Table 2.
n | (%) | Method | Bias | MCSD | ASE | CP | MSE | RE |
---|---|---|---|---|---|---|---|---|
200 | 27 | Proposed MPPLE | 0.006 | 0.424 | 0.419 | 0.955 | 0.180 | 1.000 |
AIPW | 0.004 | 0.427 | 0.442 | 0.957 | 0.182 | 1.014 | ||
MI(5) | 0.001 | 0.445 | 0.446 | 0.956 | 0.198 | 1.100 | ||
46 | Proposed MPPLE | 0.015 | 0.471 | 0.458 | 0.954 | 0.222 | 1.000 | |
AIPW | 0.013 | 0.484 | 0.500 | 0.955 | 0.235 | 1.059 | ||
MI(5) | 0.007 | 0.487 | 0.495 | 0.948 | 0.237 | 1.071 | ||
59 | Proposed MPPLE | 0.009 | 0.520 | 0.504 | 0.939 | 0.271 | 1.000 | |
AIPW | 0.009 | 0.556 | 0.579 | 0.952 | 0.310 | 1.143 | ||
MI(5) | 0.010 | 0.536 | 0.553 | 0.951 | 0.287 | 1.061 | ||
400 | 27 | Proposed MPPLE | 0.000 | 0.301 | 0.298 | 0.952 | 0.091 | 1.000 |
AIPW | 0.002 | 0.306 | 0.305 | 0.946 | 0.094 | 1.034 | ||
MI(5) | 0.004 | 0.312 | 0.306 | 0.943 | 0.097 | 1.070 | ||
46 | Proposed MPPLE | 0.001 | 0.332 | 0.326 | 0.948 | 0.110 | 1.000 | |
AIPW | 0.006 | 0.350 | 0.343 | 0.945 | 0.122 | 1.111 | ||
MI(5) | 0.007 | 0.348 | 0.337 | 0.933 | 0.121 | 1.098 | ||
59 | Proposed MPPLE | 0.004 | 0.364 | 0.359 | 0.946 | 0.132 | 1.000 | |
AIPW | 0.012 | 0.399 | 0.390 | 0.941 | 0.159 | 1.203 | ||
MI(5) | 0.004 | 0.381 | 0.372 | 0.940 | 0.145 | 1.100 | ||
2000 | 27 | Proposed MPPLE | 0.006 | 0.130 | 0.133 | 0.960 | 0.017 | 1.000 |
AIPW | 0.004 | 0.132 | 0.134 | 0.953 | 0.017 | 1.035 | ||
MI(5) | 0.003 | 0.132 | 0.134 | 0.957 | 0.018 | 1.044 | ||
46 | Proposed MPPLE | 0.006 | 0.141 | 0.145 | 0.955 | 0.020 | 1.000 | |
AIPW | 0.005 | 0.146 | 0.149 | 0.952 | 0.021 | 1.084 | ||
MI(5) | 0.002 | 0.150 | 0.147 | 0.950 | 0.023 | 1.141 | ||
59 | Proposed MPPLE | 0.005 | 0.152 | 0.159 | 0.958 | 0.023 | 1.000 | |
AIPW | 0.003 | 0.163 | 0.167 | 0.957 | 0.027 | 1.150 | ||
MI(5) | 0.001 | 0.163 | 0.161 | 0.952 | 0.027 | 1.153 |
, percent of missingness; MCSD, Monte Carlo standard deviation; ASE, average estimated standard error; CP, coverage probability; MSE, mean squared error; RE, variance of the estimator to variance of the proposed MPPLE (relative efficiency); MPPLE, maximum partial pseudolikelihood estimator; AIPW, augmented inverse probability weighting estimator; MI(5), Lu and Tsiatis type B multiple imputation based on 5 imputations