TABLE 1.
The repeated measures analysis.
Effect | Method | Value | F | p |
Picking time | Pillai’s trace | 0.019 | 0.888 | 0.449 |
Wilks’ lambda | 0.981 | 0.888 | 0.449 | |
Hotelling’s trace | 0.019 | 0.888 | 0.449 | |
Roy’s largest root | 0.019 | 0.888 | 0.449 | |
Picking time × target clicking method | Pillai’s trace | 0.013 | 0.610 | 0.609 |
Wilks’ lambda | 0.987 | 0.610 | 0.609 | |
Hotelling’s trace | 0.013 | 0.610 | 0.609 | |
Roy’s largest root | 0.013 | 0.610 | 0.609 | |
Picking time × the position of target | Pillai’s trace | 0.078 | 0.934 | 0.513 |
Wilks’ lambda | 0.923 | 0.931 | 0.516 | |
Hotelling’s trace | 0.081 | 0.927 | 0.520 | |
Roy’s largest root | 0.054 | 1.893 | 0.115 | |
Dragging time | Pillai’s trace | 0.010 | 0.445 | 0.721 |
Wilks’ lambda | 0.990 | 0.445 | 0.721 | |
Hotelling’s trace | 0.010 | 0.445 | 0.721 | |
Roy’s largest root | 0.010 | 0.445 | 0.721 | |
Dragging time × target clicking method | Pillai’s trace | 0.002 | 0.086 | 0.968 |
Wilks’ lambda | 0.998 | 0.086 | 0.968 | |
Hotelling’s trace | 0.002 | 0.086 | 0.968 | |
Roy’s largest root | 0.002 | 0.086 | 0.968 | |
Dragging time × the position of target | Pillai’s trace | 0.063 | 0.746 | 0.706 |
Wilks’ lambda | 0.938 | 0.745 | 0.707 | |
Hotelling’s trace | 0.065 | 0.744 | 0.708 | |
Roy’s largest root | 0.053 | 1.839 | 0.125 | |
Dragging numbers | Pillai’s trace | 0.010 | 0.479 | 0.697 |
Wilks’ lambda | 0.990 | 0.479 | 0.697 | |
Hotelling’s trace | 0.010 | 0.479 | 0.697 | |
Roy’s largest root | 0.010 | 0.479 | 0.697 | |
Dragging numbers × target clicking method | Pillai’s trace | 0.007 | 0.335 | 0.800 |
Wilks’ lambda | 0.993 | 0.335 | 0.800 | |
Hotelling’s trace | 0.007 | 0.335 | 0.800 | |
Roy’s largest root | 0.007 | 0.335 | 0.800 | |
Dragging numbers × the position of target | Pillai’s trace | 0.069 | 0.821 | 0.628 |
Wilks’ lambda | 0.933 | 0.815 | 0.635 | |
Hotelling’s trace | 0.071 | 0.808 | 0.642 | |
Roy’s largest root | 0.041 | 1.418 | 0.231 |
Tests the null hypothesis that the error covariance matrix of the orthonormalized transformed dependent variables is proportional to an identity matrix. Within subjects design: Dragging numbers.