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Abstract

Tenacity--persistence in the face of challenge--has received increasing attention, particularly 

because it contributes to better academic achievement, career opportunities and health outcomes. 

We review evidence from non-human primate neuroanatomy and structural and functional 

neuroimaging in humans suggesting that the anterior mid cingulate cortex (aMCC) is an important 

network hub in the brain that performs the cost/benefit computations necessary for tenacity. 

Specifically, we propose that its position as a structural and functional hub allows the aMCC to 

integrate signals from diverse brain systems to predict energy requirements that are needed for 

attention allocation, encoding of new information, and physical movement, all in the service of 

goal attainment. We review and integrate research findings from studies of attention, reward, 

memory, affect, multimodal sensory integration, and motor control to support this hypothesis. We 

close by discussing the implications of our framework for educational achievement, exercise and 

eating disorders, successful aging, and neuropsychiatric disorders such as depression and 

dementia.
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When faced with a difficult challenge, such as mastering complex equations or training for a 

marathon, many individuals will find the effort too costly, and withdraw. Others, however, 

will marshal their resources, and persist in their efforts against the same challenges, even in 

the absence of immediate reward. This individual difference has received a great deal of 

attention in recent years, as growing research indicates that individuals who persevere in the 

face of challenging situations show better life outcomes in the domains of health, academic 

achievement, and career success (Duckworth and Quinn, 2009; Duckworth and Gross, 

2014).

This tendency to carry on despite difficulty has been called by multiple names. Recent 

studies of life achievement describe it as ‘grit2019, defined as ‘passion and perseverance 

toward especially long-term goals’ (Duckworth and Quinn, 2009; Duckworth and Gross, 

2014). Others have used the term ‘persistence’, (defined as ‘the ability to generate and 

maintain arousal internally’)(Cloninger et al., 1993; Holroyd and Umemoto, 2016), 

‘perseverance’ (defined as ‘the maintenance of effort over time’(Patzelt et al., 2019), or 

defined it against its opposite, ‘apathy’ (Le Heron et al., 2019). Here we use the term 

tenacity to describe both a persistent pattern of behavior, and a fundamental bias in effort 

computations (as described by (Shenhav and Botvinick, 2013; Shenhav et al., 2013; Shenhav 

et al., 2017)), by which the costs of effort are devalued, and the value of long-term rewards 

is emphasized.

Multiple prominent theories of effort and motivation posit an important role for the anterior 

portion of the cingulate cortex in mediating individual differences in personality which 

promote tenacious behavior (Holroyd, 2016; Holroyd and Umemoto, 2016; Le Heron et al., 

2017; Le Heron et al., 2019; Patzelt et al., 2019).

In this paper, we will review evidence supporting this view, focusing on how anterior mid-

cingulate cortex (aMCC) plays a central role in establishing tenacity. Due to its position at 

the intersection of multiple intrinsic networks, the aMCC can integrate signals related to 

interoception, allostasis, executive function, motor planning, and sensory integration. We 

will argue that this uniquely connected position allows aMCC to weigh predicted energy 

requirements against predicted rewards and allocate physiological and attentional resources 

to achieve desired goals.

To support this view, we will first present evidence from neuroanatomy, tractography, and 

intrinsic functional connectivity imaging indicating that the aMCC is a major hub, sitting at 

the intersection of multiple intrinsic brain networks, and among the most broadly connected 

regions of the brain. Next, we will review functional evidence of a variety of task domains to 

show that the aMCC is a domain-general ‘hot-spot’ in the brain, implicated in a wide variety 

of tasks. We will then consider how variability in aMCC function may account for the 

difference between tenacity and withdrawal in the face of challenge. Finally, we will review 

studies of aMCC structure and function in cases of tenacity as well as apathy or withdrawal, 

and consider the implications of our hypothesis for educational achievement, successful 

aging, exercise and obesity, and neuropsychiatric disorders such as depression and dementia
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Anterior Mid-Cingulate Cortex as a Structural and Functional hub: 

Neuroanatomy and Connectivity

Since 1907 when the anterior division of the mid-cingulate cortex was first described 

(Smith, 1907; see (Vogt, 2016)), our understanding of the aMCC organization has 

significantly advanced. In humans, the agranular aMCC is located dorsal to the genu of the 

corpus callosum, extending rostrally to the border of the superior frontal gyrus, 

encompassing areas 32’ and a24c’ and areas in the rostral and caudal cingulate premotor 

areas (rCMA/ rCPMA) (Picard and Strick, 2001; Palomero-Gallagher et al., 2008; Vogt, 

2016) (see Figures 1A, B, C; see also Figure 1 and 3 in (Vogt, 2016). The cytoarchitecture 

and neurocytology of aMCC point to fundamental differences between the aMCC and 

anterior cingulate cortex (ACC) (see Figures 3, 4 in (Vogt, 2016)). However, many 

neuroimaging studies often employ other terminologies such as dorsal ACC to refer to 

aMCC. In this article, all figure labels refer to aMCC. This may not be the term used in the 

papers we discuss but using this term we aim to accurately refer to the neuroanatomical 

region reported in the original text.

Invasive tract tracing studies in macaques (the monkey aMCC comprises areas a24a’, a24b’ 

and a24c’ but lacks area 32’; see Figure 3 in Vogt, 2016) (Bates and Goldam-Rakic, 1993; 

Picard and Strick, 2001; Morecraft et al., 2012; Procyk et al., 2016) and diffusion weighted 

tractography in humans (see Figure 5 in (Beckmann et al., 2009) have both demonstrated a 

distinct aMCC structural connectivity pattern from the rest of the cingulate cortex. The 

aMCC has strong connections with frontoparietal and temporal regions (i.e., dorsal 

prefrontal cortex, medial and lateral orbitofrontal cortex, anterior and posterior insula, 

caudal parietal cortex, rostral superior temporal gyrus), motor regions (i.e., premotor, 

supplementary motor cortices) as well as subcortical structures (i.e., thalamus, dorsal 

striatum, amygdala, hypothalamus, and periaqueductal gray) (Mesulam and Mufson, 1982; 

Bates and Goldam-Rakic, 1993; Morecraft and Van Hoesen, 1998; Picard and Strick, 2001; 

Morecraft et al., 2012; Procyk et al., 2016). This pattern of aMCC structural connectivity led 

Morecraft and Van Hoesen (Morecraft and Van Hoesen, 1998) to propose that the aMCC 

may serve as a cortical entry point for limbic influence on the voluntary motor system. The 

aMCC includes also dopaminergic, noradrenergic and serotonergic terminals (Williams and 

Goldman-Rakic, 1998; Bar et al., 2016). These dense monoamine innervations suggest a 

crucial role in motivational functions for aMCC (Vogt, 2016).

Recent advances in human brain connectomics have further identified aMCC as a major 

structural hub central to maximizing communication between multiple areas (Hagmann et 

al., 2008; van den Heuvel and Sporns, 2011; Nijhuis et al., 2013; van den Heuvel and 

Sporns, 2013b, a) (see Figure 1D). Compared to other brain regions, hub regions, such as the 

aMCC, are substantially more structurally connected with the rest of the brain (Hagmann et 

al., 2008; van den Heuvel et al., 2012) and are metabolically more active (Collin et al., 

2014). Network analysis studies of intrinsic brain connectivity have also identified the 

aMCC as a functional hub on the basis of its spontaneous activity (Margulies et al., 2007). It 

has been demonstrated that aMCC is as a key region in a multimodal network that integrates 

information originating from primary sensory regions (e.g., visual, auditory, and 
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somatosensory) (Sepulcre et al., 2012) (see Figure 1E). Furthermore, neuroimaging studies 

reveal that the aMCC belongs to at least five, partially overlapping, intrinsic brain networks. 

Some of these have been associated with visceromotor functions conventionally referred to 

as the “salience” (Seeley et al., 2007; Touroutoglou et al., 2012) and “allostatic-

interoceptive” networks (Kleckner et al., 2017) (see Figures 1F, G) and others with executive 

function, attention, and motor control conventionally referred to as “frontoparietal control” 

(Vincent et al., 2008), “ventral attention” (Fox et al., 2006), and “cingulo-operculum 

control” networks (Dosenbach et al., 2007; Nelson et al., 2010) (see Figures 1H, I, J). 

Collectively, the findings above point to the possibility that the aMCC serves as a structural 

and functional hub of communication, that synchronizes information from otherwise 

segregated systems (see Figure 1F). We propose that the aMCC’s connections allow it to 

integrate information from multiple brain networks to drive goal-directed behaviors. In other 

words, its position allows it to participate in the willed control of our behavior (Paus, 2001; 

Parvizi et al., 2013).

Anterior Mid-Cingulate Cortex as a “Hot Spot” in the Brain: Task-related 

fMRI

Due to its hub centrality, the aMCC is well situated to receive a wide range of signals from 

other brain regions. Consistent with its diverse inputs, the aMCC region has been implicated 

in a large and diverse set of distinct tasks (see Table 1 for examples of evidence supporting 

the ubiquity of aMCC activations across tasks), including those involving motor function 

and executive function, memory, emotion, pain, and somatosensation (Beckmann et al., 

2009; Shackman et al., 2011; Bahlmann et al., 2015; Wager et al., 2016). Meta-analytic 

evidence further indicates that the aMCC is among the most consistently reported areas of 

activation in functional MRI (fMRI) studies over the past 20 years (Yarkoni et al., 2011); for 

a meta-analysis of 1,114 studies see (Nelson et al., 2010); for a meta-analysis of 5,633 

studies see (Clark-Polner et al., 2016)) (see Figures 2A and B). Compared to other activation 

foci, the aMCC also exhibits the highest degree of functional diversity (Anderson et al., 

2013; Bertolero et al., 2015) and flexibility (Yeo et al., 2015; Betzel et al., 2017) (see 

Figures 2C, D). Furthermore, due to its participation in a diverse range of tasks, the aMCC is 

included in a set of co-activating regions collectively known as the “multiple demand 

network” (Duncan, 2010)(see Figure 2E).

The common engagement of the aMCC by diverse tasks suggests that the region may play 

an integrative role across multiple brain systems. A number of convergent functions have 

been suggested, including integration of information about pain and negative affect in 

guiding behavior (Shackman et al., 2011), integration of signals related to motivation with 

cognitive control (Bahlmann et al., 2015), the computation of optimal levels of cognitive 

control or effort (Botvinick and Braver, 2015; Shenhav et al., 2016; Shenhav et al., 2017), 

the processing of prediction error in effortful tasks (Vassena et al., 2017a), and the selection 

of and persistence in pursuit of high-level goals (Holroyd and Yeung, 2012; Holroyd and 

Umemoto, 2016) (See Box 1).
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We hypothesize that the aMCC performs all of these functions in the service of a broader 

common goal: efficient energy regulation. On this view, aMCC activation is ubiquitous 

because energy regulation computations are ubiquitous, accompanying the consideration of 

every action or personally relevant event (see (Barrett and Simmons, 2015; Barrett, 2017b, 

a)) (see also Box 1). Our hypothesis is that the aMCC’s position as a hub at the nexus of 

motor, visceromotor and attention systems allows it to integrate information related to 

interoception, executive function, sensory processing and motor control to anticipate 

expected physiological demands and then to effectively deploy the body’s energy resources 

to achieve goals. This domain general function would require multiple component 

computations, which have been observed as aMCC engagement in a wide variety of tasks.

An important component of efficient energy computations, observed in multiple task-evoked 

fMRI studies of aMCC (Jocham et al., 2009; Sheth et al., 2012; Kolling et al., 2016) is the 

prediction of behavioral outcomes, so that the value of potential actions can be assessed. 

Consistent with the predictive function of aMCC (see also Box 1), there is substantial 

evidence of aMCC activation in situations where pain or reward is anticipated, or novel 

unexpected events occur (Raichle et al., 1994; Kouneiher et al., 2009; Mobbs et al., 2010). 

The aMCC activations during the experience of reward or punishment (Kouneiher et al., 

2009; Lindquist et al., 2012; Bahlmann et al., 2015) can thus be understood as testing 

expected hedonic values against experience. Activations during social behavior (Kirk et al., 

2011; Apps et al., 2013) may represent comparisons between the anticipated and actual 

behavior of others. Similarly, the aMCC is active during task selection (Kolling et al., 2014) 

as predicted outcomes are compared; during task performance (Modirrousta and Fellows, 

2008; Sheth et al., 2012) as outcomes are tested against predictions; and during effortful 

tasks (Boehler et al., 2011; Engstrom et al., 2013; Fedorenko et al., 2013) as predictions of 

available resources are updated and additional cognitive and physiological resources are 

deployed to meet the task demands.

In addition to potential rewards, assessment of the energetic costs of task performance is 

crucial to efficient energy regulation. The aMCC appears to encode not only the value of a 

reward but also the cost of the effort required to obtain it (Harris and Lim, 2016). This effort 

may take the form of increased cognitive control, which is frequently experienced as 

aversive (Dreisbach and Fischer, 2012; Schouppe et al., 2012; Kurzban et al., 2013; Inzlicht 

et al., 2015; Saunders et al., 2015). Indeed, activity of the aMCC region during difficult tasks 

is positively correlated with a subjective sense of frustration (Spunt et al., 2012), as well as 

desire to avoid the task (McGuire and Botvinick, 2010).

Additionally, some evidence suggests that the aMCC also represents physiological costs of 

action by monitoring the internal state of the body. Multiple studies have implicated the 

aMCC in tasks involving interoception and pain, hunger, thirst, and breathlessness, leading 

Lieberman and Eisenberger (2015) to describe the aMCC as a ‘neural alarm’, that serves to 

direct attention toward potential conflicts with enduring survival goals.

When expectations of the cost and benefit of goal pursuit are violated, it is crucial for 

efficient energy regulation that resource allocation be quickly recalibrated. Multiple theories 

suggest a role for aMCC in preparing control systems for future demands by adjusting to 
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prediction errors (Alexander and Brown, 2011; Barrett and Simmons, 2015; Alexander and 

Brown, 2017). For example, its activity in learning tasks is modulated by previous trials in a 

way that speeds responses to trials of equivalent difficulty, and slows them when difficulty 

levels change (Modirrousta and Fellows, 2008; Sheth et al., 2012). In another example, the 

aMCC responses to pain are modulated by the belief that the pain can be controlled 

(Salomons et al., 2004), suggesting that this region may play a role in anticipating and 

predicting pending noxious stimulation, so as to prepare avoidance responses (Vogt, 2016).

Following recalibration of energetic computations, it may be necessary to deploy additional 

energy resources to support task demands, or to limit resources in order to suppress costly 

behavior. Consistent with this view, some studies (Beissner et al., 2013) indicate that the 

aMCC may also serve to modulate the internal state of the body to prepare for action, 

through alterations in blood pressure, heart rate, and hormonal responses. A potential 

mechanism through which this could be achieved is by the regulation of arousal to prepare 

for action. The aMCC is well equipped to modulate states of arousal through its connections 

to mid-brain nuclei (Bar et al., 2016), and substantial research indicates that the aMCC 

indeed exerts regulatory control over various autonomic processes (Beissner et al., 2013). 

For example, cognitive and social stressors known to evoke autonomic stress responses 

robustly engage the aMCC (Wager et al., 2009; Gianaros and Wager, 2015) and increased 

blood flow in the aMCC is correlated with increases in blood pressure and heart rate 

variability, evoked by both mental (working memory) and physical (isometric exercise) 

exertion (Critchley et al., 2000; Critchley et al., 2003). Acute stressors of the sort that evoke 

stress hormone release also activate the aMCC (Gianaros and Wager, 2015), and the degree 

of stress-evoked activation predicts the magnitude of the hormonal stress response (Hermans 

et al., 2011).

Thus, due to its position as a network hub, the aMCC can synchronize information from 

diverse systems in order to guide behavior towards efficient energy balance. However, the 

effectiveness of aMCC computations are likely to vary between individuals, particularly in 

situations when the cost of effort is high, and rewards are uncertain or deferred. Under these 

circumstances, some will demonstrate tenacity and persist while others may simply quit. In 

the following section, we will consider how variability in aMCC function could underlie 

individual differences of this sort in tenacity.

Holroyd & Yeung (2012) attempted to reconcile evidence for the aMCC role in motivation 

and decision-making, with their Hierarchical Learning Model, which holds that the primary 

role of aMCC is the selection and maintenance of ‘options’, or high-level abstract behavioral 

plans generated from nested reinforcement learning (Holroyd and Yeung, 2012). Thus, the 

aMCC will be particularly active when the value of competing options must be compared, or 

when habitual responses must be suppressed in service of a larger goal. It will also be 

engaged when behavioral plans must be re-evaluated in the face of changing demands or 

reward conditions. On this view, then, the aMCC serves to direct behavior towards goals 

computed to be most valuable by regulating systems involved in cognitive control and task 

execution (Holroyd and Yeung, 2012).
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Others have emphasized the notion that the aMCC computes not only the value of 

competing options, but also the hedonic costs of exerting effort and cognitive control to 

pursue selected goals. Thus, on this view, aMCC activation during action selection primarily 

represents the computation of the resources required to complete the task (Botvinick, 2007; 

Botvinick and Braver, 2015). In their Expected Value of Control model, Shenhav and 

colleagues (Shenhav et al., 2013; Shenhav et al., 2017) argue that the role of the aMCC is to 

track the cost of both mental and physical effort exerted during task performance, predict the 

cost of effort required for all available options, and then integrate that information with 

expectations of reward to determine if the exertion of cognitive control is worthwhile 

(Shenhav et al., 2013; Shenhav et al., 2017). This theory can thus account for aMCC 

activation in response to effort, changes in reward, action selection and cognitive control as 

expressions of the same core function.

Value computations of this sort, however, depend critically on the accuracy of estimates of 

future behavioral outcomes. Thus, some theories hold that the core, domain-general function 

of aMCC is preparing control systems for future demands by predicting the results of 

possible actions, and comparing these predictions to experience (Alexander and Brown, 

2011, 2017). According to these models, mismatches between predicted and experienced 

outcomes generate a ‘prediction error’ signal, which can be used to update future 

predictions. On this view, aMCC activity in response to increased effort represents the 

processing of error in the prediction of expected task demands (Vassena et al., 2017b). 

Consistent with predictive models of aMCC function, there is substantial evidence of aMCC 

activation in situations where there is no choice to be made, or behavior to perform, such as 

when pain or reward is simply anticipated, or novel events occur (Vassena et al., 2014; 

Vassena et al., 2017b).

Other predictive models have argued that the aMCC’s serves not only to predict external 

events, but also internal states of the body, allowing for the maintenance of allostasis (i.e. 

efficient energy regulation through prediction of future energy needs) (Barrett and Simmons, 

2015) [see also (Barrett, 2017b, a)]. To effectively calculate the expected value of a behavior, 

it is crucial to anticipate the costs in terms of physiological resources, and to deploy 

additional resources through arousal regulation when necessary. To maintain goal-directed 

behavior, these interoceptive predictions must be compared to experience, so that prediction 

error can be used to adjust energy resources to meet task needs. Chanes and Barret (2016) 

have also speculated that aMCC with its extensive connections is well suited to provide an 

integrated workspace for unified conscious experience due to its ability to represent 

information across different modalities based on allostatic relevance.

The Role of Anterior Mid-Cingulate Cortex in Tenacity

Together, the various aMCC computations described in the previous section serve to regulate 

the amount of effort directed toward any potential behavior. The function of such effort 

regulation has been debated, with most theories falling into two broad categories 

(see(Shenhav et al., 2017)). Some accounts hold that effort serves to manage intrinsic costs 

to finite resources such as metabolic resources (Gailliot and Baumeister, 2007; Gailliot et al., 

2007; Holroyd, 2016), short-term memory(Elmore et al., 2011), or processing capacity 

Touroutoglou et al. Page 7

Cortex. Author manuscript; available in PMC 2021 February 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



(Wickens, 1984; Feng et al., 2014). Other accounts emphasize the management of 

opportunity costs (Kurzban et al., 2013); see also (Shenhav et al., 2017), arguing that effort 

regulation ensures that cognitive control will be exerted only towards the highest value 

option currently available.

Our view is that the overarching function of effort computations (and indeed, a fundamental 

goal of the nervous system – see (Kleckner et al., 2017)) is the maintenance of allostasis. 

While we posit that the allocation of effort towards any particular behavior is a result of 

computations which serve to minimize opportunity costs, we also hold that information 

about available resources and distance from energy balance are important factors entering 

into these computations, as the estimated value of prospective rewards and costs of 

prospective effort are in part determined by the current and predicted energy state of the 

individual.

This account suggests that individual differences in effort computations could make the 

difference between persistence and withdrawal during demanding tasks. An individual might 

continue to exert effort on a demanding task because she estimates the value of an expected 

reward as greater than others do, because he perceives the cost of action as lower than others 

do, or because she perceives the body’s available resources to be relatively greater. Indeed, 

while high levels of effort are generally experienced as aversive, some individuals rate effort 

as more aversive than others (McGuire and Botvinick, 2010; Dreisbach and Fischer, 2012; 

Schouppe et al., 2012; Spunt et al., 2012; Kurzban et al., 2013; Inzlicht et al., 2015; 

Saunders et al., 2015).

We propose that tenacity can be understood as a kind of bias in aMCC computations: a 

tendency to maintain the representation of expected rewards, devalue the cost of effort and to 

judge one’s available physiological resources as meeting or exceeding task demands even in 

the face of negative affect. There are three sources of evidence that the aMCC is involved in 

tenacity: lesion studies, neuroimaging studies, and stimulation studies. We review each in 

turn.

Lesion Studies:

In animal research, lesion studies in rodents and primates have long implicated a region 

homologous to MCC to be critical for integration of reward and effort costs to motivate 

behavior (Walton et al., 2007; Kampe et al., 2009; Holroyd and McClure, 2015; Salamone et 

al., 2016) (see also (Le Heron et al., 2019) for animal studies showing the role of MCC in 

motivation). Indeed, in rats, inactivation of ACC (a region homologous to aMCC in humans) 

causes animals to reduce willingness to expend mental effort (Hosking et al., 2014) and 

decrease the energy/time expenditure required to obtain a proportional reward (Wang et al., 

2017a). In monkeys, lesion studies also (Chudasama et al., 2013) demonstrate a critical role 

for ACC/MCC in sustaining effective choice behavior in the face of changing biological 

needs. Consistent with these findings, we recently demonstrated that the monkey aMCC is 

part of an intrinsic connectivity network that subserves arousal regulation (Touroutoglou et 

al., 2016).
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Clinical research in humans has also indicated that damage to the aMCC or its connections 

can produce profound motivational changes. Reports of damage to the cingulate influencing 

motivation go back to Papez (1937, see (Szczepanski and Knight, 2014)], who observed that 

tumors pressing on the cingulate cortex led to “indifference to the environment, change in 

personality or character, [and a] stuporous or comatose state”. More recent studies have 

connected damage to the aMCC region with motivational impairment, apathy and inability 

to plan for long term goals (Devinsky et al., 1995; van Reekum et al., 2005; Szczepanski and 

Knight, 2014; Ducharme et al., 2017).

Naccache et al. (2005) examined the motivational disruptions associated with cingulate 

damage in a revealing case study of an individual with a lesion encompassing aMCC 

extending to dorsomedial prefrontal cortex (Naccache et al., 2005). The patient was 

presented with a number of tasks requiring executive function designed such that the 

difficulty of the tasks could be systematically varied. While the patient was able to perform 

these tasks in a relatively unimpaired manner, he reported no subjective sense of effort, or 

change in perceived effort as the difficulty increased. Furthermore, he showed no 

physiological evidence of increased effort, unlike controls, whose skin conductance 

increased along with difficulty.

Neuroimaging Studies:

Multiple neuroimaging studies have indicated that variability in aMCC function may 

account for the difference between tenacity and withdrawal in the face of challenge.

A major potential source of individual variability in tenacity is the strength of 

communication between the aMCC and other regions involved in signaling reward, 

autonomic processing or exercising cognitive control. It has been shown that the strength of 

intrinsic functional connectivity between aMCC and striatal regions predicted survey 

measures of both ‘grit’ and ‘growth mindset’ (the belief that cognitive abilities are 

malleable, and can be improved through hard work) (Myers et al., 2016). Furthermore, 

stronger structural and functional connectivity between aMCC and supplementary motor 

area predicts lower levels of apathy (apathy defined as lack of motivation to initiate behavior 

or respond to environmental stimuli) (Bonnelle et al., 2016) (see Figures 2A and 2B).

More direct evidence comes from a recent study examining the neural substrates of grit, 

demonstrating that individual’s grit is related to the spontaneous activity of aMCC (Wang et 

al., 2017b)(see Figure 2C). The magnitude of activity within the aMCC during effort 

judgments has also been shown to predict persistence (see Figure 2D). Indeed, aMCC 

activity during trials where participants chose a more difficult task over an easier one was 

positively associated with trait-level persistence (Kurniawan et al., 2010). In another study, 

Bonnelle et al. (2016) further reported that greater activity in the aMCC during cost-benefit 

weighing was associated with willingness to exert more effort (Bonnelle et al., 2016) (see 

Figure 2E). Relatedly, Scholl and colleagues (2015) reported that aMCC activity was greater 

during the choice of high effort vs. low effort options (Scholl et al., 2015) (see Figure 2F). 

Consistent with these findings, Spielberg and colleagues place the aMCC in a network 

involved in maintaining goal pursuit (Spielberg et al., 2012) (see their Figure 3c).
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Other task-related studies have indicated that the aMCC serves to integrate information 

about cost and benefit to sustain motivated behavior. Chong et al. (2017) reported that 

aMCC activity was associated with a preference to make an effort in return for reward, 

regardless of whether the task required mental or physical effort exertion (Chong et al., 

2017) (see Figure 2G).

Additionally, at least one study has related aMCC anatomy to a tenacious mindset. Van 

Schuerbeek and colleagues (Van Schuerbeek et al., 2011) reported that greater gray matter 

volume in a cluster including the aMCC and pMCC predicted higher levels of persistence as 

assessed by personality inventory (see Figure 4 in (Van Schuerbeek et al., 2011)).

Taken together, these findings indicate that the aMCC plays an important role in judgments 

of the subjective value of effort that can influence the choice between responding with 

tenacity or withdrawal.

Stimulation Studies:

Perhaps the strongest evidence for a role of aMCC in tenacity can be found in studies of 

experimental stimulation of the aMCC. Multiple studies have reported goal-oriented 

behaviors in response to aMCC stimulation (Escobedo and Cravioto, 1973; Talairach et al., 

1973; Bancaud et al., 1976; Kremer et al., 2001; Chassagnon et al., 2008; Caruana et al., 

2018). In a recent well-designed study, Caruana and colleagues analyzed the effect of 

electrical stimulation applied to1789 cingulate sites, in 329 patients and provided causal data 

related to role of aMCC in motivation. Consistent with the role of aMCC in tenacity, the 

authors found that the stimulation of aMCC elicits a variety of goal-oriented behaviors [(see 

Figure 3 in Caruana et al. (2018)]. The results lead the authors to suggest that “aMCC might 

provide the motivational drive to perform actions, playing an excitatory and/or inhibitory 

role on these motor circuits”. Interestingly, they authors further demonstrated that aMCC 

controls these goal-oriented behaviors according to a dorsoventral ‘actotopic’ organization: 

stimulation of dorsal aMCC evoked movements directed towards the body (e.g., rubbing the 

eyes); stimulation of middle aMCC elicited actions in the peripersonal space (e.g. 

exploratory gaze movements); and stimulation of ventral aMCC led to whole body 

movements towards extrapersonal space (e.g. the impulse to get up as some patients 

described it: ‘I felt I was willing to go away’). Taken together, it is possible that the aMCC 

function in motivation may be embodied, as suggested by Apps (2018) organized within a 

space- or body-framed topography.

In another study that used a structured task assessing effort perception, Zenon and 

colleagues (2015) reported that transcranial magnetic stimulation of supplementary motor 

area (an area strongly connected to aMCC) significantly reduced the perceived aversiveness 

of a physically demanding task. This resulted in a greater willingness to exert effort, even for 

a reduced reward (Zenon et al., 2015). However, given the close proximity of supplementary 

motor area and aMCC, it is difficult to assess the degree of aMCC contribution to this effect.

A more compelling example is provided by Parvizi and colleagues (Parvizi et al., 2013), 

who employed direct electrical stimulation of the aMCC, producing what they described as 

an increase in the ‘will to persevere (Parvizi et al., 2013) (see Figure 2H). Patients generally 
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described the experience of aMCC stimulation as evoking the feeling of preparing for a 

difficult challenge. As one patient put it: “I started getting this feeling like … I was driving 

into a storm. […] like, you’re headed towards a storm […] and you’ve got to get across the 

hill and all of a sudden you’re sitting there going how am I going to get over that, through 

that?”

Implications of the aMCC Role in Tenacity for Achievement, Aging, Health, 

and Illness

Tenacity will influence performance particularly wherever there is challenge. In this section, 

we will consider evidence that aMCC structure and function predicts life and health 

outcomes across multiple domains. We will limit our focus on the extreme ends of aMCC 

variability. We will first consider the role of aMCC dysfunction in apathy (or absence of 

motivation), specifically in cases of depression and neurodegenerative disease. We will then 

review findings indicating that greater aMCC integrity predicts tenacity that is associated 

with positive life outcomes in aging, health, and academics.

Depression:

Apathy, defined by DSM-5 as a pronounced lack of motivation, goal-directed behavior and 

emotional responsiveness, is among the most commonly reported symptoms of depression 

(Pizzagalli, 2014). Numerous studies demonstrate that patients with depression are less 

willing to expend effort for rewards than controls (Treadway et al., 2012). Given the role of 

aMCC in effort processing, as Holroyd (2012) and others have argued, it seems likely that 

the aMCC is compromised in depressed individuals. Indeed, a substantial body of evidence 

also implicates aMCC dysfunction in depression (Chen et al., 2007; Steele et al., 2007; 

Crossley et al., 2014) (see also (Holroyd and Umemoto, 2016; Vogt, 2016)). It should be 

noted, however, that depression is a heterogeneous clinical syndrome and as such, distinct 

dimensions of symptomology are associated with alteration of brain function in distinct 

regions (Drysdale et al., 2017). Indeed, in addition to apathy, depression is defined by a 

pronounced anhedonia and negative attentional bias which have been alleviated by deep 

brain stimulation of other brain regions, notably the subgenual ACC(Holtzheimer and 

Mayberg, 2012).

Dysfunction of the aMCC seems particularly relevant to motivational problems, rather than 

hedonic components of depression. It has been shown that the degree of reduction in aMCC 

volume predicts severity of apathetic symptoms in depression (Lavretsky et al., 2007). 

Furthermore, depressed individuals exhibit reduced activation of aMCC during a complex 

planning task (Elliott et al., 1997) (see Figure 3A). Disruption of aMCC function could 

mediate apathy through disruption of reward processing (Holroyd and Umemoto, 2016), as 

aMCC response to reward learning is reduced in depression (Kumar et al., 2008). Apathy 

may also be related to impaired ability of aMCC to effectively adjust to prediction errors. In 

one study employing a gambling task (Steele et al., 2007), healthy individuals responded to 

negative feedback with aMCC activation and improved reaction times, while depressed 

individuals showed neither aMCC engagement nor behavioral improvement following errors 

(Steele et al., 2007). Collectively, these studies are consistent with the proposal that 
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depression disrupts the aMCC’s ability to act as the central hub (Pizzagalli, 2014), thus 

compromising motivation (Holroyd and Umemoto, 2016).

Neurodegenerative Disease:

Apathy has also been observed in a wide range of neurological disorders, including 

Alzheimer’s disease (Mega et al., 1996), behavioral variant of frontotemporal dementia (bv-

FTD) (Ducharme et al., 2017) and Parkinson’s disease (Aarsland et al., 2009). In a recent 

review, Le Heron and colleagues argue that despite the diversity among these disorders in 

causes and behavioral symptoms, all of these disorders share a common neural feature: the 

disruption of an interconnected group of brain regions involved in reward processing and 

cognitive control, with the aMCC at its core (see Figure 4 in (Le Heron et al., 2017).

Indeed, in Alzheimer’s disease, the magnitude of abnormal aMCC function (Migneco et al., 

2001; Schroeter et al., 2011; Le Heron et al., 2017) is linked to apathetic symptoms (see 

Figure 3B). In bvFTD, apathy has been associated with atrophy, hypometabolism and/or 

hypoperfusion in aMCC and its connected regions, including dorsolateral prefrontal cortex, 

orbitofrontal cortex, and the medial and ventromedial superior frontal gyri (Franceschi et al., 

2005; Schroeter et al., 2011; Ducharme et al., 2017; Le Heron et al., 2017). Similarly, altered 

metabolism in aMCC region is associated with the degree of apathy in Parkinson’s disease 

(Huang et al., 2013; Le Heron et al., 2017).

Superaging:

Emerging research suggests that exceptional cases of healthy aging may be associated with 

increased tenacity. While in the majority of elderly people, episodic memory function 

declines with age (Grady and Craik, 2000; Cansino, 2009) accompanied by a number of age-

related neurobiological changes, including structural atrophy (Brickman et al., 2007; 

Bakkour et al., 2013), loss of intrinsic network coherence (Andrews-Hanna et al., 2007; 

Wang et al., 2010), and altered brain activity during memory (Grady et al., 2006; Maillet and 

Rajah, 2014), there are exceptions. Multiple recent studies have identified a remarkable 

subgroup of elderly people, known as ‘superagers’, whose performance on some cognitive 

measures is equivalent to middle aged (Gefen et al., 2014) and even young (Sun et al., 2016) 

adults, despite their advanced age.

Many of the most pronounced neurobiological differences between superagers and typical 

older adults involve the structure and function of the aMCC. Anatomically, we showed that 

the cortical thickness of aMCC in superagers is actually equivalent to young controls (Sun et 

al., 2016), exceeding the thickness of the middle-aged (Harrison et al., 2012). Recently, we 

further demonstrated that superagers not only have greater cortical thickness in aMCC but 

also exhibit greater intrinsic functional connectivity between aMCC and major nodes of the 

salience network when compared to typical older adults (Zhang et al., 2019). Importantly, 

the thickness and network connectivity of the aMCC can predict successful memory 

performance in older adults (see Figure 3C). Thus, superagers show a more ‘youthful’ 

pattern of memory function, aMCC structure and network connectivity than most elderly 

people.
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Given that cognitive effort is especially costly for older adults (Westbrook et al., 2013), does 

this preserved aMCC function and cognitive ability in superagers indicate a more ‘tenacious’ 

attitude towards challenging tasks? As aMCC activity is associated with exertion of effort in 

response to multiple cognitive demands (Fedorenko et al., 2013), persistence in the face of 

difficulty should be associated with greater aMCC activity during memory performance. 

Indeed, during difficult trials on a memory task, elderly people show greater aMCC activity 

than during easier trials (see Figure 3D) (Dhanjal and Wise, 2014).

Exercise and Obesity and Eating Disorders:

Another area where an understanding of the neural basis of tenacity could have profound 

implications for public health is the study of exercise and obesity. Maintenance of an 

exercise regimen requires tenacity, and indeed individual differences in grit predict 

adherence to physical exercise (Reed et al., 2013). Studies of brain metabolism during 

exercise further indicate that aMCC metabolism relates to exercise intensity, and also that 

this coupling is significantly stronger in individuals with greater exercise capacity (who most 

likely exercise regularly) (Kemppainen et al., 2005)(see Figure 3E). Thus, aMCC may be 

better able to accurately assess the metabolic costs of exertion in tenacious individuals. 

Additionally, some evidence suggests that regular exercise may actually increase aMCC 

volume (Colcombe et al., 2006) (see Figure 3F), suggesting the exciting possibility that it 

may be possible to physically ‘train up’ aMCC function, and in turn, tenacity.

Tenacity may also influence weight loss outcomes through the ability to defer rewards, as 

well as the willingness to engage in effortful exercise. As such variability in aMCC function 

may be an important predictor of success in dieting. Choosing healthy foods over more 

calorically dense options is associated with greater aMCC activity (Harding et al., 2017), 

and a greater aMCC response to calorically dense foods is associated with reduced obesity 

risk (Carnell et al., 2017) (see Figure 3G). Thus, increased aMCC activation in response to 

food seems to be related to the deployment of cognitive control. Notably, formerly obese 

individuals who have successfully maintained weight loss show substantially enhanced 

aMCC (superior frontal/cingulate by authors) activation in response to food cues (McCaffery 

et al., 2009), indicating that aMCC responses to food stimuli is associated with a greater 

ability to self-regulate appetite.

If aMCC activation in response to food-associated cues indicates the deployment of 

cognitive control resources, then treatments that augment aMCC activity could potentially 

result in more effective self-regulation of cravings. In fact, at least one attempt to 

experimentally bolster aMCC processing has shown some success in influencing appetite. 

Leong et al. (2018) showed in women with obesity that transcranial pink noise stimulation 

targeted at the aMCC region results in a reduction in self-reported appetite on a ‘desire to 

eat’ scale (Leong et al., 2018) (see Figure 3H).

We note, however, that increased fixation to goals achieved by aMCC may be linked to 

abnormal self-monitoring problems that are commonly seen in the pathophysiology of eating 

disorders (EDs). Indeed, a recent review of fMRI studies demonstrated that anorexia nervosa 

(AN), bulimia nervosa (BN), and binge eating disorder (BED are associated with altered 

activation and connectivity in aMCC (Gaudio et al., 2016; Steward et al., 2018). It has been 
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shown that patients with BN and AN tend to exhibit greater functional connectivity of MCC 

(dACC by the authors) and precuneus (Lee et al., 2014), and this connectivity predicts 

higher levels of body shape concerns seen in these patients. Consistent with these findings, 

Geisler et al. used a probabilistic reversal learning task and showed increased activation of 

aMCC during negative feedback in a group of patients with AN. Importantly, this activation 

correlated with higher levels of perfectionism (Geisler et al., 2017). As the authors suggest, 

hyperfunctioning of aMCC may be related to increased fixation to goals (e.g. skinny body) 

often associated with AN. Interestingly, the abnormal functioning of the aMCC (and its 

connected regions) seems to improve in recovered patients with ED (for a review see 

(Steward et al., 2018)).

Taken together, these findings suggest the possibility of neuromodulation of the aMCC as a 

treatment for obesity and eating disorders, although further research is necessary to assess 

whether the effects of neuromodulation would lead to lasting behavioral change.

Academic Achievement and Professional Success:

In addition to conveying resilience to negative health outcomes, substantial and growing 

evidence indicates that grit and persistence predict achievement in multiple areas, such as 

educational achievement and professional success (Duckworth and Gross, 2014). Both grit 

and persistence have been associated with aMCC function; spontaneous aMCC activity 

predicts grit (Wang et al., 2017b), and greater aMCC volume predicts persistence (Van 

Schuerbeek et al., 2011). This suggests that aMCC may contribute to the increased 

achievement associated with tenacity.

Indeed, growing evidence connects tenacity, aMCC activity and better performance. Mulert 

et al. (2005) has demonstrated that when individuals follow task instructions, there is a close 

relationship between conscious effort and aMCC activity (Mulert et al., 2005)(see Figure 

3I). Across three different tasks, Naito et al. (2000) also found a significant positive 

correlation between blood flow in aMCC and speeded reactions (Naito et al., 2000) (see 

Figure 3J). More direct evidence comes from a recent study that demonstrated a link 

between aMCC function and academic performance, noting that spontaneous activity in this 

region is correlated with both grit scores (see Figure 2C) and academic performance (Wang 

et al., 2017b). Critically, mediation analysis showed that the grit-academics relationship is 

mediated by the aMCC activity, indicating that superior aMCC function explains greater 

academic achievement in tenacious individuals.

Conclusion and Future Directions:

Tenacity is a powerful predictor of health and achievement and research on its neural basis 

could offer greater understanding of the qualities that promote exceptional achievement. The 

preceding evidence suggests a central role for the aMCC in subserving tenacity. Positioned 

at the intersection of systems involved in autonomic processing, interoception, executive 

function, motor planning, and sensory integration, the aMCC receives the information 

necessary to perform domain-general computational functions to mobilize physiological and 

cognitive resources to meet task needs. Such processes may include the (a) prediction of 

behavioral outcomes, (b) assessment of the energetic costs of task performance, (c) 
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monitoring the internal state of the body, (d) adjusting to prediction errors, and (e) 

modulation of the internal state of the body to prepare for action. We propose that tenacity 

can be understood as a kind of bias in these aMCC computations: a tendency to maintain the 

representation of expected rewards and to judge one’s available physiological resources as 

meeting or exceeding task demands. Consistent with this view, we presented emerging 

evidence indicating that greater aMCC structure and function are linked to tenacious 

behavior in many domains of life and health. In contrast, the disruption of aMCC has been 

associated with apathy and other motivational problems implicated in many neuropsychiatric 

disorders (Le Heron et al., 2017). Thus, understanding how the aMCC can contribute to 

achieving goals can also potentially provide therapeutic insight into health difficulties 

ranging from obesity and eating disorders to depression and dementia.

One intriguing possibility is that the structure and function of aMCC could be altered with 

sufficient behavioral training. Indeed, as a flexible hub, the MCC may be better equipped 

than other brain regions to reshape its connectivity in response to learning. It has been 

proposed that protein receptors important for plasticity (such as CaMKII, NR2B, NMDA) 

are highly expressed in limbic circuits including aMCC (Wei et al., 1999; Palomero-

Gallagher et al., 2008; Garcia-Cabezas et al., 2017; Burt et al., 2018; Palomero-Gallagher 

and Zilles, 2019). Interestingly, Garcia-Cabezas et al. (2017) recently showed that in adult 

monkeys, markers of synaptic plasticity are high in MCC (and other limbic regions) while 

markers of stability (as expressed by cellular factors that inhibit synaptic plasticity) are low. 

These findings suggest that training related improvement in behaviors requiring tenacity 

may be mediated through the aMCC. We have seen evidence that aMCC can be ‘trained up” 

in the domain of exercise (Colcombe et al., 2006). Future studies (see Outstanding Questions 

Box) might focus on the development of interventions in aMCC activity and connectivity in 

other domains. Such interventions may have a broad therapeutic value (Downar et al., 2016; 

Le Heron et al., 2017).
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Box 1:

Theories of anterior Mid-Cingulate Cortex Function

Early theories of aMCC function focused on the aMCC’s role in selecting actions, as in 

cases where two behaviors are in conflict (Botvinick et al., 2001; van Veen et al., 2001; 

Botvinick et al., 2004), or when errors must be monitored (Brown and Braver, 2005; 

Holroyd and Coles, 2008); see (Vassena et al., 2017a) for review). This led to the view 

that the aMCC’s role is the deployment of cognitive control to aid in action selection (see 

(Vassena et al., 2017a)). However, these theories cannot account for evidence of 

increased aMCC engagement in situations when participants have only one response 

option, but motivational conditions are altered through changes in reward or task 

demands (Vassena et al., 2014).
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Outstanding Questions Box

• If preserved aMCC anatomy is associated with successful aging, does early 

aMCC development predict later life success?

• Does the ability of aMCC to efficiently regulate energy resources in response 

to laboratory challenges also translate to resilience to stressful life events such 

as grief, professional failure, or divorce?

• Can you make a person be tenacious? Can tenacity be trained behaviorally in 

school or later in life? If for example regular exercise influences aMCC 

volume, could exercise also influence tenacity?

• Can we alter the level of tenacity via noninvasive stimulation of the aMCC in 

a way that leads to lasting behavioral changes? Which neuromodulation 

techniques can specifically stimulate the aMCC?

• Given that the aMCC is a linchpin area receiving inputs from multiple brain 

networks, does tenacity imply a more functionally connected brain?
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Figure 1. 
Neuroanatomy and connectivity of the aMCC. Four Cingulate Regions & Subregions 

proposed by Vogt (A)(Vogt, 2016) and (B)(Vogt, 2005); Freesurfer cortical parcellation of 

the aMCC (white arrow) (C) (Desikan et al., 2006); aMCC (black circle) as a member of the 

brain’s ‘rich club’ hubs (D)(van den Heuvel and Sporns, 2013a); aMCC (black circle, 

labeled as ‘dACC’ by the authors) as a key region of the multimodal integration network (E)

(Sepulcre et al., 2012); aMCC (black circle) sits at the nexus (purple) of two salience 

subsystems; the dorsal salience subsystem (blue) associated with executive function and the 

ventral salience subsystem (red) associated with visceroautonomic processing (F)

(Touroutoglou et al., 2012); aMCC (black circle) as a key region of the large-scale allostatic/

interoceptive system (G)(Kleckner et al., 2017), frontoparietal control system (H)(Vincent et 

al., 2008), ventral attention system (I)(Fox et al., 2006), and cinguloopercular network (J)

(Dosenbach et al., 2007).
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Figure 2. 
The role of aMCC in tenacious behaviors. Stronger functional connectivity between aMCC 

(labeled as ‘dACC’ by the authors) and supplementary motor is linked to lower levels of 

apathy (A) (Bonnelle et al., 2016); stronger functional connectivity between aMCC and 

ventral striatum is associated with grit (B) (Myers et al., 2016); spontaneous aMCC activity 

predicts grit (C)(Wang et al., 2017b); greater aMCC (labeled as ‘dACC’ by the authors) 

activity is associated with higher levels of persistence (D)(Kurniawan et al., 2010); aMCC 

signal is associated with willingness to exert more effort (E)(Bonnelle et al., 2016); aMCC 

activity increases during effort magnitude estimation (F)(Scholl et al., 2015); aMCC signal 

tracks the subjective value of effort exerted (G)(Chong et al., 2017); aMCC stimulation 

(yellow circle) increases the will to persevere (H)(Parvizi et al., 2013).
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Figure 3. 
Implications of the aMCC role in tenacity. Compared to healthy controls, patients with 

depression show reduced regional cerebral blood flow in the aMCC (black circle) during an 

effortful task (A)(Elliott et al., 1997); apathy scores correlate with altered glucose 

metabolism in aMCC in early dementia including Alzheimer’s disease, frontotemporal 

dementia (left, (Schroeter et al., 2011) and Parkinson’s disease (right, labeled as ‘ACC’ by 

the authors (Huang et al., 2013) (B); aMCC cortical thickness (left, aMCC indicated with 

white)(Sun et al., 2016) and intrinsic connectivity to anterior insula (right (Zhang et al., 

2019)) both predict successful memory performance in superagers and typical older adults 

(C); aMCC signal increases during effortful memory retrieval in older adults (D)(Dhanjal 

and Wise, 2014); high exercise intensity is linked to metabolic changes in aMCC (E)

(Kemppainen et al., 2005); gray matter volume in frontal regions including the aMCC was 

increased (blue) for aerobic exercisers relative to nonaerobic controls (F)(Colcombe et al., 

2006); obese adolescents show aMCC weaker activation in response to foods compared to 

lean adolescents (G) (Carnell et al., 2017); transcranial pink noise stimulation of aMCC 

decreases self-reported desire to eat in women with obesity (H)(Leong et al., 2018); aMCC 

activity during task increases in individuals who follow the task instructions closely (I)

(Mulert et al., 2005); aMCC regional blood flow is associated with faster reaction times in a 

somatosensory reaction time task (J)(Naito et al., 2000).
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Table 1.

Examples of neuroscience evidence that aMCC participates in a wide range of tasks.

Observation Task domain Citations Example Figure

aMCC is robustly engaged by pain and negative 
affect.

Pain, Negative 
affect

(Derbyshire et al., 2004; Vogt, 
2005; Shackman et al., 2011; 
Yarkoni et al., 2011; Lindquist et 
al., 2012; Lieberman and 
Eisenberger, 2015)

See Fig.2 in 
Derbyshire et al., 2004

aMCC functions as a ‘neural alarm’, directing 
attention toward potential conflicts with enduring 
survival goals. For example, aMCC is implicated 
in the experience of hunger, thirst, and 
breathlessness.

Pain, Negative 
affect

(Lieberman and Eisenberger, 
2015)

See Fig. 6 in 
Lieberman & 

Eisenberger, 2015

aMCC activation is associated with a variety of 
emotions, such as fear, disgust, anger and 
sadness.

Pain, Negative 
affect

(Lindquist et al., 2012; 
Touroutoglou et al., 2015; Raz et 
al., 2016)

See Fig. 4 in Lindquist 
et al., 2012

aMCC is anticipating and predicting pending 
noxious stimulation, so as to prepare avoidance 
responses. For example, aMCC activity increases 
as a function of the proximity of a tarantula to the 
participants’ foot.

Pain, Negative 
affect

(Mobbs et al., 2010; Vogt, 2016) See Fig. 2 in Mobbs et 
al., 2010

aMCC activity in difficult tasks is linked to 
negative affect during task. For example, aMCC 
response to error processing tracks within-subject 
changes in felt frustration.

Pain, Negative 
affect

(McGuire and Botvinick, 2010; 
Spunt et al., 2012)

See Fig. 2 in Spunt et 
al., 2012

The aMCC is engaged by positive experiences, 
particularly in reward-based decision-making 
tasks. The aMCC tracks both the magnitude and 
the probability of predicted rewards.

Reward 
decision 
making

(Kouneiher et al., 2009; Lindquist 
et al., 2012; Bahlmann et al., 
2015)

See Fig. 3A in 
Kouneiher et al., 2009

aMCC integrates reward with motor responses. 
For example, a reduction in an anticipating 
reward significantly increases the firing rate of 
aMCC neurons in a way that is directly linked 
with the movement ultimately made.

Reward 
decision 
making

(Williams et al., 2004) See Fig. 1 in Williams 
et al., 2004

The aMCC is sensitive to both increases and 
decreases in reward. Its signal during reward- 
decision making approximates an underlying U-
shaped function, indicative of signal related to 
arousal or salience processing.

Reward 
decision 
making

(Bush et al., 2002; Rushworth and 
Behrens, 2008; Bartra et al., 
2013)

See Fig. 10 in Bartra et 
al., 2013

aMCC is engaged by the degree of difficulty in 
demanding tasks. For example, greater aMCC 
activity is associated with increased working 
memory load, more challenging mental 
arithmetic, memory retrieval over longer delays 
and more precise visual discrimination.

Effort 
Cognitive and 
Motor Control

(Duncan and Owen, 2000; Davis 
et al., 2005; Cole and Schneider, 
2007; Duncan, 2010; Boehler et 
al., 2011; Duncan, 2013; 
Engstrom et al., 2013; Fedorenko 
et al., 2013; Power and Petersen, 
2013; Dhanjal and Wise, 2014; 
Hoffstaedter et al., 2014)

See Fig. 2 in 
Fedorenko et al. 2013

aMCC plays a role in predicting effort 
requirements. For example, its activity in learning 
tasks is modulated by previous trials in a way that 
speeds responses to trials of equivalent difficulty, 
and slows them when difficulty levels change.

Effort, 
Cognitive and 
Motor Control

(Modirrousta and Fellows, 2008; 
Sheth et al., 2012)

See Fig. 1 in Sheth et 
al. 2012

aMCC activates when requirements change, 
errors are detected, available options are in 
conflict, novel tasks are encountered or 
alternative course of actions are being considered.

Effort, 
Cognitive and 
Motor Control

(Raichle et al., 1994; Bush et al., 
1998; Barch et al., 2001; 
Ullsperger and von Cramon, 
2001; Botvinick et al., 2004; 
Jessup et al., 2010; Nee et al., 
2011; Kolling et al., 2014).

See Fig. 9 in Nee et al., 
2011

aMCC signal increases in response to prediction 
errors.

Effort, 
Cognitive and 
Motor Control

(Jocham et al., 2009; Sheth et al., 
2012; Kolling et al., 2016)

See Fig. 5 in Jocham et 
al., 2009
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Observation Task domain Citations Example Figure

aMCC is engaged in social processing. For 
example, aMCC activations are observed during 
the Ultimatum Game, a social interaction task 
that particularly requires predicting and 
monitoring the effects of decisions on the 
behavior of others.

Social 
Cognition tasks

(Kirk et al., 2011; Apps et al., 
2013)

See Fig. 2 in Kirk et 
al., 2011

The aMCC is a core node of the central 
autonomic network that calibrates bodily 
reactions to match anticipated outcomes.

Autonomic 
reactivity tasks

(Beissner et al., 2013) (Critchley 
et al., 2000; Critchley et al., 2003; 
Critchley, 2009; Wager et al., 
2009; Hermans et al., 2011; 
Gianaros and Wager, 2015)

See Fig. 1 in Beissner 
et al. 2013

The magnitude of aMCC responses is linked to 
various stress-induced physiological changes, 
including blood pressure and heart rate 
variability, pupil dilation, and neuroendocrine 
stress responses.

aMCC integrates pain, arousal, motivation and 
cognitive control.

Integrative 
function

(Shackman et al., 2011; 
Bahlmann et al., 2015).

See Fig. 2 in Shackman 
et al., 2011
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