Table 1.
n | (%) | Method | Bias | MCSD | ASE | CP | MSE | RE |
---|---|---|---|---|---|---|---|---|
200 | 25 | Proposed MPPLE | 0.002 | 0.409 | 0.396 | 0.945 | 0.167 | 1.000 |
AIPW | 0.003 | 0.412 | 0.418 | 0.946 | 0.170 | 1.013 | ||
MI(5) | 0.009 | 0.424 | 0.419 | 0.941 | 0.180 | 1.074 | ||
44 | Proposed MPPLE | 0.007 | 0.450 | 0.428 | 0.943 | 0.203 | 1.000 | |
AIPW | 0.009 | 0.464 | 0.468 | 0.943 | 0.215 | 1.061 | ||
MI(5) | 0.004 | 0.460 | 0.461 | 0.946 | 0.211 | 1.043 | ||
56 | Proposed MPPLE | 0.004 | 0.492 | 0.468 | 0.942 | 0.242 | 1.000 | |
AIPW | 0.009 | 0.526 | 0.540 | 0.949 | 0.277 | 1.144 | ||
MI(5) | 0.004 | 0.502 | 0.510 | 0.951 | 0.253 | 1.043 | ||
400 | 25 | Proposed MPPLE | 0.001 | 0.284 | 0.282 | 0.948 | 0.081 | 1.000 |
AIPW | 0.001 | 0.289 | 0.288 | 0.949 | 0.084 | 1.038 | ||
MI(5) | 0.004 | 0.290 | 0.290 | 0.948 | 0.084 | 1.046 | ||
44 | Proposed MPPLE | 0.001 | 0.308 | 0.305 | 0.949 | 0.095 | 1.000 | |
AIPW | 0.004 | 0.326 | 0.321 | 0.946 | 0.106 | 1.116 | ||
MI(5) | 0.008 | 0.320 | 0.316 | 0.950 | 0.102 | 1.076 | ||
56 | Proposed MPPLE | 0.003 | 0.337 | 0.333 | 0.946 | 0.114 | 1.000 | |
AIPW | 0.008 | 0.368 | 0.364 | 0.937 | 0.135 | 1.191 | ||
MI(5) | 0.006 | 0.350 | 0.346 | 0.940 | 0.122 | 1.077 | ||
2000 | 25 | Proposed MPPLE | 0.003 | 0.124 | 0.126 | 0.955 | 0.015 | 1.000 |
AIPW | 0.003 | 0.126 | 0.127 | 0.950 | 0.016 | 1.029 | ||
MI(5) | 0.003 | 0.127 | 0.127 | 0.955 | 0.016 | 1.045 | ||
44 | Proposed MPPLE | 0.005 | 0.132 | 0.136 | 0.954 | 0.017 | 1.000 | |
AIPW | 0.005 | 0.137 | 0.139 | 0.953 | 0.019 | 1.080 | ||
MI(5) | 0.003 | 0.139 | 0.138 | 0.950 | 0.019 | 1.119 | ||
56 | Proposed MPPLE | 0.002 | 0.142 | 0.148 | 0.956 | 0.020 | 1.000 | |
AIPW | 0.002 | 0.152 | 0.155 | 0.941 | 0.023 | 1.150 | ||
MI(5) | 0.003 | 0.153 | 0.150 | 0.946 | 0.023 | 1.164 |
, percent of missingness; MCSD, Monte Carlo standard deviation; ASE, average estimated standard error; CP, coverage probability; MSE, mean squared error; RE, variance of the estimator to variance of the proposed MPPLE (relative efficiency); MPPLE, maximum partial pseudolikelihood estimator; AIPW, augmented inverse probability weighting estimator; MI(5), Lu and Tsiatis type B multiple imputation based on 5 imputations