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Abstract

US municipalities are increasingly introducing bicycle lanes to promote bicycle use, increase 

roadway safety and improve public health. The aim of this study was to identify specific locations 

where bicycle lanes, if created, could most effectively reduce crash rates. Previous research has 

found that bike lanes reduce crash incidence, but a lack of comprehensive bicycle traffic flow data 

has limited researchers’ ability to assess relationships at high spatial resolution. We used Bayesian 

conditional autoregressive logit models to relate the odds that a bicycle injury crash occurred on a 

street segment in Philadelphia, PA (n = 37,673) between 2011 and 2014 to characteristics of the 

street and adjacent intersections. Statistical models included interaction terms to address the 

problem of unknown bicycle traffic flows, and found bicycle lanes were associated with reduced 

crash odds of 48% in streets segments adjacent to 4-exit intersections, of 40% in streets with one- 

or two-way stop intersections, and of 43% in high traffic volume streets. Presence of bicycle lanes 

was not associated with change in crash odds at intersections with less or more than 4 exits, at 4-

way stop and signalized intersections, on one-way streets and streets with trolley tracks, and on 

streets with low-moderate traffic volume. The effectiveness of bicycle lanes appears to depend 

most on the configuration of the adjacent intersections and on the volume of vehicular traffic. Our 

approach can be used to predict specific street segments on which the greatest absolute reduction 

in bicycle crash odds could occur by installing new bicycle lanes.

*Corresponding author. michelleckondo@fs.fed.us (M.C. Kondo). 
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1. Introduction

Over the last several years, bicycle traffic has increased dramatically in the US, and calls to 

improve bicycle safety and bicycle infrastructure have followed. Bicycle lanes are the main 

form of infrastructure implemented in the US to support bicycle use. First introduced in the 

US in the late 1960 s, there are now an estimated 9931 miles of unprotected bicycle lanes (a 

designated space on the right side of motor vehicle traffic, demarcated by painted striping) 

and an additional 674 miles of protected bicycle lanes (with a physical barrier in-between 

cyclists and motor-vehicle traffic) in 69 of the most populous US cities (Alliance for Biking 

and Walking, 2016). A growing body of evidence suggests that installing bicycle lanes is an 

effective and low-cost approach to reduce the crash risk for cyclists in a given city (Gu et al., 

2016; Harris et al., 2013; Pedroso et al., 2016; Poulos et al., 2015; Pucher and Buehler, 

2016; Reynolds et al., 2009; Teschke et al., 2012; Thomas and DeRobertis, 2013).

It is increasingly recognized that perceived roadway safety is one of the strongest predictors 

of bicycle traffic volume (Pucher et al., 2010; Thomas and DeRobertis, 2013; Winters et al., 

2011), and that cycling has demonstrated benefits for cyclists, for example due to improved 

cardiovascular and metabolic function (Götschi et al., 2016; Oja et al., 2011), and for the 

general public, for example due to reduced air pollution. Municipalities are therefore 

increasingly introducing bicycle lanes into their roadway infrastructure as part of a suite of 

approaches to promote bicycle use, increase roadway safety, and improve public health. In 

areas without bicycle lanes, cyclists most commonly ride on roadways that are thought or 

known to be safest (Pucher et al., 2010; Thomas and DeRobertis, 2013; Winters et al., 2011). 

That scenario is suboptimal, given that riders face an elevated risk of crashing in areas 

without designated bicycle lanes. A research approach that empirically identifies the specific 

locations where bicycle lanes could most substantially reduce crash incidence could provide 

a timely and valuable resource to officials that seek to introduce or improve bicycle 

infrastructure.

Previous studies used two main approaches to identify geographic correlates of bicycle 

crashes. First, individual studies in Belgium (de Geus et al., 2012), Australia (Beck et al., 

2016; Poulos et al., 2015), Portland, Oregon (Hoffman et al., 2010), and Canada (Harris et 

al., 2013; Teschke et al., 2014; Teschke et al., 2012) provided important information on the 

types of cyclists at greatest risk of crashing, the locations where these individuals are most 

likely to ride, and the locations they are most likely to crash. Because bicycle crashes are 

statistically rare events, this approach requires access to registries describing a census of 

crashes within a study region, very large survey samples, or carefully selected samples for 

case-control or case-crossover analyses, for example recruited from emergency rooms or 

hospitals (de Geus et al., 2012; Hoffman et al., 2010; Poulos et al., 2015). Such studies 

found that relative risks for injury crashes are higher at intersections (especially at 

intersections of more than two streets) (Harris et al., 2013), in traffic circles (Harris et al., 

2013), on downhill grades (Harris et al., 2013; Teschke et al., 2012), in streets with parked 

cars (Teschke et al., 2014; Teschke et al., 2012), streets with train or streetcar tracks 

(Teschke et al., 2014; Teschke et al., 2012), for women, and less-experienced riders and 

commuters (Poulos et al., 2015). However, these studies have not identified locations for 

infrastructure interventions that could reduce risk of bicycle crashes.
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Second, spatial analyses have related crash incidence to aggregate measures of social and 

environmental characteristics within geographic areas to identify general factors (sometimes 

relating to the built environment) that explain bicycle crash frequencies. Such studies have 

been conducted at numerous spatial scales, such as cities, Traffic Analysis Zones, Census 

areas, street intersections, or street networks (Chen, 2015; Loidl et al., 2016; Siddiqui et al., 

2012; Strauss et al., 2013; Vandenbulcke et al., 2014; Wang and Nihan, 2004). This 

approach has the advantage that the requisite data are often publicly available, and that 

researchers can estimate crash risks for all locations within a study region. Spatial analyses 

have identified that bicycle crashes (or specifically severe-injury crashes in the case of Kim 

et al. (2007)) occur more commonly at intersections (or in areas with more intersections) 

(Loidl et al., 2016; Reynolds et al., 2009; Siddiqui et al., 2012; Strauss et al., 2013; 

Vandenbulcke et al., 2014; Wang and Nihan, 2004), and are associated with vehicular traffic 

conditions (Anderson, 2009; Kim et al., 2007; Wang and Nihan, 2004) including speed 

limits (Siddiqui et al., 2012) and count of automobile trips (Chen, 2015), bicycle traffic 

volume (Loidl et al., 2016; Strauss et al., 2013), physical street characteristics such as 

presence of trolley tracks, parked cars, street signs and driveways (Chen, 2015; 

Vandenbulcke et al., 2014), presence of bicycle facilities (Chen, 2015; Thomas and 

DeRobertis, 2013; Vandenbulcke et al., 2014), population density (Siddiqui et al., 2012) 

factors such as weather and lighting (Kim et al., 2007) and characteristics of the cyclist (Kim 

et al., 2007). However, with some notable exceptions (Strauss et al., 2013; Vandenbulcke et 

al., 2014), these studies primarily identified environmental correlates of bicycle crashes, 

rather than specific locations of highest relative risk.

A problem common to both individual analyses and spatial analyses of vehicular crashes is 

that the volume of traffic through a given location is often unknown. This problem is non-

trivial for studies of bicycle crashes, because analyses that do not adequately account for 

traffic flow may erroneously find positive relationships between crash risks and roadway 

features that attract greater volumes of cyclists (e.g. bicycle lanes). The optimal solution 

would be to collect detailed diurnal inventories of bicycle traffic flow through each location 

(Vanparijs et al., 2015), however such information becomes increasingly expensive and 

impractical to collect as sample sizes increase. Bicycle traffic volumes are therefore often 

estimated from household travel surveys (Blaizot et al., 2013), census data (Siddiqui et al., 

2012), or travel diaries (de Geus et al., 2012; Poulos et al., 2015), but these rates cannot be 

interpreted at a fine scale. Importantly, this denominator problem is inversely related to the 

problem of aggregation bias. That is, as the size of the spatial units decreases, the likelihood 

that results are affected by underlying crash risks due to local variation in the traffic flows 

increases (i.e. the denominator problem), but the certainty that crashes co-occur in physical 

space with roadway features to which they are statistically related decreases (i.e. aggregation 

bias).

The aim of the study was to identify the locations where bicycle lanes most effectively 

reduce crash rates. To overcome the challenges inherent in this field, we applied a Bayesian 

conditional autoregressive (CAR) spatial analytic approach (Besag, 1974) to cross sectional 

data describing bicycle crash locations and roadway characteristics for 2011–2014 in 

Philadelphia, Pennsylvania. Philadelphia has invested in substantial new infrastructure, has 

an increasing volume of cyclists, a variety of road types, and a relatively high number of 
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collision across a variety of types of road conditions. Our novel approach minimized 

aggregation bias by using street segments as the units of analysis, and addressed the 

denominator problem using interaction terms between bicycle lanes and other roadway 

features.

2. Methods

2.1. Study setting and spatial structure

The oldest parts of Philadelphia, those areas in the central or downtown area, were 

developed in the 1600s prior to automobiles, while more modern areas grew around trolley 

lines in the first half of the 20th century. Most parts of the city are characterized by a grid of 

narrow collector streets (typically 35 feet wide with parking on both sides and a single one 

way traffic lane with a speed limit 25 miles per hour) with intermittent arterial streets 

(typically 65 feet wide, speed limit 30 miles per hour). The terrain throughout the city is 

generally flat with mild slopes and few hills. Traffic flow is mediated by stop signs and 

signalized intersections, rather than roundabouts and traffic circles. Since the first bicycle 

lanes opened in 1995, the city has added over 250 miles of bike lanes and regularly features 

on lists of the best biking cities in the US. At the time of this study, according to the 

American Community Survey 5-Year study for 2011–2015, 2.1 percent of commute trips to 

work were by bicycle, relative to 59 percent of commute trips by personal vehicle. Also at 

this time, there were 285 miles of bicycle lanes in various forms within the city of 

Philadelphia. These consisted primarily of conventional bicycle lanes, a 3-foot lane for 

bicycles indicated by white painted striping and bicycle symbol (227 miles), in some cases 

painted green (17 miles), and “sharrows” reminding vehicle drivers to share the lane with 

cyclists 34 miles) (see Fig. 1). As shown in Fig. 1, bicycle lane striping does not run 

continuously through intersections.

Street segments in the city of Philadelphia served as the unit of analysis. We built the unit of 

analysis dataset from a street centerline spatial dataset (Philadelphia Streets Department, 

2016) that represented the location and length of every street in the city of Philadelphia 

present in 2011. We removed all freeways from the dataset used for analysis because 

bicycles are prohibited from using these sections of the roadway network. This procedure 

yielded a sample of 37,673 street segments. All spatial processes were conducted in ArcGIS 

v10.3.1 (ESRI, Inc.; Redlands, CA).

2.2. Dependent variable

The dependent variable was a dichotomous measure for the presence or absence of a bicycle 

injury crash for a given street segment during the study period. We defined bicycle injury 

crashes as all road crashes between 2011 and 2014 in which a cyclist was injured requiring 

medical attention (excluding 9 reported bicycle crashes in which no cyclists were injured). 

These event-level data were provided to us geocoded to the internal centroid of each street 

centerline, and therefore we were not able to model intersection crashes separately. We 

omitted the 25 (1.2%) crashes that were geocoded to locations more than 45 feet from the 

street segments identified as the units of analysis. We judged based on visual inspection of 

the crash and street segments maps that a buffer of 45 feet would maximize the number of 
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crashes spatially joined to intersections, while minimizing misclassification of crashes that 

were geocoded to locations away from the roadway network or to streets that were omitted 

from the analysis (e.g. freeways).

2.3. Street characteristics

Multiple street characteristics served as independent variables. The City of Philadelphia’s 

street centerline file identified whether the segments formed major arterials, minor arterials, 

collector streets, local streets, or whether they were designated pedestrian or off-street paths 

from which motor vehicles were prohibited. There were very few pedestrian or off-street 

paths, so we combined these street segments with local streets for analysis. We also assigned 

dichotomous variables to each street segment based on the presence or absence of trolley 

tracks, bicycle lanes and one-way traffic flows. We obtained vehicular traffic volume 

indicators from the State of Pennsylvania Department of Transportation’s estimates of 

annual average daily traffic volume (AADT) for major roadways. AADT estimates were 

available for 8680 (31.4%) of the street segments. We calculated tertiles of the estimated 

volume in these segments and produced dummy variables indicating low volume, moderate 

volume, or high volume. We also produced an indicator for the 28,993 segments where no 

AADT estimate was available. Finally, we calculated the length of each segment in meters.

2.4. Intersection characteristics

We used two groups of independent measures to characterize the intersections that formed 

the endpoints of the street segments: the number of exits and the stop type. We identified the 

number of exits (though in the case of one-way streets, exits may actually only be entrances) 

by taking a count of the street centerlines that overlapped each intersection. We identified 

the stop type as all-way stop signs, one- or two- way stops signs, signalized, or other 

(including pedestrian crossings, unmarked crossings, and stops of unknown type).

Fig. 2 demonstrates our method of assigning intersection characteristics to the street 

segments. We constructed dummy variables for each of the exit count and stop type 

categories, then assigned street segments a value of 1 where either of the intersections to 

which they were connected had that attribute, and 0 otherwise. For example, segment 1 is 

connected to two signalized intersections that both have 4 exits. Segment 6 is connected to a 

pedestrian intersection with 2 exits, and an intersection with a one or two-way stop sign and 

3 exits.

2.5. Bicycle traffic index

We addressed the denominator problem analytically using the method described in the 

Statistical Analysis section below, however we also wished to assess whether bicycle lanes 

would be most effective where bicycle traffic volume was greatest. To address this specific 

question, we constructed a bicycle traffic index using a novel approach (see Kondo et al., 

(submitted)). Briefly, our four-step approach assumed bicycle traffic would occur between 

origins and destinations along a roadway network. First, the origins were the Census blocks 

within the Philadelphia city limits (n = 18,872). We estimated the number of cyclists in these 

polygons by combining the Census demographic characteristics (sex, age, racial/ethnic 

composition) with the results of a logistic regression model from the 2009 National 
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Household Travel Survey for the odds of cycling to work. Second, the destinations were all 

tax parcels in the city categorized as industrial, commercial or civic use. Third, the roadway 

network was the street centerline file excluding freeways, with a network hierarchy 

reflecting the street segments used most frequently by cyclists. We calculated the hierarchy 

using quintiles of street segments based on maps of bicycle journeys for a convenience 

sample of cyclists in the city (CyclePhilly, 2016). Finally, from each of the 18,872 origins in 

the city we modeled journeys to 100 destinations randomly selected in the city, weighted by 

a 2010 estimate of daytime population (Delaware Valley Regional Planning Commission, 

2016). We further weighted each journey by the estimated number of cyclists at the origin as 

well as a distance decay function for bicycle journeys calibrated using the 2009 National 

Household Travel Survey data. The sum of the weighted journeys that passed through each 

line segment was used as an estimate of bicycle traffic volume. We standardized these values 

to make model estimates more easily interpretable.

2.6. Statistical analysis

We estimated the odds of a bicycle crash occurring on a street segment using Bayesian 

conditional autoregressive logit models. To identify the characteristics of segments on which 

crashes were most likely to occur, we first specified a model including all independent 

variables (Model 1). Although the bicycle traffic index partially accounts for local variation 

in bicycle traffic volume, this approach does not fully address the denominator problem, and 

thus the parameter estimates for the independent variables will reflect both the volume of 

bicycle traffic through each segment and the risks associated with these variables. To address 

the denominator problem we added interaction terms between bicycle lanes and the 

independent variables (Model 2). Because the independent variables account for the 

underlying risk of bicycle crashes (i.e. due to the presence or absence of bicycle lanes and 

the other street segment and intersection attributes), a negative parameter estimate for an 

interaction term can be interpreted as the relative benefit of placing a bicycle lane on a street 

segment with a given characteristic. Finally, we estimated the absolute benefit for installing 

new bicycle lanes. We calculated the model, predicted odds of observing a crash for all street 

segments from Model 1, then for street segments that did not already have bicycle lanes, we 

multiplied these odds by the parameter estimates for the interaction terms from Model 2 and 

the binary indicators for the relevant attribute.

Spatial autocorrelation is a potential problem for our analyses. If crash risks are more alike 

on nearby street segments than on distant street segments, the assumptions of unit 

independence common to standard regression analyses will be violated and the likelihood of 

Type I error will increase. To address this problem, we partitioned the model residuals into a 

conditional autoregressive (CAR) random effect and a non-spatial noise term (Lord et al., 

2005; Waller and Gotway, 2004). We fit the model to the data in WinBUGS v14 using a 

Bayesian procedure with non-informed priors, discarding the first 150,000 iterations of a 

Markov Chain Monte Carlo, before sampling 50,000 iterations to provide model estimates. 

We interpreted the exponent of the median estimated value as the odds ratio, and the 

exponents of the 2.5th and 97.5th percentile values as a 95% credible interval (CI; which is 

analogous to a 95% confidence interval in conventional regression analyses).
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3. Results

A total of 2052 bicycle injury crashes observed during 2011 to 2014 occurred on 1744 

(4.6%) of the 37,673 street segments in Philadelphia. The median number of crashes on 

segments where crashes occurred was 1 (range 1–16), and only 220 (0.6%) segments had ≥ 2 

crashes. The median street segment length was 84.9 ms. Crashes were geographically 

concentrated in the center city area (Fig. 3).

There were 3851 (10.2%) segments with a bike lane. Approximately two-thirds of the 

segments were connected to at least one intersection with 3 exits (66.8%) or 4 exits (66.8%), 

and around two-thirds were connected to at least one intersection with a one or two-way stop 

sign (65.9%). Because street segments can have up to two intersections or stop types, these 

proportions will not necessarily sum to 100%. Other characteristics are presented in Table 1.

Cross tabulations between the independent variables identified that street class code was 

correlated strongly with street vehicular traffic, or AADT. Systematically removing class 

code and AADT from the models produced inconsistent results for these variables, 

providing further evidence of collinearity. Relationships for class code were not supported in 

models with AADT omitted, but relationships for AADT were supported in models with 

class code omitted. Therefore, we present the models with AADT only included.

Results of the Bayesian logit models are presented in Table 2. Findings of Model 1 indicated 

that bicycle lanes were associated with increased odds of a crash occurring on a given street 

segment. Specifically, street segments with bicycle lanes had 43.6% increased odds of 

having a bicycle injury crash between 2011 and 2014 compared to street segments with no 

bicycle lane. The 95% credible interval (1.239, 1.661) provides a lower bound of 23.9% and 

an upper bound of 66.1% for this estimate, and importantly, does not include the null value 

of OR = 1.00. Other characteristics associated with increased odds of bicycle injury crashes 

were segments with greater length (OR = 1.21; 95% CI: 1.14; 1.28), higher scores on the 

bicycle traffic index (OR = 1.10; 95% CI: 1.06; 1.14), and those with signalized 

intersections (OR = 2.28; 95% CI: 1.96; 2.66), 4-exit intersections (OR = 1.32; 95% CI: 

1.12, 1.54) and ≥5 exit intersections (OR = 1.21; 95% CI: 1.4, 1.40) compared to those 

without these intersection configurations.

The key feature of Model 2 is the interaction terms between bicycle lanes and the street 

segment and intersection characteristics. Because the main independent variables control for 

the underlying crash risks associated with these attributes (i.e. the denominator problem), the 

interaction term estimates the benefit or hazard of locating bicycle lanes on street segments 

with these features. The interactions with bicycle lanes revealed a protective effect for 

intersections with 4 exits (OR = 0.52; 95% CI: 0.36; 0.76) and those with one- or two-way 

stop signs (OR = 0.60; 95% CI: 0.44; 0.82), suggesting that, compared to similar segments 

with no bike lanes, street segments with these characteristics have 47.6% and 39.9% fewer 

injury crashes when bike lanes are present, respectively. In addition, there was a negative 

association with high-volume vehicular traffic roadways (OR = 0.57; 95% CI: 0.37; 0.89), 

suggesting that compared to similar segments with low-volume traffic, high-volume traffic 

street segments have 42.8% fewer injury crashes when bike lanes are present.
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Model diagnostics indicate that the data were highly spatially autocorrelated, and that failing 

to account for this spatial structure would likely produce biased estimates. The conditional 

autoregressive (CAR) random effect explained over 99% of error variance in both models, 

suggesting that the independent variables captured very little of the dependent variable’s 

spatial structure. Fig. 4a shows the predicted odds of bicycle injury crashes based only on 

the main variables for Model 1. Major arterials and minor arterials form a clear grid pattern 

across the city, and much of the spatial clustering evident in the observed crash locations 

(Fig. 2) is not replicated here. By contrast, Fig. 4b shows that the full model predictions, 

including the conditional autoregressive random effect, substantially improve the predictive 

power of the model. Predicted odds are greatly spatially smoothed in Fig. 4b compared to 

Fig. 4a, and the geographic clustering of crashes in the center city region is clearly evident.

Fig. 5 combines the relative benefit of bicycle lanes identified in the interaction terms for 

Model 2 with the predicted absolute odds of bicycle crashes from Model 1. Results suggest 

that the greatest absolute reduction in bicycle crash odds could be obtained from bicycle 

lanes installed in street segments in and around the center city area. For example, South 

Broad Street (Fig. 6) is a major arterial in the city’s inner south that we estimate would 

produce the greatest benefit if bicycle lanes were added. The street is characterized by 

numerous 4-exit intersections, no bicycle lane, heavy vehicular traffic, and a center city 

location.

4. Discussion

Our study indicates that in Philadelphia, bicycle lanes are most effective at reducing risk of 

bicycle crashes at intersections, particularly 4-exit intersections and one- and two-way stop 

signs. Namely, compared to similar segments with no bike lanes, street segments with these 

characteristics have 47.6% and 39.9% fewer injury crashes when bike lanes are present, 

respectively. In addition, bicycle lanes are most effective on high-volume vehicular traffic 

roadways; high-volume traffic street segments have 42.8% fewer injury crashes when bike 

lanes are present, compared to similar segments with low-volume traffic. By using 

interaction terms in Model 2, we have minimized spurious positive associations between 

presence of bicycle lanes and increased risk of crashes. These findings concur with recent 

studies that show bicycle infrastructure’s greatest effect at intersections (Strauss et al., 2013; 

Thomas and DeRobertis, 2013; Vandenbulcke et al., 2014) and on busy streets (Thomas and 

DeRobertis, 2013). Given that intersections are “black spots” that generate the vast majority 

of motor vehicle, pedestrian, and bicycle crashes (Reynolds et al., 2009; Wang and Nihan, 

2004), the protective effect of bicycle lanes at intersections is particularly valuable, even 

though bicycle lanes necessarily cross vehicular traffic at these junctions.

There are several possible mechanisms by which bicycle lanes might reduce relative risk 

most at 4-exit intersections and at one- and two-way stop signs. Bicycle lanes may increase 

driver awareness of the presence of bicycles in complex traffic situations. A bicycle lane 

adjacent to motor vehicle traffic lane allows the bicyclist to stop at intersections or wait for 

light signals at the entrance of the intersection, which can improve cyclists’ visibility by 

motorists, and cyclists’ view of the transition of vehicular traffic flow. In addition, presence 

of a demarcated bicycle lane might signal to motorists approaching yellow lights that they 
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do not have adequate space or safety to speed up in order to “make it” through an 

intersection before or during a red light.

Our results suggest street segments with greater estimated bicycle traffic (i.e. the bicycle 

traffic index) have greater crash incidence, but that bicycle lanes do not necessarily reduce 

crashes in these locations. Previous research may explain this finding. Crashes are more 

likely to occur where there are more cyclists, however prior studies have identified a non-

linear relationship between bicycle traffic volume and injury rates, or a “safety in numbers” 

effect (Jacobsen, 2003; Nordback et al., 2014). For example, Elvik (2009) calculated that the 

frequency of bicycle accidents increases by 3–6.5% when bicycle flows increase by 10%. 

On busy streets, it is possible that the protection afforded by bicycle lanes is negligible 

compared with the protection afforded by the presence of more cyclists. Alternatively, 

although our bicycle traffic index is similar to that employed in other studies (Vandenbulcke 

et al., 2014), it is clear that the measure accounts for very little of the variance in crash risks 

between street segments; it may also be a poor measure of actual bicycle traffic volume.

Certain limitations should be considered when interpreting our findings. First, our study is 

cross-sectional and therefore does not account for dynamics associated with installation of 

new bike lanes, including spatial or temporal patterns and shifts in bicycle traffic that might 

occur during the study period. Therefore, adding a bicycle lane to South Broad Street would 

have the predicted effect based on observed data between 2011 and 2014, and would change 

bicycle traffic in ways that our models do not account for. Second, some important data were 

unavailable for our study, including dates of bicycle lane installation, street characteristics 

such as width, number of lanes, and speed limits. Bicycle lanes have been installed on streets 

wide enough to accommodate them, or in some cases parking has been eliminated to make 

space. As such bicycle lanes could also indicate a greater distance between street curb and 

centerline. However, street width information was not available at the time of the study.

Lack of bicycle traffic flows or counts by street segment, whether commuter or recreational, 

was a major limitation to calculating predictors of rate of bicycle crash. While an increasing 

supply of data about cycling behaviors exists due to mobile-phone technology, these data 

sets are incomplete because not all cyclists use mobile phones, and not all cyclists with 

mobile phones use sports-behavior apps. Monitoring of bicycle traffic, and cycling purpose, 

is expensive and technically difficult, and therefore these data sets largely do not yet exist. 

However, our index provides the best available estimation of bicycle traffic volume given 

available data sources.

Another limitation is that geocoding crashes to street segment centroids could be 

problematic, especially on longer street segments. Bicycle crashes are underreported (Juhra 

et al., 2012; Watson et al., 2015); crashes are often reported only in the case of damage to 

property, hospital admission, or fatality. If missing crashes are spatially structured, our 

results could be biased in either direction.

Finally, AADT estimates were available for only 8680 out of 37,673 study streets. These 

28,993 segments received the indicator for “No estimate available,” and the remaining 8680 

segments were separated into tertiles according to the AADT value. The Pennsylvania 
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Department of Transportation deliberately makes its assessments of AADT for streets that it 

estimates will have the greatest traffic volume, and typically omits residential and local 

roads. This may or may not be the case, but it is important to note that the consequences of 

any misclassification would be to shift credible intervals closer to 1.

5. Conclusions

Our findings indicate that indeed bicycle lanes in a city such as Philadelphia are associated 

with reduced bicycle crash risk. Though our model identified relative risk to be reduced at 

segments with 4-exit and at one- and two-way stop intersections with bicycle lanes, and on 

high-volume traffic roadways, our calculations indicate specific locations, shown in Fig. 4, 

at which bicycle lanes could most reduce absolute risk (Rose, 1992). Our approach, if not 

our specific findings, would transfer readily to other municipalities. As our cities continue to 

expand use of bicycle infrastructure, we have the opportunity to study its impact in a 

rigorous, prospective way. Researchers can collaborate with municipal agencies to plan 

staged, and even randomized, introduction of bicycle lanes or other infrastructure, and can 

collect pre- and post-intervention crash data. This would allow us not only to demonstrate 

the value of bicycle lanes, but also to examine differential impact of bicycle infrastructure 

design innovation (Hutchinson, 2007).
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Fig. 1. 
Bicycle lane typologies in Philadelphia, including (A) traditional bicycle lane, (B) traditional 

bicycle lane with green shading, and (C) a sharrow lane. (For interpretation of the references 

to colour in this figure legend, the reader is referred to the web version of this article.)
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Fig. 2. 
Intersection exit counts and stop types.
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Fig. 3. 
Observed injury crashes on Philadelphia street segments, 2011–2014.
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Fig. 4. 
(a and b). Predicted odds of an injury crash on Philadelphia street segments, Model 1.
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Fig. 5. 
Estimated decrease in absolute odds of observing a crash if new bicycle lanes were installed.
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Fig. 6. 
South broad street at chestnut street intersection.
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Table 1

Characteristics of Philadelphia street segments, stratified by bicycle injury crashes 2011–2014.

Injury crash (n = 1774) No injury crash (n = 35,929)

n % n %

Intersections – number of exits

 2 73 4.2 2191 6.1

 3 819 47.0 21,955 61.1

 4 1363 78.2 23,810 66.3

 ≥5 396 22.7 5565 15.5

Intersections – stop type

 All way stop signs 480 27.5 11,886 33.1

 One or two way stop signs 878 50.3 23,935 66.6

 Signalized 1053 60.4 9233 25.7

 Other (incl. pedestrian crossing) 456 26.1 13,142 36.6

Street – class code

 2 (Major arterial) 366 21.0 2387 6.6

 3 (Minor arterial) 511 29.3 4855 13.5

 4 (Collector) 638 36.6 14,183 39.5

 5 (Local) 229 13.1 14,482 40.3

Street – vehicular traffic

 No estimate available 850 48.7 28,143 78.3

 Low volume 235 13.5 2666 7.4

 Moderate volume 317 18.2 2573 7.2

 High volume 342 19.6 2547 7.1

Street – characteristics

 Length (meters) [mean, SD] [1.159 1.053] [1.073 0.886]

 One way 890 51.0 16,149 44.9

 Bicycle traffic index [mean, SD] [0.608 1.746] [−0.029 0.939]

 Trolley 208 11.9 1829 5.1

 Any bicycle lane 442 25.3 3409 9.5

Saf Sci. Author manuscript; available in PMC 2020 July 24.



A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

Kondo et al. Page 20

Table 2

Bayesian conditional autoregressive logit models, Odds Ratios (OR) with Credible Intervals (CI) for the odds 

of an injury crash occurring on a street segment from 2011 to 2014, Philadelphia (n = 37,673). A CI that 

includes the null value of 1.00 provides evidence against an association.

Model 1 Model 2

IRR (95% CI) IRR (95% CI)

Intersections – EXITS

 2 0.930 0.694 1.231 0.811 0.560 1.148

 3 1.003 0.878 1.145 1.022 0.878 1.187

 4 1.315 1.124 1.539 1.531 1.279 1.829

 ≥5 1.206 1.038 1.400 1.147 0.967 1.355

Intersections – stop type

 All way stop signs 1.166 0.999 1.365 1.190 1.006 1.408

 One or two way stop signs 0.769 0.669 0.884 0.878 0.749 1.033

 Signalized 2.281 1.957 2.657 2.326 1.965 2.757

 Other (incl. pedestrian crossing) 0.679 0.579 0.795 0.721 0.602 0.864

Street – vehicular traffic

 No estimate available [reference]

 Low volume 1.447 1.213 1.720 1.509 1.230 1.844

 Moderate volume 2.062 1.725 2.466 2.122 1.711 2.618

 High volume 2.389 1.996 2.855 2.768 2.239 3.404

Street - Characteristics

 Length (100 m) 1.208 1.144 1.278 1.206 1.142 1.275

 One way 1.079 0.944 1.232 1.119 0.972 1.291

 Bicycle traffic index 1.100 1.061 1.141 1.100 1.053 1.147

 Trolley 0.969 0.806 1.158 0.962 0.754 1.213

 Bicycle lane 1.436 1.239 1.661 4.568 2.425 8.593

Interactions

 Bike lane * 2 exits 1.537 0.822 2.855

 Bike lane * 3 exits 0.902 0.654 1.243

 Bike lane * 4 exits 0.524 0.363 0.756

 Bike lane * ≥5 exits 1.217 0.855 1.728

 Bike lane * All way stop signs 1.043 0.651 1.658

 Bike lane * One or two way stop signs 0.601 0.439 0.824

 Bike lane * Signalized 0.981 0.658 1.496

 Bike lane * Other (incl. pedestrian crossing) 0.812 0.563 1.170

 Bike lane * Class code 2

 Bike lane * Class code 3

 Bike lane * One Way 0.769 0.572 1.028

 Bike lane * Bicycle traffic index 1.000 0.925 1.081

 Bike lane * Trolley 1.008 0.699 1.452

 Bike lane * Low volume 0.735 0.477 1.146
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Model 1 Model 2

IRR (95% CI) IRR (95% CI)

 Bike lane * Moderate volume 0.788 0.518 1.210

 Bike lane * High volume 0.572 0.373 0.885

Saf Sci. Author manuscript; available in PMC 2020 July 24.


	Abstract
	Introduction
	Methods
	Study setting and spatial structure
	Dependent variable
	Street characteristics
	Intersection characteristics
	Bicycle traffic index
	Statistical analysis

	Results
	Discussion
	Conclusions
	References
	Fig. 1.
	Fig. 2.
	Fig. 3.
	Fig. 4.
	Fig. 5.
	Fig. 6.
	Table 1
	Table 2

