L] Ka

Cβ = CLβ
[C][L] = CL2

CLα [L]

KAB = [B]
[A] KBC = [C]

[B]

(7)

in terms of RNA concentrations, summing together all 12 RNA forms,

RT = [A] + ALα + ALβ + AL2 + [C] + CLα + CLβ + CL2 + [B]
+ BLα + BLβ + BL2

(8)

and dividing by a chosen reference state (most simply set as the free A state) to obtain

Q = 1 + Ka
Aα[L] + Ka

Aβ[L] + Ka
AαKa

Aβ[L]2 + KAB + KABKa
Bα[L] + KABKa

Bβ[L]
+ KABKa

BαKa
Bβ[L]2 + KABKBC + KABKBCKa

Cα[L] + KABKBCKa
Cβ[L]

+ KABKBCKa
CαKa

Cβ[L]2
(9)

Although this 12-state model (Figure 1D) was used for simulations, extensive testing 

revealed that the information content of the data is insufficient to fit more parameters than 

those necessary to quantify the interconversion of the six states highlighted in Figure 1D. 

The summation of all RNA forms in the six-state model is

RT = [A] + [B] + BLα + BLβ + BL2 + CL2 (10)

which gives the partition function

Q = 1 + KAB + KABKa
Bα[L] + KABKa

Bβ[L] + KABKa
BαKa

Bβ[L]2

+ KABKBL2CL2Ka
BαKa

Bβ[L]2 (11)
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The population term for each species is found by taking its statistical weight and dividing by 

the partition function. Note that the equilibrium constants KBC and KBL2CL2 are related 

through

KBC =
Ka

BαKa
BβKBL2CL2

Ka
CαKa

Cβ
(12)

The free ligand concentration term [L] is a solution to a cubic equation of the form

a[L]3 + b[L]2 + c[L] + d = 0 (13)

where the coefficients a, b, c, and d are defined as

a = − Ka
AαKa

Aβ − KAB Ka
BαKa

Bβ + Ka
CαKa

CβKBC

b = Ka
Aα Ka

Aβ LT − 2 RT − 1 − Ka
Aβ

+ KAB Ka
Bα Ka

Bβ LT − 2 RT − 1 − Ka
Bβ+Ka

CαKBC Ka
Cβ LT − 2 RT − 1

− Ka
CβKBC

c = Ka
Aα LT − RT + Ka

Aβ LT − Ka
Aβ RT

+ KAB Ka
Bα LT − Ka

Bα RT + Ka
Bβ LT − Ka

Bβ RT

+KBC Ka
Cα LT − Ka

Cα RT + Ka
Cβ LT − Ka

Cβ RT − 1 − 1

d = LT KAB + KABKBC + 1

(14)

for the 12-state model and

a = − Ka
BαKa

BβKAB − 1 + KBL2CL2
b = KAB −Ka

Bβ + Ka
Bα −1 + Ka

Bβ 1 + KBL2CL2 LT − 2 RT

c = − 1 + KAB −1 + Ka
Bα + Ka

Bβ LT − RT
d = LT 1 + KAB

(15)

for the six-state model. The general, model-independent algebraic solution97,98 for free 

ligand concentration [L] is given by
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[L] =

c0 + sc sinh 1
3sinh−1(χ)  if p > 0

c0 + sc cosh 1
3cosh−1(χ)  if p < 0 ∧ χ ≥ 1

c0 − sc cosh 1
3cosh−1( − χ)  if p < 0 ∧ χ ≤ 1

max

c0 + sc cos 1
3cos−1(χ)

c0 − sc sin π
6 − 1

3cos−1(χ)

c0 − sc sin π
6 + 1

3cos−1(χ)

 if p < 0 ∧ |χ | < 1

(16)

where

c0 = − b
3a

p = c
a − b2

3a2

sc = 2 p
3

χ =
3 3 − 2b3

27a3 + bc
3a2 − d

a

2 p 3/2

(17)

and a, b, c, and d are model-dependent terms as shown in eqs 14 and 15.

Bayesian Analysis of CSP Data.

Bayesian inference was used to fit the CSP data. This fitting method applies Bayes’s rule, 

p(θ|y) = p(y|θ) p(θ)/p(y), which states that for a specified mathematical model of the data y 
based on parameters θ, the probability distributions of parameter values given the data, p(θ|

y) (called the posterior distributions), are the product of the likelihood of the data given the 

parameters, p(y|θ) (a measure of goodness-of-fit), and user-specified prior probability 

distributions, p(θ), normalized by the probability of the data, p(y). In simpler terms, the 

posterior ∝ prior × likelihood. The calculation of the p(y) term needed for calculating the 

likelihood involves a multivariate integral that does not have an analytical solution except in 

the simplest of cases such as single-parameter models,80,99 so Bayesian techniques have 

been developed that use Markov-chain Monte Carlo (MCMC) rejection sampling to 

approximate the likelihood function and respective posterior distributions. Here, we use the 

software package Stan, which employs a version of MCMC sampling known as the no-U-

turn (NUTS) Hamiltonian Monte Carlo (HMC) sampler which is efficient and robust for 

models with complicated posteriors.100,101 The analysis was carried out using in-house 

scripts written in the Stan statistical programming language run under the R programming 

interface (RStan).

The Stan interface allows the user to define a likelihood function given by the model 

equations and conditioned on the data. For each unknown parameter, a prior distribution is 
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specified with a corresponding mean μ and standard deviation σ. Briefly, at each sampling 

iteration, the algorithm takes a number of discretized leapfrog parameter steps to simulate 

the trajectory of a particle along a potential energy field. The parameter values at a point in 

this field correspond to the log of the posterior density we wish to maximize. Essentially, the 

leapfrog steps are a discrete way to approximate the continuous function represented by the 

model’s equations. Highly curved posteriors (i.e., complicated nonlinear functions) are 

especially difficult to sample from, partly because an infinite number of steps would be 

required to accurately traverse the trajectory. In the work here, the polynomial terms in the 

free ligand expression (eq 16) give rise to a highly nonlinear dependence of the model on 

free ligand concentration. This variable is model-dependent and based on the combination of 

binding and equilibrium constants (as shown in eqs 7–17), which makes the selection of 

informative priors very important.

The Bayesian fitting algorithm aims to maximize the log-likelihood for master eq 1 and in 

doing so treats each model parameter as a random variable with its own probability 

distribution for parameter vector θ. The general parameter vector for all models tested can 

be expressed as θ = Kd
Xs, ΔHY1 Y2, Tm

Y1 Y2, δr, i, ϵj , where superscript X refers to a 

conformational state (A, B, or C), subscript s refers to a binding site (α or β), Y1 ⇌ Y2 

refers to a given conformational equilibrium (such as A ⇌ B), δr,i represents the vector of 

basis chemical shifts for species i per resonance r, and ϵj is the measurement error for 

chemical shift categories discussed in the following paragraph.

For all thermodynamic parameters, Gaussian prior distributions were used with standard 

deviations up to 50% of their means. Gaussian priors were also used for chemical shift 

parameters with standard deviations of 1.0 ppm for carbon and 0.25 ppm for proton. For a 

given resonance, the prior distributions used for all species’ chemical shifts were identical to 

avoid biasing the posteriors. In addition to the thermodynamic and chemical shift 

parameters, the Bayesian fitting algorithm treats the measurement error as a random 

unknown variable and therefore fits for the an error term referred to as ϵj. As mentioned in 

the Results and Discussion, Bayesian techniques are suitable for handling data whose 

variance may have several sources. Because our fitting approach uses the raw measured 

chemical shift values of all included resonance types and avoids scaling or normalizing the 

data, the scale of the measurement error varies depending on the nucleus type (13C vs 1H) 

and even atom position (C6/C8 vs C1′). For this reason, we fit for six error terms 

corresponding to the following categories of chemical shifts: C6/C8, C1′, C2, non-

exchangeable protons, exchangeable protons, and resonances with significant overlap at any 

point in the titration. An Inverse-Gamma distribution with shape and scale parameters (α, β) 

was chosen for the error priors, where the shape and scale terms are related to the mean μ 
and standard deviation σ by α = (μ2 + 2σ2)/σ2 and β = μ(μ2 + σ2)/σ2.

MCMC sampling was carried out using four independent chains and 4000 iterations per 

chain, the first half of which comprise the initial warm-up phase where the algorithm 

optimizes for sampling efficiency and are therefore discarded before posterior analysis. The 

post-warm-up samples used for approximating the parameter posterior distributions consist 

of 2000 draws per chain, i.e., 8000 total draws. Convergence was assessed (Figure S6) via 
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the potential scale reduction factor R 102 for each parameter where R values approaching 1 

but ≤1.05 are ideal and R ≥ 1.2 indicate lack of convergence.103 Prior to data fitting, the 

model was extensively tested for robustness by subjecting simulated data to the fitting 

procedure and evaluating the effects of various prior distributions on posterior distributions. 

As a benchmark, data with noise were simulated for 20 resonances under experimental 

conditions identical to that of the collected data (seven ligand concentrations and six 

temperatures), and the simulated data was subjected to global fitting using the equations 

described above. The fitting was able to converge within 2000 iterations only when the 

correct parameter distributions were found. Setting priors very far from simulated values 

prevented convergence, indicating that the algorithm did not falsely converge to incorrect 

parameter values.

We note that using a Bayesian approach was not only advantageous to a standard nonlinear 

least-squares approach but it was integral for quantitative analysis of a model that matched 

the level of complexity present in the raw data described here. For data sets simulated to the 

six-state model both with and without noise, least-squares global fitting failed to recover the 

simulated parameters, whereas Bayesian global fitting correctly recovered the parameter 

distributions for converged fits.

Analysis of RD Data.

Data for two-state exchange were fit to

R1ρ = R1cos2θ + R2sin2θ

+
sin2θpGSpESΔωES

2 kex
ωGS

2 ωES
2

ωeff
2 + kex

2 − sin2θpGSpESΔωES
2 1 +

2kex2 pGSωGS
2 + pESωES

2

ωeff
2 kex2

(18)

where R1 and R2 are the longitudinal and transverse relaxation rates, Δω is the change in 

chemical shift between the low population excited state (ES) and highly populated ground 

state (GS), expressed as Δω = ωES − ωGS. The strength of the carrier spinlock power is ωSL 

and the tilt angle in the rotating frame is defined as θ = tan−1(ωSL/ΔΩ) given by ΔΩ = Ω − 

ωrf, the difference between average spin lock offset (Ωave) and reference frequency (ωrf). 

Average spin lock offset is calculated by Ωave = pGSωGS + pESωES where pGS and pES are 

populations of the GS and ES, respectively. The spinlock strengths at the GS and ES are 

given by ωGS
2 = ωGS + ωrf

2 + ωSL
2  and ωES

2 = ωES + ωrf
2 + ωSL

2 , respectively, and their 

resonance offsets from the spinlock carrier correspond to ωGS and ωES. ΔωES = ωES − ΩGS 

defines the difference in offset for transitions from ES to GS. The effective spinlock field 

strength is calculated as ωeff
2 = ΔΩ2 + ωSL

2 . Finally, the exchange rate constant is expressed as 

kex = k1 + k−1 = pESkex + pGSkex and can be converted to the form kex = kon
app[L] + koff

app to 

determine the on and off rate constants. Free ligand concentration [L] is calculated from the 

relation [L] = [LT] − pbound[RT], where the total ligand and RNA concentrations are known a 

priori, and the population of bound RNA (pbound) is obtained from the RD fitted value for 

pES in the case of low ligand concentration where the excited species is the bound state, or 
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pGS in the case of excess ligand where the excited state is the free RNA. This allows us to 

rewrite kon
app and koff

app as

kon
app = pboundkex

LT − pbound RT
(19)

and

koff
app = kex 1 − pbound (20)

Note that the rate constants are considered apparent rather than intrinsic due to the presence 

of RD-invisible A
kBA

kAB
B pre-equilibrium. The apparent association and dissociation rate 

constants kon
app = konkAB/ koff + kAB  and kof

app = koffkBA/ koff + kAB 104 are measured, 

whereas the intrinsic kon and koff cannot be determined here because kAB and kBA are 

unknown.

Supplementary Material

Refer to Web version on PubMed Central for supplementary material.
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Figure 1. 
NMR evidence for multi-site binding coupled with conformational equilibria. (A) Secondary 

structure of TAR construct used in this work. Red asterisk highlights residues that are 

particularly sensitive to temperature-dependent conformational equilibria and green asterisk 

highlights residues that show curved CSP trajectories indicating multiple binding sites. (B) 

Chemical structure of argininamide (ARG). (C) Chemical shifts as a function of ARG 

concentration at varying temperatures (blue, 1 °C to red, 25 °C) for representative 

resonances. Examples are shown for residues sensitive to multiple binding sites (A27-C8 

and G28-C8) evidenced by curved CSP trajectories, and residues sensitive to conformational 

equilibria (U23-C1′ and G28-C8) evidenced by CSPs that vary significantly with 

temperature. Note that G28-C8 is sensitive to the BL2 ⇌ CL2 equilibria in addition to multi-

site binding, while U23-C1′ reports on A ⇌ B but is almost entirely insensitive to BL2 ⇌ 
CL2. Shown are the aromatic C6/C8-H6/H8 (left) and sugar C1′-H1′ (right) spectra at 25 °C 

as a function of increasing ARG concentration showing that the peaks shift in accordance 

with fast exchange. Spectra of all raw data can be found in Figure S2. (D) Minimal six-state 

model consistent with the observed CSP trends. In lighter gray are the equilibria that 

complete the statistical thermodynamic description for a system with three conformations 

and two independent binding sites per conformation, giving a total of 12 possible RNA 

species. (E) Cartoon depictions of the three TAR conformational states discussed in the text.
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Figure 2. 
Evidence for bulge-dependent secondary binding site in the TAR upper helix. (A) 

Comparison of secondary structures of the TAR and the bulgeless mutant in the absence of 

ligand. Resonances colored in yellow correspond to the putative secondary binding site. (B) 

CSPs as a function of ARG concentration and temperature for residues that are sensitive to 

the bulge-dependent secondary binding site on TAR that is abolished in the bulgeless 

mutant. Color coding of temperatures follows that of Figure 1C. The data supports that the 

secondary binding site is localized to the upper helix region between residues A27 and G36. 

The curved trajectories seen for A27-C8 and G28-C8 in TAR indicate they are sensitive to 

both the α and β sites. This is consistent with previous results that the α site ARG is stacked 

above A22 and contacts G26 just below A27. Note that the chemical shifts for G36-C1′ and 

G36-C8 in TAR are only sensitive to the β site ligand.

Orlovsky et al. Page 25

J Am Chem Soc. Author manuscript; available in PMC 2020 July 24.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



Figure 3. 
Bayesian global fitting of CSPs. (A) Representative fits to 10 resonances out of a global 

fitting set containing 54 resonances. Shown are the 95% confidence interval regions at each 

temperature. Fits for all 54 resonances included in the global fit are shown in Figure S8. The 

points and curves are colored from 1 °C (blue) to 25 °C (red). (B) Joint posterior 

distributions of thermodynamic parameters with marginal posterior distributions down the 

diagonal. (C) Marginal posterior distributions of ΔG values for the A ⇌ B and BL2 ⇌ CL2 

reactions at each temperature. They are colored using the same color scheme used in panel 

A.
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Figure 4. 
Populations vs [ARG] for all species in the six-state model calculated using fitted parameter 

confidence intervals at 25 °C. The dotted line refers to the ~5% population cutoff for 

detection of species by the CSP titration method.
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Figure 5. 
Bayesian-fitted chemical shifts of intermediate species. (A) Comparison of chemical shift 

changes Δδ obtained for species B by Bayesian global fitting (green) with chemical shifts 

measured for ΔbulgeTAR in 25 mM NaCl (orange) and TAR in 25 mM NaCl plus 3 mM 

free MgCl2 (buffer exchanged) (gray) for representative resonances. (B) Comparison of Δδ 
between species BL2 (blue) and CL2 (red) by Bayesian global fitting. The reference state is 

the unliganded A state and all Δδ are shown relative to the Bayesian-fitted δA values. Error 

bars represent the standard deviation determined by Bayesian fitting. (C) Schematic of the 

structural changes between the three different conformational states.
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Figure 6. 
Testing the model by NMR RD. (A) The predicted distribution of RNA states at the 

conditions under which the RD measurements were run (0.2 mM ARG, 1.5 mM RNA) at 5 

and 25 °C. (B) Off-resonance RD data for the resonances with detectable chemical exchange 

at 5 °C. Lines represent global fit to BM equations. (C) Comparison of fitted chemical shifts 

obtained by RD with the chemical shifts obtained by Bayesian fitting to CSP data. Closest 

agreement is with chemical shifts for state BLα, consistent with RD reporting on the binding 

to the α site in the B conformation.
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Figure 7. 
Energetic distributions of the six detectable RNA species showing the effect of ligand 

concentration on the RNA energy landscape. The violin plots show the ΔG posterior 

distributions calculated at 25 °C relative to the A state.
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Table 1.

Thermodynamic Parameter Estimates and Their 5% and 95% Confidence Intervals

Parameter estimate 5% C.I. 95% C.I.

ΔHAB (kcal mol−1) −7.86 −8.33 −7.45

ΔHBL2CL2 kcal mol−1
−2.85 −3.27 −2.47

Tm
AB

°C −6.08 −9.63 −2.46

Tm
B2CL2

°C 14.55 6.92 22.05

ΔSAB (cal mol−1K−1)
a −29.44 −30.83 −28.23

ΔSBL2CL2  cal mol−1K−1 a
−9.90 −11.45 −8.55

ΔGAB (kcal mol−1)
a,b 0.91 0.84 0.99

ΔGBL2CL2 kcal mol−1 a,b
0.11 0.03 0.19

Kd
Bα(mM) 0.066 0.060 0.073

Kd
Bβ(mM) 0.55 0.51 0.60

a
Derived parameter.

b
At 25 °C.
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