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Abstract
The cause of failure in cohort studies that involve competing risks is frequently
incompletely observed. To address this, several methods have been proposed for the
semiparametric proportional cause-specific hazards model under a missing at random
assumption. However, these proposals provide inference for the regression coefficients
only, and do not consider the infinite dimensional parameters, such as the covariate-
specific cumulative incidence function. Nevertheless, the latter quantity is essential for
risk prediction in modern medicine. In this paper we propose a unified framework for
inference about both the regression coefficients of the proportional cause-specific haz-
ards model and the covariate-specific cumulative incidence functions under missing
at random cause of failure. Our approach is based on a novel computationally efficient
maximumpseudo-partial-likelihood estimationmethod for the semiparametric propor-
tional cause-specific hazardsmodel. Usingmodern empirical process theory we derive
the asymptotic properties of the proposed estimators for the regression coefficients and
the covariate-specific cumulative incidence functions, and provide methodology for
constructing simultaneous confidence bands for the latter. Simulation studies show
that our estimators perform well even in the presence of a large fraction of missing
cause of failures, and that the regression coefficient estimator can be substantially
more efficient compared to the previously proposed augmented inverse probability
weighting estimator. The method is applied using data from an HIV cohort study and
a bladder cancer clinical trial.
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1 Introduction

There is an increasing frequency of epidemiological studies and clinical trials that
involve a large number of subjects, longer observation periods and multiple outcomes
or competing risks (Ness et al. 2009). Thebasic identifiable quantities fromstudieswith
competing risks are the cause-specific hazard and the cumulative incidence function
(Putter et al. 2007; Bakoyannis and Touloumi 2012). Choosing the most relevant
estimand in a given study depends on the scientific question of interest: if the goal
of the study is to identify risk factors of the competing risks under consideration, the
cause-specific hazard is the most relevant quantity (Koller et al. 2012); if the interest
is focused on clinical prediction or prognosis, as for example in studies of quality of
life, the cumulative incidence function is the most relevant estimand (Fine and Gray
1999; Koller et al. 2012; Andersen et al. 2012).

A frequent problem in studies with competing risks is that cause of failure is incom-
pletely observed, and several methods have been proposed to address this issue under a
missing at randomassumption. Craiu andDuchesne (2004) proposed anEM-algorithm
for estimation under a piecewise-constant hazards competing risks model, for situa-
tions with masked cause of failure. Goetghebeur and Ryan (1995) proposed a partial
likelihood-based approach for estimating the regression coefficients of the semipara-
metric proportional cause-specific hazards model under missing cause of failure, by
assuming that the baseline hazards for the different causes of failure are proportional.
Lu and Tsiatis (2001) proposed a multiple-imputation approach based on a parametric
assumption regarding the probability of the cause of failure conditional on the fully
observed data. Lu and Tsiatis approach, unlike the estimator byGoetghebeur andRyan
(1995), did not impose the proportionality assumption between the baseline hazards
for the different causes of failure. Gao and Tsiatis (2005) developed augmented inverse
probability weighting estimators (AIPW) for the regression coefficients in the class
of semiparametric linear transformation models. This approach utilizes parametric
models for the probability of missingness and the probability of the cause of failure
conditional on the fully observed data. Hyun et al. (2012) applied the AIPW approach
to the proportional cause-specific hazards model. These AIPW estimators are more
efficient compared to the simple inverse probability weighting estimators, and possess
the double-robustness property. The latter property ensures consistency even if one
of the parametric models for the probability of missingess and the cause of failure
probability is incorrectly specified. Recently, Nevo et al. (2018) proposed an estima-
tion approach for the proportional cause-specific hazards model that utilized auxiliary
covariates for a weaker missing at random assumption. However, this approach con-
sidered an unspecified baseline hazard for only one cause of failure, say λ0,1(t), while
the baseline hazards for the remaining cause of failures were assumed to satisfy a
parametric hazard ratio λ0, j (t)/λ0,1(t). On the contrary, the other approaches men-
tioned above considered unspecified baseline cause-specific hazards for all the cause
of failures (Lu and Tsiatis 2001; Gao and Tsiatis 2005; Hyun et al. 2012). It is impor-
tant to note that, none of the aforementioned methods have considered the problem
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of inference for the infinite-dimensional parameters, such as the covariate-specific
cumulative incidence function. However, these personalized risk predictions provide
crucial information to clinicians and policy makers in medical decision making and
implementation science, as in our motivating study described below.

Several other approaches have been proposed for the semiparametric additive cause-
specific hazards model with missing causes of failure (Lu and Liang 2008; Bordes
et al. 2014). In this article we focus on the semiparametric proportional cause-specific
hazards model because this is the standard model for estimating risk factor effects
in practice (Koller et al. 2012). Additionally, other approaches have been proposed
for semiparametric models of the cumulative incidence function (Bakoyannis et al.
2010; Moreno-Betancur and Latouche 2013) with missing cause of failure. However,
it is more appropriate to analyze the cause-specific hazard function for evaluating risk
factors, than analyzing the cumulative incidence function (Koller et al. 2012).

An important gap in the literature of competing risks datawithmissing cause of fail-
ure is that there is currently no unified approach available for inference about both the
cause-specific hazard, for evaluating risks factors, and the covariate-specific cumula-
tive incidence function, for risk prediction purposes. Such an approach would be very
useful to an ongoing study with competing risks from the East Africa Regional Con-
sortium of the International Epidemiology Databases to Evaluate AIDS (EA-IeDEA).
Among other data, EA-IeDEA records death and disengagement from care, the two
major outcomes experienced by HIV-infected individuals who receive antiretroviral
treatment (ART). The goal of the motivating study is twofold: (1) to identify risk fac-
tors of disengagement from HIV care and death in patients who receive ART, and (2)
to provide individualized (i.e., covariate-specific) prognosis and prediction estimates
for the aforementioned competing risks. The first goal aims at providing a scientific
understanding of the factors that are related to disengagement from care and death
under ART, while the second goal focuses on informing clinical practice and imple-
mentation science efforts to optimize care in a cost-efficient way (Hirschhorn et al.
2007). Therefore, the first goal is focused on making inference about the regression
coefficients in a model for the cause-specific hazard functions (Koller et al. 2012),
while for the second goal the focus is in covariate-specific cumulative incidence func-
tions (Koller et al. 2012;Andersen et al. 2012).Amajor complication in theEA-IeDEA
study is the significant under-reporting of death. This means that a patient who has
been lost to clinic (failure from any cause in our example), could be either dead (whose
death has not been reported) or has disengaged from HIV care. Ascertainment of the
cause of failure in this study requires intensive outreach of the patients who have been
identified as lost to clinic in the community, and subsequent ascertainment of their
vital status. However, this is a difficult and costly process and, thus, it is only carried
out for a small subset of patients who have been flagged as lost to clinic. This leads to
a significant missing cause of failure problem.

In this work, we propose a unified framework for inference about both the regres-
sion coefficients and the covariate-specific cumulative incidence functions under the
semiparametric proportional cause-specifichazardsmodelwith incompletely observed
cause of failure. To the best of our knowledge, inference about the covariate-specific
cumulative incidence function has not been studied in the literature of missing cause
of failure under the semiparametric proportional cause-specific hazards model and
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the class of linear transformation models. In this article we fill this significant gap in
the literature. Our approach is based on a novel computationally efficient maximum
pseudo-partial-likelihood estimation (MPPLE) method under the common missing at
random assumption. Our estimator utilizes a parametric model for the probability of
the cause of failure, which includes auxiliary covariates in order to make the missing
at random assumption more plausible (Lu and Tsiatis 2001; Nevo et al. 2018; Bakoy-
annis et al. 2019). The parametric assumption for the latter model is evaluated through
a formal goodness of fit procedure based on a cumulative residual process, similarly
to the work by Bakoyannis et al. (2019). Computation of the proposed MPPLE is
easily implemented using the function coxph of the R package survival as illus-
trated in the Electronic Supplementary Material. However, computation of standard
errors requires bootstrap methods as we have not implemented the standard error
estimators for general use in the R software yet. Using modern empirical process the-
ory, we establish the asymptotic properties of our estimators for both the regression
coefficients and the covariate-specific cumulative incidence functions, and propose
closed-form variance estimators based on the empirical versions of the corresponding
influence functions. In addition, we also propose a method to construct simultaneous
confidence bands for the covariate-specific cumulative incidence functions. The finite
sample properties of the estimators and their robustness against misspecification of the
parametric model for the probability of the cause of failure are investigated through
simulations. Moreover, in the simulation studies, we also demonstrate superior finite
sample performance of our estimator for the regression coefficients compared to the
AIPW estimator (Gao and Tsiatis 2005; Hyun et al. 2012). Finally, we apply the
methodology to data sets from the EA-IeDEA HIV cohort study and a bladder cancer
trial from the European Organisation for Research and Treatment of Cancer (EORTC).

The rest of the paper is organized as follows: Section 2 provides notation and
assumptions that pertain to the model associated with the observed data. Section 3
describes the proposed estimator and its large sample properties. We conduct a num-
ber of simulation studies in Sect. 4 by which we justify numerically the validity of
the proposed method and compare it with the AIPW method in terms of their finite
sample performance. In Sect. 5 the method is applied to the HIV/AIDS study and the
bladder cancer trial. We summarize the results and discuss potential extensions of the
proposed methodology in Sect. 6. R code, asymptotic theory proofs, and simulation
results regarding the infinite-dimensional parameters are provided in the Electronic
Supplementary Material.

2 Notation and assumptions

LetT andU denote the failure and right censoring times.The correspondingobservable
quantities are X = T ∧U andΔ = I (T ≤ U ). Additionally, letC ∈ {1, . . . , k} denote
the cause of failure, where k is finite. We assume that the observation interval is [0, τ ],
with τ < ∞. Let Z denote a p-dimensional vector of covariates. As mentioned in
the Introduction, the basic identifiable quantities from competing risks data are the
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cause-specific hazards

λ j (t; z) = lim
h↓0

1

h
P(t ≤ T < t + h, C = j |T ≥ t,Z = z), j = 1, . . . , k

and the cumulative incidence functions

Fj (t; z) = P(T ≤ t, C = j |Z = z)

=
∫ t

0
exp

[
−

k∑
l=1

Λl(s; z)
]

λ j (s; z)ds, j = 1, . . . , k, (1)

where Λ j (t; z) = ∫ t
0 λ j (s; z)ds, which is the covariate-specific cumulative hazard

for the j th cause of failure. A standard model for the cause-specific hazard is the
proportional hazards model

λ j (t;Z) = λ0, j (t) exp(β
T
0, jZ), j = 1, . . . , k, (2)

where λ0, j (t) is the j th unspecified baseline cause-specific hazards function for j =
1, . . . , k. Note that, unlike in Nevo et al. (2018), we do not impose further assumptions
on the baseline hazards. For competing risks data with incompletely observed cause
of failure, we define a missingness indicator R, with R = 1 indicating that the cause
of failure has been observed, and R = 0 otherwise. Along with Z, we can potentially
observe a vector of auxiliary covariates A ∈ R

q , which are not of scientific interest,
but may be related to the probability of missingness. Accounting for such auxiliary
covariates can make the missing at random assumption more plausible in practice (Lu
and Tsiatis 2001; Nevo et al. 2018; Bakoyannis et al. 2019). Throughout this paper,
we assume that the event indicator Δ is always observed and if Δ = 0, we set R = 1.
Therefore, the observable data Di with missing cause of failure are n independent
copies of (Xi ,Δi ,Δi Ri Ci ,Zi ,Ai , Ri ), where Ci is observable only when Δi = 1
and Ri = 1. Based on the observable data we can define the counting process and
at-risk process as Ni (t) = I (Xi ≤ t,Δi = 1) and Yi (t) = I (Xi ≥ t) respectively.
Additionally, we define the cause-specific counting process as Ni j (t) = I (Xi ≤
t,Δi j = 1) = Δi j Ni (t), where Δi j = I (Ci = j,Δi = 1) for j = 1, . . . , k, which
can only be observed if Ri = 1.

In this work, we impose the missing at random assumption P(Ri = 1|Ci ,Δi =
1,Wi ) = P(Ri = 1|Δi = 1,Wi ), where Wi = (Ti ,Zi ,Ai ). Note that Ti is observ-
able if Δi = 1 since, in this case, Xi = Ti . This assumption is equivalent to

P(Ci = j |Ri = 1,Δi = 1,Wi ) = P(Ci = j |Ri = 0,Δi = 1,Wi )

= P(Ci = j |Δi = 1,Wi )

≡ π j (Wi , γ 0), j = 1, . . . , k.

As in previous work on missing cause of failure in the competing risks model, we
assume a parametric model π j (Wi , γ 0) for the j th cause of failure, where γ 0 is a
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finite-dimensional parameter. A natural choice for π j (Wi , γ 0), j = 1, . . . , k, is the
multinomial logit model with the generalized logit link function, if k > 2, or the binary
logit model with the logit link function, if k = 2. In this article, the inverse of the link
function for the generalized linear model assumed for π j (Wi , γ 0) is denoted by g.
For the special case of the binary logit model (whose link function is the logit link), g
is the expit function, that is

π1(Wi , γ 0) = g[γ T
0 (1,WT

i )T ] = exp[γ T
0 (1,WT

i )T ]
1 + exp[γ T

0 (1,WT
i )T ] ,

where (1,WT
i )T is the covariate vector for the i th individual that also includes a unit

for the intercept, where π2(Wi , γ 0) = 1 − π1(Wi , γ 0).
In this paper, as in Lu and Tsiatis (2001), we assume that the parametric model

π j (Wi , γ 0) is correctly specified. However, this model may be misspecified in prac-
tice. We deal with this issue in three ways. First, we suggest the practical guideline
of using flexible parametric models for time T and the other potential continuous
auxiliary variables to make the correct specification assumption more plausible, or
at least to provide a better approximation to the true model for π j (Wi ). This can be
achieved by incorporating logarithmic, quadratic and higher order terms, or (finite-
dimensional) B-spline terms, where the number of internal knots is fixed and does not
depend on sample size n. Second, we provide a residual process to formally evalu-
ate the parametric assumption regarding π j (Wi , γ 0) in the next section. Finally, we
evaluate the robustness of our estimator against misspecification of π j (Wi , γ 0) in
simulation studies.

3 Methodology

3.1 Estimators

In the ideal situation where the cause of failure is fully observed, that is Ci is available
for all i = 1, 2, . . . , n, one can estimate β0 = (βT

0,1, . . . ,β
T
0,k)

T in (2) by maximizing
the usual partial likelihood:

pln(β) =
k∑

j=1

n∑
i=1

∫ τ

0

{
βT

j Zi − log

[
n∑

l=1

Yl(t)e
βT

j Zl

]}
d Ni j (t)

≡
k∑

j=1

pln, j (β j ). (3)

If there are no restrictions that the hazards for different causes of failure share the
same regression coefficient values, estimation of β0, j for any j = 1, . . . , k, can be
performed by independently maximizing pln, j (β j ). When some causes of failure are
missing, the partial likelihood (3) cannot be evaluated. In this case, the expected log
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partial likelihood, conditionally on the observed data {Di }n
i=1 is

Qn(β) =
k∑

j=1

n∑
i=1

∫ τ

0

{
βT

j Zi − log

[
n∑

l=1

Yl(t)e
βT

j Zl

]}
d E[Ni j (t)|Di ], (4)

where

E[Ni j (t)|Di ] = [RiΔi j + (1 − Ri )π j (Wi , γ 0)]Ni (t)

≡ Ñi j (t; γ 0)

since E(Δi j |Di ) = π j (Wi , γ 0) if Ri = 0. A pseudo-partial-likelihood for β can
be constructed by replacing the unknown parameters γ 0 in the expected log partial
likelihood (4) with a consistent estimator γ̂ n . Therefore, under the missing at random
assumption, the first stage of the analysis is to estimate γ 0 by maximum likelihood
based on the data with an observed cause of failure (complete cases), assuming for
example amultinomial logit model. It has to be noted that this first stage of the analysis
is identical to the first stage of the multiple-imputation approach by Lu and Tsiatis
(2001). However, unlike Lu and Tsiatis (2001), in the second stage of the analysis we
do not utilize simulation-based imputations and, therefore, we avoid the additional
variability due to the finite number of imputations (Wang and Robins 1998). For the
second stage of the analysis, we construct the estimating functions given γ̂ n as follows

Gn, j (β j ; γ̂ n) = 1

n

n∑
i=1

∫ τ

0

[
Zi − En(t;β j )

]
d Ñi j (t; γ̂ n), j = 1, . . . , k,

where

En(t,β j ) =
∑n

i=1 Zi Yi (t) exp(βT
j Zi )∑n

i=1 Yi (t) exp(βT
j Zi )

.

The second stage of the analysis is to get the estimators β̂n, j as the solutions to the
equations Gn, j (β j ; γ̂ n) = 0 for j = 1, . . . , k. Computation can be easily imple-
mented using the coxph function in the R package survival, as illustrated in the
Electronic SupplementaryMaterial. However, computation of standard errors requires
bootstrap methods as we have not implemented the standard error estimators for gen-
eral use in the R software yet.

The parametric assumption on the models for π j (Wi , γ 0), j = 1, . . . , k, can be
evaluated using the cumulative residual processes

E{Ri [Ni j (t) − π j (Wi , γ 0)Ni (t)]}, t ∈ [0, τ ], j = 1, . . . , k,
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which can be estimated by

1

n

n∑
i=1

Ri [Ni j (t) − π j (Wi , γ̂ n)Ni (t)], t ∈ [0, τ ], j = 1, . . . , k.

Under the null hypothesis of a correctly specified model, the cumulative residual pro-
cess is equal to 0 for all t ∈ [0, τ ]. A formal goodness of fit test can be performed
using a simulation approach similar to that proposed by Pan and Lin (2005). Addi-
tionally, a graphical evaluation of goodness of fit can be performed by plotting the
simultaneous confidence band for the residual process around the line f (t) = 0 and
examining whether the observed residual process falls outside the region formed by
the confidence band. The latter provides strong evidence for the violation of the correct
specification assumption for the model π j (Wi , γ 0). Further details on this goodness
of fit evaluation approach can be found in Bakoyannis et al. (2019). This goodness of
fit approach is illustrated in Sect. 5.

The cumulative baseline cause-specific hazard functions can be estimated using the
Breslow-type estimator

Λ̂n, j (t) =
∫ t

0

∑n
i=1 d Ñi j (s; γ̂ n)

∑n
i=1 Yi (s)e

β̂
T
n, jZi

, j = 1, . . . , k, t ∈ [0, τ ].

Natural estimators of the covariate-specific cumulative incidence functions forZ = z0
are given by

F̂n, j (t; z0) =
∫ t

0
exp

[
−

k∑
l=1

Λ̂n,l(s−; z0)
]

dΛ̂n, j (s; z0), j = 1, . . . , k, t ∈ [0, τ ],

where Λ̂n, j (t; z0) = Λ̂n, j (t) exp(β̂
T
n, jz0) for all j = 1, . . . , k and t ∈ [0, τ ].

Although we have only considered time-independent covariates here, the proposed
estimator for the regression parameter and its properties, provided in the Sect. 3.2, are
also valid for the case of time-dependent covariates, provided that these covariates are
right-continuous with left-hand limits and of bounded variation. However, inference
for the baseline cumulative cause-specific hazards and the covariate-specific cumula-
tive incidence functionswith internal time-dependent covariates is trickier and requires
explicit modeling of the covariate processes (Cortese and Andersen 2010).

3.2 Asymptotic properties

Before providing the regularity conditions assumed here, we define the negative of the
second derivative of the true log partial likelihood function as

H j (β j ) =
∫ τ

0

⎛
⎝ E[Z⊗2Y (t)eβT

j Z]
E[Y (t)eβT

j Z]
−

{
E[ZY (t)eβT

j Z]
E[Y (t)eβT

j Z]

}⊗2⎞
⎠ E[d Ñ j (t; γ 0)],
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for j = 1, . . . , k. The asymptotic properties of the proposed estimators are studied
under the following regularity conditions:

C1. The follow-up interval is [0, τ ], with τ < ∞ and Λ0, j (t) is a non-decreasing
continuous function with Λ0, j (τ ) < ∞ for each j = 1, . . . , k. Additionally,
E[Y (τ )|Z] > 0 almost surely.

C2. β0, j ∈ B j ⊂ R
p j where B j is a bounded and convex set for all j = 1, . . . , k

and β0, j is in the interior of B j .
C3. The inverse g of the link function for the parametric cause of failure probability

model π j (W, γ 0), j = 1, . . . , k, has a continuous derivative ġ with respect to γ 0
on compact sets. Also, the corresponding parameter space Γ for γ 0 is a bounded
subset of Rp.

C4. The score functionU (γ ) for themodel for the true failure typeC is Lipschitz con-
tinuous in γ and the estimator γ̂ n is almost surely consistent and asymptotically
linear, i.e.

√
n(γ̂ n − γ 0) = n−1/2 ∑n

i=1 ωi + op(1), with the influence function
ωi satisfying E(ωi ) = 0 and E‖ωi‖2 < ∞ for all i = 1, 2, . . . , n. Additionally,
the plug-in estimators ω̂i for ωi satisfy n−1 ∑n

i=1 ‖ω̂i − ωi‖2 = op(1).
C5. The covariate vector Z and auxiliary covariate vectorA are bounded in the sense

that there exists a constant K ∈ (0,∞) such that P(‖Z‖ ∨ ‖A‖ ≤ K ) = 1.
C6. The true Hessian matrix −H j (β j ) is a negative definite matrix for all j =

1, . . . , k.

Remark 1 ConditionsC3 andC4 are automatically satisfied if themodel forπ j (W, γ 0)

is a correctly specified binary or multinomial logit model with model parameters
estimated through maximum likelihood.

The asymptotic properties of the proposed estimators are provided in the following
theorems. The proofs of these theorems are provided in the Electronic Supplementary
Material.

Theorem 1 Given the assumptions stated in Sect. 2 and the regularity conditions C1–
C6,

k∑
j=1

(
‖β̂n, j − β0, j‖ + ‖Λ̂n, j (t) − Λ0, j (t)‖∞

)
as∗→ 0

where ‖ f (t)‖∞ = supt∈[0,τ ] | f (t)|.
Remark 2 Based on this consistency result it is easy to argue that

∑k
j=1 ‖Λ̂n, j (t; z0)−

Λ0, j (t; z0)‖∞
as∗→ 0 for any z0 in the (bounded) covariate space. This fact along with

a continuity result from the Duhamel equation (Andersen et al. 1993) can be used

to show that
∑k

j=1 ‖F̂n, j (t; z0) − F0, j (t; z0)‖∞
as∗→ 0 for any z0 in the (bounded)

covariate space, since F̂n, j (t; z0), j = 1, . . . , k, are elements of a product integral
matrix (Andersen et al. 1993).

Before providing the theorem for the asymptotic distribution of the finite-
dimensional parameter estimator we define some useful quantities. Define
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ψ i j = H−1
j (β0, j )

∫ τ

0
[Zi − E(t,β0, j )]d M̃i j (t;β0, j , γ 0)

for i = 1, . . . , n and j = 1, . . . , k, where

E(t,β0, j ) = E[ZY (t)eβT
0, jZ]

E[Y (t)eβT
0, jZ]

and M̃i j (t;β0, j , γ 0) = Ñi j (t; γ 0) − ∫ t
0 Yi (s) exp(βT

0, jZi )dΛ0, j (s), with

Λ0, j (t) =
∫ t

0

E[d Ñ j (s; γ 0)]
E[Y (s)eβT

0, jZ]
.

Finally, define the non-random quantity

R j = H−1
j (β0, j )

(
E

{
(1 − R)

∫ τ

0
[Z − E(t,β0, j )]d N (t)π̇ j (W, γ 0)

T
})

where π̇ j (W, γ 0) = ∂[π j (W, γ )](∂γ )−1|γ=γ 0
and ωi = I−1(γ 0)Ui (γ 0) is the

influence function for γ̂ n , with I(γ 0) being the true Fisher information about γ 0
and Ui (γ 0) the individual score function for the i th subject. The following theorem
provides the basis for performing statistical inference regarding the finite-dimensional
parameter.

Theorem 2 Given the assumptions stated in Sect. 2 and the regularity conditions C1–
C6,

√
n(β̂n, j − β0, j ) = 1√

n

n∑
i=1

(ψ i j + R jωi ) + op(1),

and therefore
√

n(β̂n, j − β0, j ) converges in distribution to a mean-zero Gaussian
random vector with covariance matrix Σ j = E(ψ j +R jω)⊗2 that is bounded for all
j = 1, . . . , k.

Remark 3 The covariance matrixΣ j can be consistently (in probability) estimated by

Σ̂ j = 1

n

n∑
i=1

(ψ̂ i j + R̂ j ω̂i )
⊗2,

where the estimated components of the influence functions in Σ̂ j are the empirical
estimates of the influence function components defined above, with the unknown
parameters being replaced by their consistent estimates and the expectations by sample
averages. Explicit formulas for the estimated influence functions are provided in the
Electronic Supplementary Material.
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Before stating the theorem for the asymptotic distribution of Λ̂n, j we define the
influence functions

φi j (t) =
∫ t

0

d M̃i j (s;β0, j , γ 0)

E[Y (s)eβT
0, jZ]

− (ψ i j + R jωi )
T

∫ t

0
E(s,β0, j )dΛ0, j (s)

and the non-random function

R�
j (t) = E

{
(1 − R)π̇ j (W, γ 0)

∫ t

0

d N (s)

E[Y (s)eβT
0, jZ]

}T

.

Theorem 3 Given the assumptions stated in Sect. 2 and the regularity conditions C1–
C6,

√
n

[
Λ̂n, j (t) − Λ0, j (t)

]
= 1√

n

n∑
i=1

[
φi j (t) + R�

j (t)ωi

]
+ op(1), (5)

and the influence functions φi j (t) + R�
j (t)ωi belong to a Donsker class indexed by

t ∈ [0, τ ]. Therefore, (5) converges weakly to a tight mean-zero Gaussian process in
the space D[0, τ ] of right-continuous functions with left-hand limits, defined on [0, τ ],
for all j = 1, . . . , k, with covariance function E[φ j (t)+R�

j (t)ω][φ j (s)+R�
j (s)ω], for

t, s ∈ [0, τ ]. Additionally, Ŵn, j (t) = n−1/2 ∑n
i=1[φ̂i j (t)+ R̂�

j (t)ω̂i ]ξi , where {ξi }n
i=1

are standard normal variables independent of the data, converges weakly (condition-
ally on the data) to the same limiting process as Wn, j (t) = n−1/2 ∑n

i=1[φi j (t) +
R�

j (t)ωi ] (unconditionally).

Remark 4 The covariance function can be uniformly consistently (in probability) esti-
mated by

1

n

n∑
i=1

[φ̂i j (t) + R̂�
j (t)ω̂i ][φ̂i j (s) + R̂�

j (s)ω̂i ].

where φ̂i j (t), R̂�
j (t) and ω̂i are the empirical estimates of the corresponding true

functions with the unknown parameters being replaced by their consistent estimates
and the expectations by sample averages.

The asymptotic result of Theorem 3 can be straightforwardly used for the construc-
tion of 1 − α pointwise confidence intervals. For the construction of simultaneous
confidence bands we use a similar approach to that proposed by Spiekerman and
Lin (1998). Consider the process

√
nqΛ

j (t){g[Λ̂n, j (t)] − g[Λ0, j (t)]}, where g is a

known continuously differentiable transformation with nonzero derivative and qΛ
j is

a weight function that converges uniformly in probability to a nonnegative bounded
function on [t1, t2], with 0 ≤ t1 ≤ t2 < τ . The transformation ensures that the

123



670 Bakoyannis et al.

limits of the confidence band lie within the range of Λ0, j (t). For example one can
use the transformation g(x) = log(x) (Lin et al. 1994). The weight function qΛ

j ,

which is useful in reducing the width of the band, can be set equal to Λ̂n, j (t)/σ̂Λ j (t)

with σ̂Λ j (t) = {n−1 ∑n
i=1[φ̂i j (t) + R̂�

j (t)ω̂i ]2}1/2, which is the standard error esti-
mate of Wn, j (t). This results in the equal precision band (Nair 1984). Another choice
for the weight function is Λ̂n, j (t)/[1 + σ̂ 2

Λ j
(t)] and this results in the Hall–Wellner

band (Hall and Wellner 1980). Using the functional delta method it can be shown
that the process

√
nqΛ

j (t){g[Λ̂n, j (t)] − g[Λ0, j (t)]} is asymptotically equivalent to

Bn, j (t) = qΛ
j (t)ġ[Λ̂n, j (t)]Wn, j (t). Furthermore, Theorem 3 ensures that Bn, j (t)

is asymptotically equivalent to B̂n, j (t) = qΛ
j (t)ġ{Λ̂n, j (t)}Ŵn, j (t). Hence, a 1 − α

confidence band can be constructed as

g−1

[
g{Λ̂n, j (t)} ± ca√

nqΛ
j (t)

]
t ∈ [t1, t2],

where cα is the 1− a quantile of the distribution of supt∈[t1,t2] |B̂n, j (t)| which can be
estimated by the 1 − α percentile of the distribution of a large number of simulation
realizations of supt∈[t1,t2] |B̂n, j (t)| (Spiekerman and Lin 1998). Each simulated real-

ization of supt∈[t1,t2] |B̂n, j (t)| is calculated based on a set of draws of {ξi }n
i=1 values

from the standard normal distribution.

Remark 5 The region of the confidence band [t1, t2] typically ranges from the mini-
mum to the maximum observed times of failure from the j th type. In order to prevent
the effect of the instability in the tails of the cumulative baseline cause-specific hazards
estimator, the range can be restricted to [s1, s2], where sl , l = 1, 2, can be set equal to
the solutions of cl = σ̂ 2

Λ j
(sl)/[1 + σ̂ 2

Λ j
(sl)], with {c1, c2} being equal to {0.1, 0.9} or

{0.05, 0.95} (Nair 1984; Yin and Cai 2004).

Remark 6 It canbe also easily shown that
√

n[Λ̂n, j (t; z0)−Λ0, j (t; z0)] is an asymptot-
ically linear estimatorwith influence functionsφΛ

i j (t; z0) = [zT
0 (ψ i j +R jωi )Λ0, j (t)+

φi j (t) +R�
j (t)ωi ] exp(βT

0, jz0) for j = 1, . . . , k and t ∈ [0, τ ]. The Donsker property
of the class {φΛ

j (t; z0) : t ∈ [0, τ ]}, for every j = 1, . . . , k and z0 in the bounded
covariate space follows from the fact that it is formed by a sum of functions that
belong to Donsker classes, which are multiplied by fixed functions. Pointwise 1 − α

confidence intervals and simultaneous confidence bands can be similarly constructed
based on the estimated influence functions φ̂Λ

i j (t; z0).
The following theoremdescribes the asymptotic properties of the plug-in estimators

of the covariate-specific cumulative incidence functions.

Theorem 4 Given the assumptions stated in Sect. 2 and the regularity conditions C1–
C6,

√
n

[
F̂n, j (t; z0) − F0, j (t; z0)

]
= 1√

n

n∑
i=1

φF
i j (t; z0) + op(1), (6)
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where

φF
i j (t; z0) =

∫ t

0
exp

[
−

k∑
l=1

Λ0,l(s−; z0)
]

dφΛ
i j (s; z0)

−
∫ t

0

[
k∑

l=1

φΛ
il (s−; z0)

]
exp

[
−

k∑
l=1

Λ0,l(s−; z0)
]

dΛ0, j (s; z0)

and the influence functions φF
i j (t; z0) for i = 1, . . . , n and j = 1, . . . , k belong to a

Donsker class indexed by t ∈ [0, τ ]. Therefore, (6) converges weakly to a tight mean-
zero Gaussian process in D[0, τ ], for all j = 1, . . . , k, with covariance function
E[φF

j (t; z0)φF
j (s; z0)], for t, s ∈ [0, τ ].

Remark 7 The covariance function can be uniformly consistently (in probability)
estimated by n−1 ∑n

i=1 φ̂F
i j (t; z0)φ̂F

i j (s; z0), where the empirical influence function

φ̂F
i j (s; z0) can be similarly calculated as described above. Moreover, the asymptotic

(conditional on the data) distribution of

Ŵ F
n, j (t; z0) = 1√

n

n∑
i=1

φ̂F
i j (t; z0)ξi ,

where {ξi }n
i=1 are standard normal variables independent of the data, is the same as

the (unconditional) asymptotic distribution of

W F
n, j (t; z0) = n−1/2

n∑
i=1

φF
i j (t; z0).

Remark 8 Theorem 4 can be used for the construction of 1 − α pointwise confi-
dence intervals for F0, j (t; z0). Construction of simultaneous confidence bands can be
performed as described for Λ0, j (t) and in a similar fashion as that in Cheng et al.
(1998), using the process B̂ F

n, j (t; z0) = q F
j (t; z0)ġ[F̂n, j (t; z0)]Ŵ F

n, j (t; z0). In this
case the transformation g(x) can be set equal to log[− log(x)], and the weight func-
tion q F

j (t; z0) to F̂n, j (t; z0) log[F̂n, j (t; z0)]/σ̂Fj (t; z0), with

σ̂Fj (t; z0) =
{

n−1
n∑

i=1

[φ̂F
i j (t; z0)]2

}1/2

,

which is the standard error estimate of W F
n, j (t; z0). This weight leads to an equal-

precision-type confidence band (Nair 1984). Alternatively, q F
j (t; z0) can be set equal

to

F̂n, j (t; z0) log[F̂n, j (t; z0)]/[1 + σ̂ 2
Fj

(t; z0)],
which yields a Hall–Wellner type confidence band (Hall and Wellner 1980).
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4 Simulation studies

To evaluate the finite sample performance of the proposed estimator, we conducted
a series of simulation studies. We used similar simulation settings to those used in
Hyun et al. (2012). Specifically, we considered a cohort study with an observation
interval [0, 2], two causes of failure, and two covariates Z = (Z1, Z2)

T , where Z1
was generated from U (0, 1) and Z2 from the Bernoulli(0.5) distribution. Addition-
ally, we considered an independent random right-censoring variable simulated from
an exponential distribution with a rate equal to 0.4. Event time for cause of failure 1
was generated from the exponential distribution with hazard λ0,1(t;Z) = exp(β1Z1),
where β1 = −0.5. Event time for cause of failure 2 was generated either from
a Gompertz distribution with a rate λ0,2(t;Z) = exp[−β2(Z2 + 1) + νt] where
(β2, ν) = (0.5, 0.2) (scenario 1), or from a Weibull distribution with a hazard func-
tion ηλη exp(β3Z2)tη−1 where (λ, β3) = (0.5,−0.5) and η = 0.5 (scenario 2), η = 2
(scenario 3), or η = 0.1 (scenario 4). The implied model for π1(W, γ ), the probability
of the cause of failure 1 with W = (T ,Z), has the form

logit[π1(W, γ )] = γ0 + γ1T + γ2Z1 + γ3Z2

with (γ0, γ1, γ2, γ3) = (β2,−ν, β1, β2) = (0.5,−0.2,−0.5, 0.5) under scenario 1
and

logit[π1(W, γ )] = γ0 + γ1 log(T ) + γ2Z1 + γ3Z2

with

(γ0, γ1, γ2, γ3) = (− log(η) + λη,−(η − 1), β1, λη[exp(β3) − 1])

under scenarios 2-4. For scenario 2, (γ0, γ1, γ2, γ3) ≈ (0.94, 0.5,−0.5,−0.10),
while for scenarios 3 and 4 (γ0, γ1, γ2, γ3) was equal to (0.31,−1,−0.5,−0.39)
and (2.35, 0.9,−0.5,−0.02), respectively. This simulation setup resulted on average
in 25.6% right-censored observations and 59.4% failures from cause 1 and 40.6%
failures from cause 2, under scenario 1. The corresponding figures for scenarios 2-4
were 25.1%−54.1%−45.9, 31.6%−77.7%−22.3%, and 20.0%−38.3%−61.7%,
respectively. The average ranges of failure time in scenarios 1-4 were 0.004− 1.901,
< 0.001 − 1.894, 0.006 − 1.932, and < 0.001 − 1.874. For the probability of an
observed cause of failure P(R = 1|Δi = 1,W) ≡ p(W, θ) (i.e. 1 - probability of
missingness) we considered a model of the form

logit[p(W, θ)] = θ0 + θ1T + θ2Z1 + θ3Z2.

In our simulations we considered θ = (0.7, 1,−1, 1)T , θ = (−0.2, 1,−1, 1)T , or
θ = (−0.8, 1,−1, 1)T which resulted in 25.2%, 43.5% and 56.4% missingness on
average under scenario 1, 27.1%, 45.5% and 58.6% missingness under scenario 2,
23.1%, 40.4% and 53.6%missingness under scenario 3, and 30.2%, 49.3% and 62.2%
missingness under scenario 4.
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For each scenario we simulated 1000 datasets and evaluated the performance of
the proposed MPPLE, the AIPW estimator (Gao and Tsiatis 2005; Hyun et al. 2012),
and the multiple imputation (MI) estimator with 5 imputations (Lu and Tsiatis 2001),
for estimating β1. For the AIPW estimator, we used the correctly specified model
p(W, θ) for the probability of an observed cause of failure in all cases to guarantee
the estimation consistency due to its double robustness property. For the probabil-
ity of C = 1 given {Δ = 1} and W = (T ,Z), all analyses assumed the model
logit[π1(W, γ )] = γ0 + γ1T + γ2Z1 + γ3Z2. Therefore, the assumed model for
π1(W, γ ) was correctly specified in scenario 1, but misspecified in scenarios 2-4. For
standard error estimation we used the proposed closed-form estimators provided in
Sect. 3.2 for the proposed MPPLE, while for the AIPW and the MI estimators we
used bootstrap based on 100 replications. We also evaluated the performance of our
estimators for the infinite-dimensional parameters. The simultaneous 95% confidence
bands for these parameters were constructed based on 1000 simulation realizations
of sets {ξi }n

i=1, from the standard normal distribution. The domain limits for the con-
fidence bands were calculated based on {c1, c2} = {0.1, 0.9}, as described in the
preceding section. Note that since the AIPW approach (Gao and Tsiatis 2005; Hyun
et al. 2012) and the MI estimator (Lu and Tsiatis 2001) did not consider inference
about the infinite-dimensional parameters we were not able to provide results from
these approaches in the latter set of simulations.

Simulation results for the regression coefficient β1 under scenario 1 are presented in
Table 1. The MPPLE provides virtually unbiased estimates even under a mispecified
model π1(W, γ ). The average standard error estimates are close to the corresponding
Monte Carlo standard deviations of the estimates, with the empirical coverage proba-
bilities being close to the nominal level in all cases. Compared to the AIPW estimator
with the correctly specified model for the probability of an observed cause of failure
and the MI estimator, our estimator achieves higher efficiency in all cases. The advan-
tage of our estimator over the AIPW estimator in terms of efficiency is substantial in
cases with a larger sample size and a larger proportion of missing cause of failure.
However, such a pattern was not observed for the case of the MI estimator. Simulation
results under scenario 2 (Table 2) are similar. These results indicate the robustness of
our estimator against certain misspecification of the parametric model π1(W, γ ) and,
also, its substantially higher efficiency compared to the AIPW estimators in cases with
larger sample size and proportion of missing cause of failure. Simulation results under
scenarios 3 and 4 with a more pronounced misspecification of the model π1(W, γ )

(Tables 1 and 2 in the Electronic Supplementary Material) are similar, although the
higher efficiency of our estimator compared to the AIPW estimator is less pronounced
in these cases. It has to be noted that, under a scenario with baseline hazards of a more
complicated form or a considerably longer follow-up period, it is expected that the
MPPLE and the multiple imputation estimator would exhibit more bias and lower cov-
erage rates. Simulation results for the infinite-dimensional parameters are presented
in Tables 3–8 in the Electronic Supplementary Material. The bias of our estimators is
very small even in cases where π1(W, γ ) is misspecified, the average standard error
estimates are close to the corresponding Monte Carlo standard deviations of the esti-
mates, and the empirical coverage probabilities for the pointwise confidence intervals
remain close to the nominal level in scenarios 1 and 2. In scenarios 3 and 4, where the
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Table 1 Simulation results for β1 under scenario 1 where the model π1(W, γ ) was correctly specified

n pm (%) Method Bias MCSD ASE CP MSE RE

200 25 Proposed MPPLE 0.002 0.409 0.396 0.945 0.167 1.000

AIPW 0.003 0.412 0.418 0.946 0.170 1.013

MI(5) 0.009 0.424 0.419 0.941 0.180 1.074

44 Proposed MPPLE 0.007 0.450 0.428 0.943 0.203 1.000

AIPW 0.009 0.464 0.468 0.943 0.215 1.061

MI(5) 0.004 0.460 0.461 0.946 0.211 1.043

56 Proposed MPPLE 0.004 0.492 0.468 0.942 0.242 1.000

AIPW 0.009 0.526 0.540 0.949 0.277 1.144

MI(5) − 0.004 0.502 0.510 0.951 0.253 1.043

400 25 Proposed MPPLE 0.001 0.284 0.282 0.948 0.081 1.000

AIPW − 0.001 0.289 0.288 0.949 0.084 1.038

MI(5) − 0.004 0.290 0.290 0.948 0.084 1.046

44 Proposed MPPLE − 0.001 0.308 0.305 0.949 0.095 1.000

AIPW − 0.004 0.326 0.321 0.946 0.106 1.116

MI(5) − 0.008 0.320 0.316 0.950 0.102 1.076

56 Proposed MPPLE − 0.003 0.337 0.333 0.946 0.114 1.000

AIPW − 0.008 0.368 0.364 0.937 0.135 1.191

MI(5) − 0.006 0.350 0.346 0.940 0.122 1.077

2000 25 Proposed MPPLE 0.003 0.124 0.126 0.955 0.015 1.000

AIPW 0.003 0.126 0.127 0.950 0.016 1.029

MI(5) 0.003 0.127 0.127 0.955 0.016 1.045

44 Proposed MPPLE 0.005 0.132 0.136 0.954 0.017 1.000

AIPW 0.005 0.137 0.139 0.953 0.019 1.080

MI(5) 0.003 0.139 0.138 0.950 0.019 1.119

56 Proposed MPPLE 0.002 0.142 0.148 0.956 0.020 1.000

AIPW 0.002 0.152 0.155 0.941 0.023 1.150

MI(5) 0.003 0.153 0.150 0.946 0.023 1.164

pm , percent of missingness; MCSD, Monte Carlo standard deviation; ASE, average estimated standard
error; CP, coverage probability; MSE, mean squared error; RE, variance of the estimator to variance of
the proposed MPPLE (relative efficiency); MPPLE, maximum partial pseudolikelihood estimator; AIPW,
augmented inverse probability weighting estimator; MI(5), Lu and Tsiatis type Bmultiple imputation based
on 5 imputations

model misspecification is more pronounced, empirical coverage probabilities were
also close to the nominal level except for the early time point that corresponds to
the 10% of the total follow-up time, in some cases. The simultaneous confidence
bands have empirical coverage probabilities close to the nominal level under a cor-
rectly specified model for π1(W, γ ). However, the coverage of the confidence bands
in cases where the event time is modeled incorrectly, i.e. as T instead of log(T ), is
lower than 95%, especially in cases with a large fraction of missingness. The latter
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Table 2 Simulation results for β1 under scenario 2 where the model π1(W, γ ) was misspecified with
η = 0.5

n pm (%) Method Bias MCSD ASE CP MSE RE

200 27 Proposed MPPLE 0.006 0.424 0.419 0.955 0.180 1.000

AIPW 0.004 0.427 0.442 0.957 0.182 1.014

MI(5) 0.001 0.445 0.446 0.956 0.198 1.100

46 Proposed MPPLE 0.015 0.471 0.458 0.954 0.222 1.000

AIPW 0.013 0.484 0.500 0.955 0.235 1.059

MI(5) − 0.007 0.487 0.495 0.948 0.237 1.071

59 Proposed MPPLE 0.009 0.520 0.504 0.939 0.271 1.000

AIPW 0.009 0.556 0.579 0.952 0.310 1.143

MI(5) − 0.010 0.536 0.553 0.951 0.287 1.061

400 27 Proposed MPPLE 0.000 0.301 0.298 0.952 0.091 1.000

AIPW − 0.002 0.306 0.305 0.946 0.094 1.034

MI(5) − 0.004 0.312 0.306 0.943 0.097 1.070

46 Proposed MPPLE − 0.001 0.332 0.326 0.948 0.110 1.000

AIPW − 0.006 0.350 0.343 0.945 0.122 1.111

MI(5) − 0.007 0.348 0.337 0.933 0.121 1.098

59 Proposed MPPLE − 0.004 0.364 0.359 0.946 0.132 1.000

AIPW − 0.012 0.399 0.390 0.941 0.159 1.203

MI(5) − 0.004 0.381 0.372 0.940 0.145 1.100

2000 27 Proposed MPPLE 0.006 0.130 0.133 0.960 0.017 1.000

AIPW 0.004 0.132 0.134 0.953 0.017 1.035

MI(5) 0.003 0.132 0.134 0.957 0.018 1.044

46 Proposed MPPLE 0.006 0.141 0.145 0.955 0.020 1.000

AIPW 0.005 0.146 0.149 0.952 0.021 1.084

MI(5) 0.002 0.150 0.147 0.950 0.023 1.141

59 Proposed MPPLE 0.005 0.152 0.159 0.958 0.023 1.000

AIPW 0.003 0.163 0.167 0.957 0.027 1.150

MI(5) − 0.001 0.163 0.161 0.952 0.027 1.153

pm , percent of missingness; MCSD, Monte Carlo standard deviation; ASE, average estimated standard
error; CP, coverage probability; MSE, mean squared error; RE, variance of the estimator to variance of
the proposed MPPLE (relative efficiency); MPPLE, maximum partial pseudolikelihood estimator; AIPW,
augmented inverse probability weighting estimator; MI(5), Lu and Tsiatis type Bmultiple imputation based
on 5 imputations

result indicates the importance of evaluating the goodness of fit of the assumed model
for π1(W, γ ) using the cumulative residual process given in Sect. 3.1.

It is worth pointing out that the proposedMPPLEmethod not only enjoys efficiency
advantages compared to the AIPWmethod and the MI estimator, but is also computa-
tionally very fast and robust. These advantages rank the proposed method favorably in
practical applications, particularly in for large studies like the EA-IeDEA HIV study
which is analyzed in Sect. 5.1.
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5 Data applications

In this sectionwe apply the proposedmethods to analyze data from theEA-IeDEAHIV
study and the EORTC bladder cancer trial, which were mentioned in the Introduction
section. It has to be noted that standard errors for the MPPLE were computed using
the closed-form estimators provided in Sect. 3.2, while for the AIPW estimators we
used bootstrap based on 100 replications.

5.1 HIV data analysis

In this subsection we apply the proposed methodology to the electronic health record
data from the EA-IeDEA study to analyze time from ART initiation to disengagement
from HIV care or death. In this analysis, disengagement from care was defined as
being alive and without HIV care for two months. The data set we used consisted of
6657 HIV-infected patients on ART. The data of those patients were collected during
routine clinic visits which were typically scheduled every 4 weeks. The median (IQR)
time between two consecutive actual visits in our data set was 28 (28, 56) days. In total,
346 patients died (reported deaths) and 2929 patients missed a scheduled clinic visit
for a period of at least two months (loss to clinic). The remaining 3,382 patients were
still in care at the end of the study period and hence were treated as right-censored
observations. Due to the significant death under-reporting in sub-Saharan Africa, the
2929 lost to clinic patients included both disengagers from HIV care and deceased
individuals whose death was not reported to the clinic. Of those patients, 448 (15.3%)
were successfully outreached by clinic workers in order to ascertain their vital status
and record whether these patients were disengagers or deceased. Among them, 99
(22.1%) were found to have died, indicating a significant death under-reporting issue.
Cause of failure (i.e. disengagement from care or death) was missing for the remaining
84.7% of the patients who were lost to clinic and were not outreached. For these data,
we assumed a binary logistic model π1(W, γ 0) for the probability of death among
patients who were lost to clinic. In order to analyze the EA-IeDEA data using the
proposed methodology we first evaluated the goodness of fit of this logistic model.
The covariates considered in π1(W, γ 0) were time since ART initiation, gender, age,
and CD4 cell count at ART initiation. Descriptive characteristics of the study sample
are presented in Table 3.

The goodness of fit evaluation based on the residual process defined in Sect. 3.1
is presented in Fig. 1. Figure 1a clearly indicates the lack of fit for the model with a
linear effect of time since ART initiation, as the residual process is outside the 95%
confidence band for the early timepoints. It is evident that the fitted model π1(W, γ̂ n)

underestimates the probability of death within about the first 12 months since ART
initiation. After 2 years there is a tendency for overestimation of the probability of
death. The corresponding goodness of fit test is statistically significant (p value <

0.001) indicating strong evidence for model misspecification. We then considered
a model with piecewise linear effect of time with a change in slope at 12 months
after ART initiation. This is a reasonable change point from a clinical perspective
because the probability of death is expected to decrease dramatically during the first

123



Competing risks with missing cause of failure 677

Table 3 Descriptive statistics for the EA-IeDEA study sample

Cause of failure
In care Disengagement Death Missing
(N = 3382) (N = 349) (N = 445a) (N = 2481)
n (%) n (%) n (%) n (%)

Gender

Female 2300 (68.0) 210 (60.2) 254 (57.1) 1,665 (67.1)

Male 1082 (32.0) 139 (39.8) 191 (42.9) 816 (32.9)

Median (IQR) Median (IQR) Median (IQR) Median (IQR)

Ageb 37.9 (31.8, 45.4) 35.5 (29.7, 41.9) 37.3 (31.3, 46.0) 35.4 (29.9, 42.7)

CD4c 174 (91, 258) 145 (69, 222) 88 (39, 180) 155 (71, 214)

aIncludes 346 reported deaths and 99 unreported deaths which were ascertained through outreach
bAt ART initiation in years
cAt ART initiation in cells/µl

Fig. 1 Cumulative residual
process for the evaluation of the
parametric model π1(W , γ 0)

based on the HIV data along
with the 95% goodness-of-fit
band (grey area) and the
corresponding p value

p−value<0.001

a Linear model
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12months as a result of ART. After this timepoint the probability of death remains low
and approximately constant. The cumulative residual process for this model (Fig. 1b)
was close to 0 at all time points and remained within the 95% confidence band under
the null hypothesis (p value = 0.689). This piecewise model was used for the analysis
of the EA-IeDEA data.

Despite the sample of 6657 patientswith a large percent ofmissing cause of failures,
the proposed MPPLE method required only about 33 s for each cause of failure, to
compute the regression coefficients and the corresponding standard error estimates.
This analysis (Table 4) revealed that males and younger patients have a higher hazard
of disengagement from care. Also, patients with a lower CD4 count at ART initiation
had a higher hazard of death while in HIV care. The analysis based on the AIPW
estimator provided similar results qualitatively, however, unlike the analysis using
the proposed MPPLE, the effect of gender was not statistically significant. This is a
result of the larger standard error of the AIPW estimator and this is in agreement with
our simulation results where our estimator achieved a substantially higher efficiency
compared to the AIPW estimator. To illustrate the use of our methodology for risk
prediction we depict the predicted cumulative incidence function of disengagement
from HIV care and death for a 40-year old male patient with a CD4 cell count of
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Fig. 2 Predicted cumulative
incidence functions (solid lines)
of a disengagement from care
and b death while in HIV care,
for a 40-year old male patient
with CD4 cell count of 150
cells/µl at ART initiation, along
with the 95% simultaneous
confidence bands based on equal
precision (dotted lines) and
Hall–Wellner-type weights
(dashed lines)
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150 cells/µl at ART initiation, along with the equal-precision and Hall–Wellner-type
simultaneous 95% confidence bands, in Fig. 2.

5.2 Bladder cancer trial data analysis

In this subsection we analyze a subset of the data from the EORTC bladder cancer
clinical trial (Oddens et al. 2013). This trial was conducted to assess whether 1/3
dose of intravesical bacillus Calmette–Guérin (BCG) is inferior to full dose of BCG
in treating non-muscle-invasive bladder cancer (NMIBC). The subset of the data we
analyze here included680 intermediate- andhigh-riskNMIBCpatientswhounderwent
transurethral resection and received BCG for one year. Of them, 341 were randomly
assigned to the 1/3 dose group and 339 to the full-dose group of the trial. In this
analysis, we focus on time to death frombladder cancer (event of interest) or fromother
causes (competing event). In total, 171 (25.1%) patients died during the study period.
Of them, 33 (19.3%) died due to bladder cancer, 115 (67.3%) due to other causes,
while the cause of death was missing for 23 (13.4%) of the deceased patients. The
covariates considered in this analysiswere treatment assignment, age andWorldHealth
Organization (WHO) performance status at baseline. Descriptive characteristics of the
study sample can be found in Sect. 5 of the Electronic Supplementary Material.

The covariates considered in π1(W, γ 0) were time from randomization to death,
treatment assignment, age, and WHO performance status. The goodness of fit eval-
uation for this model based on the residual process defined in Sect. 3.1 is presented
in Figure 1 in the Electronic Supplementary Material. The corresponding goodness
of fit test was not statistically significant (p value = 0.281) and, thus, there was no
evidence for misspecification of π1(W, γ 0). The results of the data analysis regarding
the estimated regression coefficients are presented in Table 5 in the Electronic Supple-
mentary Material. The estimated regression coefficient for the effect of assignment to
the full-dose BCG group versus the 1/3-dose BCG group on the cause-specific hazard
of death from bladder cancer was 0.451 based on the proposed MPPLE estimator and
0.421 based on the AIPW estimator. The corresponding standard error was smaller
for the MPPLE (SE = 0.356) compared to the AIPW estimator (SE = 0.372). How-
ever, based on both analyses, the effect of treatment assignment on the cause-specific
hazard of death from bladder cancer was not statistically significant. To explicitly test
the inferiority null hypothesis that the 1/3 BCG dose assignment is inferior to the full
BCG dose assignment, with respect to the cause-specific hazard of death from bladder
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cancer, we considered a non-inferiority margin of log(0.85). This non-inferiority mar-
gin corresponds to the log hazard ratio for death from bladder cancer in the full-dose
BCG group versus the 1/3-dose BCG group. Under this non-inferiority margin and a
one-sided Wald test, according to the recommendations for non-inferiority hypothe-
sis testing (Rothmann et al. 2016), the null hypothesis of inferiority of the 1/3 dose
assignment compared to the full dose assignment was rejected based on the MPPLE
estimator (p value = 0.042). However, this null hypothesis could not be rejected at
the α = 0.05 level based on the AIPW estimator (p value = 0.059). To illustrate
the use of our methodology for risk prediction we depict the predicted cumulative
incidence function of death from bladder cancer and other causes, for a 68-year old
patient who is fully active and who was assigned to the 1/3 dose BCG group, along
with the equal-precision and Hall–Wellner-type simultaneous 95% confidence bands,
in Figure 2 of the Electronic Supplementary Material.

6 Concluding remarks

In this article we proposed a computationally efficient MPPLE method for the semi-
parametric proportional cause-specific hazards model under incompletely observed
cause of failure. We propose estimators for both the regression parameters in the
proportional cause-specific hazards model and the covariate-specific cumulative inci-
dence functions. To the best of our knowledge, a unified approach for semiparametric
inference about both the cause-specific hazard, for evaluating risks factors, and the
covariate-specific cumulative incidence function, for risk prediction purposes, is miss-
ing in the literature. Our approach utilizes a parametric model for the probability of
the cause of failure and imposes a missing at random assumption. The estimators were
shown to be strongly consistent and to convergeweakly toGaussian randomquantities.
Closed-form variance estimators were derived. In addition, we propose methodology
for constructing simultaneous confidence bands for the covariate-specific cumulative
incidence functions. Simulation studies showed a satisfactory performance of our esti-
mators even under a large fraction of missing causes of failure and under some degree
of misspecification of the parametric model for the probability of the cause of failure.

Although the main model of interest is semiparametric, our estimation method
depends on the parametric model π j (W, γ 0) for the probability of the cause of fail-
ure. Essentially, this model is used to calculate the expected log partial likelihood
contribution for the missing cases. The main reason for adopting such a parametric
model was to allow the incorporation of auxiliary covariates that are typically impor-
tant in practice in order to make the MAR assumption plausible. Additionally, this
choice led to an increased computational and statistical efficiency of our estimator. It
has to be noted that the true model π j (W, γ 0) is induced by the propotional cause-
specific specific hazards model assumption and the baseline hazards. Even though
correct specification of the model π j (W, γ 0) is a sufficient condition for consistency,
our estimator was shown to be robust against some degree of misspecification in the
simulation studies. However, the coverage probability of the simultaneous confidence
bands was lower than the nominal level when π j (W, γ 0) was misspecified, as a result
of bias in the infinite-dimensional parameter estimates. Of course, simulation scenar-
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ios withmore pronouncedmisspecification are expected to lead tomore bias and lower
coverage rates. For this reason, we suggest the practical guideline of using flexible
parametric models for time T and the other potential continuous auxiliary variables to
make the correct specification assumptionmore plausible, or at least to provide a better
approximation to the true model for π j (Wi ). This can be achieved by incorporating
logarithmic, quadratic and higher order terms, or (finite-dimensional) B-spline terms,
where the number of internal knots is fixed and does not depend on sample size n.
Additionally, a formal goodness-of-fit procedure based on a cumulative residual pro-
cess (Bakoyannis et al. 2019) can be used to provide insight about a potential violation
of the model assumption for π j (W, γ 0), as it was illustrated in the HIV data analysis
subsection.

By the theory of maximum likelihood estimators under misspecified models, if
the model π j (Wi , γ 0) is misspecified then condition C4 still holds but with γ 0
being replaced with γ ∗, which defines the probability that minimizes the Kullback–
Leibler divergence between the true conditional distribution Pr(Ci = j |Δi = 1,Wi )

and the assumed distribution π j (Wi , γ
∗). Under this modified condition C4, the

consistency in Theorem 1 holds for the parameters β∗
j and Λ∗

j , with (β∗
j ,Λ

∗
j ) �=

(β0, j ,Λ0, j ), which correspond to the maximizers of the (expected) partial pseudo-

likelihood under π j (W, γ ∗). Similarly,
√

n(β̂n, j − β∗
j ),

√
n[Λ̂n, j (t) − Λ∗

j (t)], and√
n[F̂n, j (t; z0)−F∗

j (t; z0)] are all asymptotically linearwith influence functions given
by Theorems 2–4, respectively. Consequently, the proposed estimators are still asymp-
totically normal, and the corresponding standard error estimators are still consistent
for the true standard errors even under a misspecified model. The latter phenomenon is
similar to the consistency of the sandwich variance estimator for maximum likelihood
estimators under misspecified models.

The analysis of competing risks data with masked cause of failure has been con-
sidered in Craiu and Duchesne (2004). However, this method is based on a parametric
cause-specific hazards model and also utilizes the computationally intensive EM-
algorithm,which can be impractical for large studies such as the studieswith electronic
health record data. Several methods for semiparametric analysis of competing risks
data with missing causes of failure have been previously proposed. Some of these
methods focus on the proportional cause-specific hazards model (Goetghebeur and
Ryan 1995; Lu and Tsiatis 2001; Hyun et al. 2012; Nevo et al. 2018) or the more gen-
eral class of semiparametric linear transformation models (Gao and Tsiatis 2005). It
has to be noted that the first stage of the analysis in the proposed approach is identical to
the first stage of the multiple imputation approach for the proportional cause-specific
hazards model in Lu and Tsiatis (2001). However, unlike Lu and Tsiatis (2001), we do
not utilize simulation-based imputations in the second stage of the analysis and, thus,
we do not introduce additional variability in the regression parameter estimates due to
the finite number of imputations (Wang and Robins 1998). Therefore, as also shown
empirically in the simulation studies, our regression parameter estimator is expected to
be somewhat more efficient compared to the multiple imputation estimator in Lu and
Tsiatis (2001). Importantly, none of the aforementioned articles provide estimators for
the covariate-specific cumulative incidence functions and the corresponding standard
errors. This is a significant gap in the literature, as these quantities are crucial from a
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clinical and implementation science perspective. Our proposed method fills this gap
by proposing a unifiedway for inference about both the risk factor effects on the cause-
specific hazards and individualized risk predictions, based on the covariate-specific
cumulative incidence functions.

Among the previously proposed methods for inference about the regression coef-
ficients under the semiparametric proportional cause-specific hazards model with
missing cause of failure, the AIPW estimation method (Gao and Tsiatis 2005; Hyun
et al. 2012) appears to be the most attractive approach. This is because of the so-
called double robustness property that the AIPW possesses. This property ensures
estimation consistency even if one of the two parametric models that are used to
deal with missingness is misspecified and, also, due to their higher statistical effi-
ciency compared to the simple inverse probability weighting estimators. However, it
has been shown that if both parametric models are even slightly incorrectly specified,
the AIPW estimators can yield severely biased estimates (Kang and Schafer 2007).
Compared to the AIPW estimator, our proposed MPPLE estimator has the advantage
of not requiring to model the probability of missingness and is also a likelihood-
based approach. In the simulation studies, our proposed MPPLE was shown to be
more statistically efficient compared to the AIPW estimator with a correctly specified
model for the probability of missingness (in favor of the AIPW estimator). It has to
be noted that this was only shown empirically in the simulation studies, and we have
not formally proven this claim. In addition, the MPPLE demonstrated certain estima-
tion robustness against misspecification of the parametric model for the failure-cause
probabilities π j (W, γ 0). More importantly, inference about the infinite dimensional
parameters, such as the covariate-specific cumulative incidence function, has not been
studied so far in the framework of AIPW. Putting all these advantages together makes
the proposed MPPLE an appealing approach to use in practice for inference under
the semiparametric proportional cause-specific hazards model with missing causes of
failure. A potential alternative approach would be to develop an EM-algorithm for the
semiparametric proportional cause-specific hazardsmodel. Even though this approach
would be expected to be somewhat more efficient compared to our proposed MPPLE,
it would be much more computationally intensive and would also be more difficult to
implement in practice. The computational efficiency and ease of implementation of
our MPPLE are very important characteristics in real world applications.

Although the method is illustrated with time-independent covariates, the estima-
tor for the regression parameter presented in this paper and its properties are also
valid for the case of time-dependent covariates, provided that these covariates are
right-continuous with left-hand limits and of bounded variation. However, inference
for the covariate-specific cumulative incidence functions with internal time-dependent
covariates is trickier and requires explicit modeling of the covariate processes (Cortese
and Andersen 2010). This is an interesting topic for future research. Additionally, con-
sidering nonparametric or semiparametric models for the failure-cause probabilities
π j (W, γ 0) that are used to predict the missing causes of failure may be important in
some applications and also interesting from a theoretical standpoint.
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