Skip to main content
. 2020 Jul 15;11:1618. doi: 10.3389/fpsyg.2020.01618

TABLE 1.

The repeated measures analysis.

Effect Method Value F p
Picking time Pillai’s trace 0.019 0.888 0.449
Wilks’ lambda 0.981 0.888 0.449
Hotelling’s trace 0.019 0.888 0.449
Roy’s largest root 0.019 0.888 0.449
Picking time × target clicking method Pillai’s trace 0.013 0.610 0.609
Wilks’ lambda 0.987 0.610 0.609
Hotelling’s trace 0.013 0.610 0.609
Roy’s largest root 0.013 0.610 0.609
Picking time × the position of target Pillai’s trace 0.078 0.934 0.513
Wilks’ lambda 0.923 0.931 0.516
Hotelling’s trace 0.081 0.927 0.520
Roy’s largest root 0.054 1.893 0.115
Dragging time Pillai’s trace 0.010 0.445 0.721
Wilks’ lambda 0.990 0.445 0.721
Hotelling’s trace 0.010 0.445 0.721
Roy’s largest root 0.010 0.445 0.721
Dragging time × target clicking method Pillai’s trace 0.002 0.086 0.968
Wilks’ lambda 0.998 0.086 0.968
Hotelling’s trace 0.002 0.086 0.968
Roy’s largest root 0.002 0.086 0.968
Dragging time × the position of target Pillai’s trace 0.063 0.746 0.706
Wilks’ lambda 0.938 0.745 0.707
Hotelling’s trace 0.065 0.744 0.708
Roy’s largest root 0.053 1.839 0.125
Dragging numbers Pillai’s trace 0.010 0.479 0.697
Wilks’ lambda 0.990 0.479 0.697
Hotelling’s trace 0.010 0.479 0.697
Roy’s largest root 0.010 0.479 0.697
Dragging numbers × target clicking method Pillai’s trace 0.007 0.335 0.800
Wilks’ lambda 0.993 0.335 0.800
Hotelling’s trace 0.007 0.335 0.800
Roy’s largest root 0.007 0.335 0.800
Dragging numbers × the position of target Pillai’s trace 0.069 0.821 0.628
Wilks’ lambda 0.933 0.815 0.635
Hotelling’s trace 0.071 0.808 0.642
Roy’s largest root 0.041 1.418 0.231

Tests the null hypothesis that the error covariance matrix of the orthonormalized transformed dependent variables is proportional to an identity matrix. Within subjects design: Dragging numbers.