Skip to main content
. 2020 Jul 6;8(7):e17257. doi: 10.2196/17257

Table 4.

Prediction scores of models created by different algorithms.

Algorithm/ model AUCa ACCb F1-score Sensitivity PPVc Specificity NPVd
Logistic regression 0.865 0.809 0.785 0.736 0.840 0.874 0.787
Decision tree 0.882 0.827 0.802 0.742 0.873 0.903 0.796
KNNe 0.908 0.827 0.808 0.769 0.851 0.879 0.810
SVMf 0.915 0.850 0.832 0.782 0.888 0.912 0.824
Random forest 0.938 0.861 0.846 0.812 0.884 0.905 0.843
XGBoost 0.943 0.870 0.855 0.820 0.895 0.914 0.849

aAUC: area under the receiver operating curve.

bACC: accuracy.

cPPV: positive predictive value.

dNPV: negative predictive value.

eKNN: K-nearest neighbor.

fSVM: support vector machine.