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A B S T R A C T   

Cluster randomized trials (CRTs) usually randomize groups of individuals to interventions, and outcomes are 
typically measured at the individual level. Marginal intervention effects are frequently of interest in CRTs due to 
their population-averaged interpretations. Such effects are estimated using generalized estimating equations 
(GEE), or a recent alternative called the quadratic inference function (QIF). However, the performance of QIF 
relative to GEE have not been extensively evaluated in the CRT context, especially when the marginal mean 
model includes additional covariates. Motivated by the HALI trial, we conduct simulation studies to compare the 
finite-sample operating characteristics of QIF and GEE. We demonstrate that QIF and GEE are equivalent under 
some conditions. When the marginal mean model includes individual-level covariates, QIF shows an efficiency 
improvement over GEE with overall larger power, but its test size may be more liberal than GEE and GEE 
achieves better coverage than QIF. The test size inflation may not by fully addressed from using finite-sample 
bias corrections. The estimates of QIF tend to be closer to GEE in the HALI data, although the former presents 
a small standard error. Overall, we confirm that the QIF approach generally has potentially better efficiency than 
GEE in our simulation studies but might be more cautiously used as a viable approach for the analysis of CRTs. 
More research is needed, however, to address the finite-sample bias in the variance estimation of the QIF to 
better control its test size.   

1. Introduction 

A cluster randomized trial (CRT), also referred to as a group ran
domized trial or a community-randomized trial, is a randomized 
controlled trial where a cluster (e.g. hospital, village) of individuals is 
the unit of randomization [1]. The outcomes are usually measured for 
each individual member within a cluster. As a consequence of the cluster 
randomization design, the outcomes of individuals within the same 
cluster are expected to be correlated and this correlation, namely the 
intraclass correlation coefficient (ICC), must be accounted for in both 
the design and analysis [2,3]. 

During the analysis stage, the ICC is commonly accounted for using 
one of two modeling approaches for individual-level outcome data. One 
approach is the mixed-effects model, which estimates the cluster- 
specific (conditional) intervention effect. The other approach is the 

generalized estimating equations (GEE), which estimate the population- 
averaged (marginal) intervention effect [4]. The conditional and mar
ginal intervention effects are equal to each other with the identity or log 
link, while they could differ with the logit link for binary outcomes [5]. 
The choice of marginal or conditional models depends on the research 
objectives and each model has its pros and cons. In particular, while the 
mixed-effects model requires the correct specification of the 
random-effects distribution to obtain consistent model-based variance 
[6], the marginal model is more robust with the sandwich variance 
being consistent even under misspecification of the correlation struc
ture. For this reason, the marginal model coupled with GEE has been 
commonly used in the analysis of CRTs [7]. 

Despite the robustness of the marginal model, misspecification of the 
correlation structure could lead to reduced efficiency in estimating the 
intervention effect. To improve the efficiency of GEE, an alternative 
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approach – the quadratic inference function (QIF) – has been developed 
[8,9]. Although it has been shown that QIF may have an efficiency 
advantage over GEE with correlated data that arise in the longitudinal 
data settings [8,9], it is not as commonly used in the analysis of CRTs, 
with a few exceptions [10–12]. The purpose of this article is to provide 
additional empirical evidence by comparing the performance of QIF and 
GEE in the CRT scenarios, and discuss several analytical insights of these 
two methods. 

2. Motivating study: the HALI trial 

The HALI (Health and Literacy Intervention) trial is a 2� 2 factorial 
CRT conducted in Kenya to evaluate the impact of a malaria intervention 
and a literacy intervention on child health and educational outcomes 
[13,14]. We focus on the literacy intervention and do not address fea
tures of the factorial design in this paper. In other words, we treat the 
trial as a regular parallel-arm CRT. A multilevel data structure is present 
because children are nested in schools, which are nested in teacher 
advisory center; the randomization is carried out at the school level and 
stratified by each teacher advisory center. We focus on the 9-month 
outcome and only consider school-level clustering as previous analysis 
suggested minimal clustering at the teacher advisory center level [15]. 
There are 51 schools in the literacy intervention arm and 50 schools in 
the control arm, with approximately 25 children in each school. 

The descriptive statistics in the HALI trial are provided in Table 1. 
The primary outcome is the spelling score, which ranges from 0 to 20 
and is treated as a continuous outcome. Other baseline variables 
included in the trial are age, sex, baseline spelling score (individual-level 
variables) and the availability of handwashing facilities (school-level 
variable), which might have a direct or indirect relationship with the 
primary outcome. All baseline variables (with age log-transformed) are 
reasonably balanced between the intervention and the control arms due 
to randomization [15]. 

In the context of the HALI study, we consider CRTs with a continuous 
outcome measured at a single follow-up time point. We also assume a 
relatively large number of clusters (e.g., > 40) with equal cluster size. 
We first describe the GEE and QIF approaches to estimate the marginal 
intervention effect and analytically study their connections. The finite- 
sample operating characteristics of GEE and QIF are evaluated using 
simulations, and both approaches are applied to the HALI trial for 

empirical illustrations. 

3. Statistical methods 

3.1. Generalized estimating equations (GEE) 

For correlated data arising from N clusters and m individuals in each 
cluster, we use Xij, Yij, μij to denote the p-dimensional design vector, 
individual-level outcome, and marginal mean of the jth individual in the 
ith cluster. We define the covariate matrix Xi ¼ ðXi1;Xi2;…;XimÞ

T, 
outcome vector Yi ¼ ðYi1;Yi2;…;YimÞ

T and mean vector μi ¼

ðμi1; μi2;…; μimÞ
T for the ith cluster. We write Vi as the working covari

ance matrix of the ith cluster, β as the p-dimensional regression 
parameter vector, and define a generalized linear model gðμijÞ ¼ XT

ijβ, 
where gð ⋅Þ is a monotonic and differentiable link function. The marginal 
variance is defined as φνðμijÞ, where νð ⋅Þ is a parametric variance 
function and φ is the common dispersion. We also define the gradient 
matrix Di ¼ ∂μi=∂βT. 

The generalized estimating equations (GEE) approach was originally 
developed for longitudinal data analysis based on quasi-likelihood [4, 
16] and formulated as 

XN

i¼1
DT

i V� 1
i ðYi � μiÞ¼ 0:

To specify the unknown covariance matrix Vi, a working correlation 
matrix RiðαÞ is assumed and frequently parameterized by a common 
parameter α. Define the variance matrix as Ai ¼ diagfνðμi1Þ;…;νðμimÞg, 
and the covariance matrix Vi can be written as Vi ¼ φA1=2

i RðαÞA1=2
i . The 

estimation of β and ðφ;αÞ is carried out via the modified Fisher-scoring 
algorithm [4]. It is known that the GEE estimator bβ is consistent for any 
choice of working correlation structure and has a robust ‘‘sandwich’’ 
covariance matrix given by 

VR¼

 
XN

i¼1
DT

i V� 1
i Di

!� 1(
XN

i¼1
DT

i V � 1
i covðYiÞV� 1

i Di

) 
XN

i¼1
DT

i V� 1
i Di

!� 1

:

(1) 

A consistent estimator for the ‘‘sandwich’’ covariance matrix is ob
tained by replacing covðYiÞ in equation (1) with its empirical version 

Table 1 
Baseline descriptive statistics in the HALI trial. The total sample size includes n ¼ 2230 children in N ¼ 101 schools (137 participants have missing baseline spelling 
scores and excluded in the analysis).  

Level Variable Overall Intervention Control 

(101 schools) (51 schools) (50 schools) 

Child-level log-Age n 2230 1103 1127 
Min 1.6 1.6 1.6 
Mean 2.0 2.0 2.0 
Median 2.1 2.1 2.1 
IQR 1.9�2.2  1.9�2.2  1.9�2.2  
Max 2.7 2.7 2.6 
SD 0.22 0.21 0.22 

Sex n 2230 ð100%Þ 1103 ð100%Þ 1127 ð100%Þ
Male 1136 ð50:9%Þ 575 ð52:1%Þ 561 ð49:8%Þ
Female 1094 ð49:1%Þ 528 ð47:9%Þ 566 ð50:2%Þ

Baseline spelling 
score 

n 2193 1089 1104 
Min 0 0 0 
Mean 8.2 8.5 7.9 
Median 7 8 7 
IQR 5 � 11  5 � 12  5 � 11  
Max 20 20 19 
SD 4.50 4.66 4.33 

School-level Handwash facilities 
in school 

N 101 ð100%Þ 51 ð100%Þ 50 ð100%Þ
Yes 26 ð25:7%Þ 17 ð33:3%Þ 9 ð18:0%Þ
No 75 ð74:3%Þ 34 ð66:7%Þ 41 ð82:0%Þ
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ðYi � μiÞðYi � μiÞ
T. In the context of CRTs, two most frequently used 

correlation structure is the independence and exchangeable structure. 
Interestingly, under some conditions, the GEE estimator provides iden
tical point estimates using either correlation structure [8], as summa
rized in the following result. 

Result 1. Under the independence and exchangeable working correlations, 
GEE produces identical point estimate and the robust sandwich covariance if 
the following two conditions are satisfied: (1) the marginal mean model only 
includes cluster-level covariates; (2) equal cluster sizes. 

The proof of Result 1 is provided in Appendix I. 
In CRTs with correlated binary outcomes, Pan [17] demonstrated the 

same result assuming a logistic marginal mean model, and Result 1 can 
be viewed as a generalization of this earlier result to arbitrary link and 
variance functions. In practice, this result implies that when only the 
intervention indicator is included in the marginal analysis of CRTs, the 
point estimate for β is the same regardless of the working correlation 
specification as long as the cluster sizes are the same. Moreover, Result 1 
has importantly implications for sample size and power calculations in 
the design stage. The equal cluster-size assumption is frequently 
assumed in designing CRTs [18], in which case the sample size re
quirements become identical under either working correlation 
specification. 

3.2. Quadratic inference function (QIF) 

The approach of quadratic inference function (QIF) was introduced 
to improve the efficiency of GEE in longitudinal data analysis under 
correlation misspecification [19]. The QIF approach expresses the in
verse of the working correlation matrix as a linear combination of K 
basis matrices: R� 1ðαÞ ¼

PK
k¼1γkMk with Mk as the kth basis matrix and 

γk the weight. The first basis matrix is usually specified as the identity 
matrix M1 ¼ I. A ðKpÞ-dimensional score vector is then defined as 

giðβÞ¼

8
>>>>>><

>>>>>>:

DT
i A� 1

i ðYi � μiÞ

DT
i A� 1=2

i M2A� 1=2
i ðYi � μiÞ

⋮
DT

i A� 1=2
i MKA� 1=2

i ðYi � μiÞ

9
>>>>>>=

>>>>>>;

:

Let gNðβÞ ¼ N� 1PN
i¼1giðβÞ be the list of extended score equations and 

CNðβÞ ¼ N� 1PN
i¼1giðβÞgT

i ðβÞ be the empirical covariance matrix of giðβÞ. 
The QIF is written as QNðβÞ ¼ NgT

NðβÞC
� 1
N ðβÞgNðβÞ. Based on the gener

alized method of moments (GMM) [20], the estimator bβ ¼ argminβQNðβÞ
can be more efficient than the GEE estimator in large samples when the 
working correlation is misspecified. From the first derivative of QN, the 
QIF estimator obtained by minimizing the QN function is asymptotically 
equivalent to solving WNðβÞ ¼ Nð∂gN =∂βTÞC� 1

N gN ¼ 0 [19], and the 
Newton-Raphson algorithm can be used to iteratively update the esti
mator for β until convergence [9]. A consistent variance estimator of the 
QIF estimator bβ then has a sandwich form 

dcovðbβÞ¼N � 1ð∂WN=∂βÞ� 1
dcovðWNÞð∂WN=∂βÞ� 1

j
β¼bβ  

¼ N � 1��∂gNð
bβÞ
�

∂βT�C� 1
N ð
bβÞf∂gNð

bβÞ=∂βg
�� 1
:

Due to the theoretical efficiency improvement of QIF over GEE, there 
has been increasing efforts in developing the theory of QIF for analyzing 
correlated data, including the following examples concerning longitu
dinal data analysis. A QIF likelihood-ratio test statistic, with asymptotic 
Chi-squared distribution, was proposed and shown useful to test for 
goodness-of-fit in longitudinal studies [19]. A penalized version of QIF 
can further accommodate the variable selection [21]. The Godambe 
Information (TGI) criterion and the trace of the empirical covariance 
matrix were developed to select the appropriate correlation structure 

[22,23]. The QIF approach has also been shown to automatically 
down-weight outlying observations [8], while GEE has unbounded in
fluence function and can be sensitive to outliers. In addition, the QIF 
approach can also be utilized for meta-analysis with a flexible joint 
estimation procedure [24]. In small to moderately-sized samples, it was 
found that the standard errors of parameters can be severely 
downward-biased and two biased-corrected covariance estimators have 
shown to provide adequate finite-sample adjustments [9]. Furthermore, 
it was shown that imbalance of covariate distributions and of cluster 
sizes can also lead to larger variability of the QIF estimator [25]. 

In contrast to the longitudinal data setting, in a CRT with a single 
follow-up time-point, there is no natural ordering or structure of in
dividuals in the same cluster. That is, decay-type structures are not 
appropriate but the exchangeable working correlation structure with a 
common ICC parameter is a natural choice. For the exchangeable 
working correlation structure, we can write RðαÞ ¼ ð1 � ρÞIþ ρJ, where 
J is a ðm � mÞ-dimensional matrix of 1’s. Following Li et al. [26], we 
have R� 1ðαÞ ¼ ð1 � ρÞ� 1I � ρð1 � ρÞ� 1

f1þ ðm � 1Þρg� 1J. As J is not a 
full-rank matrix, a better use is to specify I and J � I as two full-rank 
basis matrices for exchangeable correlation structure of QIF [9]. We 
can also use QIF with an independence correlation structure with only 
one basis matrix of the identity matrix I. Parallel to Result 1, we provide 
an additional insight that the results obtained from GEE and QIF are 
equal under conditions assumed below. 

Result 2. Under the exchangeable working correlation, QIF and GEE 
produce identical point estimates and robust covariances if two conditions are 
satisfied: (1) the marginal mean model only includes cluster-level covariates; 
(2) equal cluster sizes. 

The proof of Result 2 is provided in Appendix I. 
Furthermore, it has been pointed out previously that QIF and GEE are 

identical when the independence working correlation is used [8,25]. 
Combining Result 1 and Result 2, we further summarize an additional 
result as follows. 

Result 3. The point estimates and robust covariances are identical using 
either GEE or QIF with either independence or exchangeable working corre
lation, if the following two conditions are satisfied: (1) the marginal mean 
model only includes cluster-level covariates; (2) equal cluster sizes. 

The proof of Result 3 is also provided in Appendix I. 
As previously indicated, these results have implications for sample 

size procedures assuming equal cluster sizes, in which cases the sample 
requirements will be equivalent using either GEE or QIF coupled with 
either independence and exchangeable correlation structures. 

4. Simulation studies 

To study the empirical performance of QIF in CRTs, we carry out a 
series of simulation studies. Inspired by the HALI trial in our motivating 
example, we assume 100 clusters with 50 clusters randomized to the 
treatment and control arms. For simplicity, we specify the cluster sizes to 
be 25 for all 100 clusters. We consider two mean models and four types 
of correlation structures to form different data generating process (DGP) 
in CRTs. We then implement GEE and QIF with the correctly-specified 
mean model and exchangeable working correlation structure. In each 
simulation, we use a multivariate normal model to simulate outcomes in 
each cluster with individual-level variance φ ¼ 4. The four correlation 
structures used in the DGP include: fixed-regular exchangeable (CS0), 
regular exchangeable (CS1), cluster-specific exchangeable (CS2) and 
cluster-specific exchangeable with sub-clustering (CS3). The two 
selected mean models are: intervention-only model (MM1) and 
covariate-adjusted model (MM2). 

In the intervention-only mean model (MM1), we use Xi to indicate 
whether the ith cluster is in the intervention arm (Xi ¼ 1) or not (Xi ¼

0). The MM1 is given by μij ¼ β0þ β1Xi. We fix β0 ¼ 1 and allow the 
marginal intervention effect β1 to adopt a range of different values in the 
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DGP. For MM2, we simulate four covariates whose distributions are 
informed by the HALI trial. Specifically, we simulate three individual- 
level covariates Bij, Cij and Dij mimicking the age, sex and baseline 
spelling score; we assume Bij follows a log-normal distribution with 
mean of 2 and standard deviation 0.2 (both on the log scale), Cij follows 
a binomial distribution with probability of 0.5 and Dij follows a normal 
distribution with mean 8 and standard deviation 5. We also simulate a 
cluster-level covariate Ei from a binomial distribution with probability 
of 0.26 based on the school-level prevalence of handwash facilities. We 
write MM2 as μij ¼ β0 þ β1Xi þ βBBijþ βCCijþ βDDijþ βEEi. We specify 
different values for the intervention effect β1 in the DGP, while keeping 
all other covariate effects constant as β0 ¼ βB ¼ βC ¼ βD ¼ βE ¼ 1. 

For the correlation structures, we first assume the fixed-regular 
exchangeable correlation structure (CS0) that all clusters have the 
same exchangeable correlation structure with ICC ρ ¼ 0:05. For the 
regular exchangeable correlation structure (CS1), we assume all the 
clusters have the same exchangeable correlation matrices in the same 
simulation iteration but might vary in different iterations. The cluster- 
specific exchangeable correlation structure (CS2) further allows 
possibly different exchangeable correlation matrices for each cluster in 
each simulation iteration. Both CS1 and CS2 assume the ICC ρ in the 
exchangeable correlation structure is sampled from a uniform distribu
tion from 0.01 to 0.2. For the cluster-specific exchangeable correlation 
structure with sub-clustering (CS3), we first generate a variable Fij from 
a discrete uniform distribution in f1;2; 3;4g. For the jth and kth in
dividuals in the ith cluster, we specify their pairwise correlation value to 
be Rijk ¼ 0:5 if Fij and Fik are the same, indicating most closely- 
correlated. If Fij and Fik differ in 1, 2 or 3, we specify the correlation 
Rijk to be 0:52;0:53 or 0:54, respectively, in order to model different 
degrees of pairwise correlations. Particularly, except for CS0, we have 
assumed the true correlation matrix is sampled from a population-level 
distribution; the purpose of this additional step is to provide a data 
generating process with the desired marginal mean and a complex 

correlation structure, but without the multivariate normality assump
tion. This type of DGP is less restrictive than the usual multivariate 
normal DGP, and we provide additional technical details on this type of 
DGP in Appendix II. For CS0, CS1 and CS2, we use five different values 
for β1 2 f0;0:40;0:45;0:50;0:55g in the DGP, and use six values for β1 2

f0;0:40;0:50;0:60;0:70;0:80g under CS3, leading to a total of 42 
scenarios. 

We generate S ¼ 3000 replicates for each of 8 combinations of the 2 
mean models and 4 correlation structures. Two models are fit for each 
simulated data, namely GEE with exchangeable working correlation and 
QIF with exchangeable working correlation. As we explain in 
Appendix II, the working correlation matrix will be incorrectly specified 
under DGP with CS2 and CS3. In all scenarios, the correct mean model is 
specified in the analysis, namely an intervention-only mean model is fit 
for data generated under MM1 and the covariate-adjusted mean model is 
fit for data generated under MM2. 

The following metrics are used to compare the performance of GEE 
and QIF: (1) relative bias (RBS), which equals the bias relative to the true 
effect, (2) empirical standard error (ESE) of the estimates, and, (3) the 
mean robust standard error (MRSE) over all 3000 replicates. In addition, 
we set the nominal type I error rate to be 0.05 to obtain power for the 
Wald-type Z-test. We also calculate the power ratio (PR) defined by the 
power of QIF analysis relative to that of GEE analysis (Q/G). We addi
tionally calculate the 95% coverage probability (Coverage) for both GEE 
and QIF. Finally, the empirical type I error rate is estimated assuming a 
true null intervention effect (β1 ¼ 0) in the DGP. 

We present results for DGP with MM1 and four different correlation 
structures in Table 2. The results indicate that GEE and QIF lead to the 
exact same estimates, and confirms the analytical insights from Result 2. 
With the exchangeable working correlation structure and balanced 
cluster sizes, MM1 only includes the cluster-level intervention variable, 
satisfying the conditions listed in Result 2. In this setting, the relative 
biases are small for both GEE and QIF, and the coverage probabilities are 
all close to nominal. The type I error rate, which is the power when β1 ¼

Table 2 
The GEE and QIF results for data generated under mean model MM1 with covariance structures CS0, CS1, CS2, CS3 and different true β1’s based on data from 3000 
replicates for each scenario (S ¼ 3000).  

DGP: MM1 RBS ESE MRSE Power Coverage 

Analysis: MM1a GEE QIF GEE QIF GEE QIF GEE QIF GEE QIF 

CS0 β1 ¼ 0  – – – – – – 5:57%  5:57%  94.43% 94.43% 
β1 ¼ 0:40  � 0:98%  � 0:98%  0.118 0.118 0.117 0.117 91:97%  91:97%  94.67% 94.67% 
β1 ¼ 0:45  � 0:87%  � 0:87%  0.118 0.118 0.117 0.117 96:70%  96:70%  94.67% 94.67% 
β1 ¼ 0:50  � 0:78%  � 0:78%  0.118 0.118 0.117 0.117 98:60%  98:60%  94.67% 94.67% 
β1 ¼ 0:55  0:20%  0:20%  0.119 0.119 0.117 0.117 99:60%  99:60%  94.27% 94.27% 

CS1 β1 ¼ 0  – – – – – – 5:87%  5:87%  94.13% 94.13% 
β1 ¼ 0:40  � 0:35%  � 0:35%  0.147 0.147 0.143 0.143 78:17%  78:17%  95.20% 95.20% 
β1 ¼ 0:45  � 0:80%  � 0:80%  0.148 0.148 0.145 0.145 84:93%  84:93%  94.77% 94.77% 
β1 ¼ 0:50  0:22%  0:22%  0.150 0.150 0.145 0.145 89:77%  89:77%  94.60% 94.60% 
β1 ¼ 0:55  � 0:53%  � 0:53%  0.148 0.148 0.146 0.146 94:03%  94:03%  94.93% 94.93% 

CS2 β1 ¼ 0  – – – – – – 5:30%  5:30%  94.70% 94.70% 
β1 ¼ 0:40  1:00%  1:00%  0.152 0.152 0.148 0.148 77:43%  77:43%  93.93% 93.93% 
β1 ¼

0:45.  
� 0:40%  � 0:40%  0.150 0.150 0.148 0.148 85:60%  85:60%  94.10% 94.10% 

β1 ¼ 0:50  � 1:03%  � 1:03%  0.149 0.149 0.148 0.148 91:10%  91:10%  94.60% 94.60% 
β1 ¼ 0:55  � 0:57%  � 0:57%  0.146 0.146 0.148 0.148 95:53%  95:53%  94.80% 94.80% 

CS3 β1 ¼ 0  – – – – – – 5:30%  5:30%  94.70% 94.70% 
β1 ¼ 0:40  � 0:60%  � 0:60%  0.215 0.215 0.211 0.211 47:70%  47:70%  94.20% 94.20% 
β1 ¼ 0:50  0.30% 0:30%  0.219 0.219 0.212 0.212 65:30%  65:30%  94.00% 94.00% 
β1 ¼ 0:60  � 0:82%  � 0:82%  0.216 0.216 0.212 0.212 78:97%  78:97%  94.53% 94.53% 
β1 ¼ 0:70  � 0:26%  � 0:26%  0.212 0.212 0.212 0.212 90:63%  90:63%  94.60% 94.60% 
β1 ¼ 0:80  1:13%  1:13%  0.213 0.213 0.212 0.212 96:53%  96:53%  94.10% 94.10%  

a The analysis utilizes mean model MM1 and exchangeable working correlation matrix with robust SE. 
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0, are also close to 0.05. In addition, in each scenario, the ESE and the 
MRSE are close to each other, indicating that the robust variance esti
mators are consistent for both GEE and QIF. Notably, the results in 
scenarios with CS3 and β1 ¼ 0:4 or β1 ¼ 0:5 have smaller power than 
those with CS0 and CS1, suggesting that both QIF and GEE could be less 
efficient with a misspecified correlation structure [19]. 

Table 3 presents the results for the DGP with MM2 and four corre
lation structures. Our analytical finding from Result 2 does not apply 
with MM2 which now includes multiple individual-level covariates. As a 
result, the GEE and QIF results differ, although both approaches give 
small relative bias across all scenarios. Interestingly, while GEE has 
smaller ESE compared to QIF, QIF presents smaller MRSE than GEE. This 
finding suggests that the robust variance of QIF tends to be biased to
wards zero under this complex mean model. The downward bias of QIF 
variance estimator further leads to under-coverage of the interval esti
mator, and a type I error inflation especially when the correlation 
structure deviates from CS0. In contrast, the type I error rate and 
coverage of the GEE estimator are more close to nominal throughout. 
The results in Table 3 also allow us to compare the efficiency between 
QIF and GEE, by comparing the ESE and the power. Under CS0 and CS1, 
GEE and QIF have almost identical power under the alternative, con
firming that their results are asymptotically equivalent under correct 

correlation specification. When the working correlation model is mis
specified, the power of both GEE and QIF will decrease, and QIF appears 
to be slightly more efficient, as evidenced by the results under CS3. 
Throughout, the power ratio of QIF over GEE is at most slightly larger 
than 1 (the largest increase in power is 4% for QIF over GEE under CS3), 
and becomes closer to 1 as the effect size increases. However, one should 
be cautious in interpreting the efficiency advantage of QIF because (a) 
QIF carries an inflated type I error rate under the null and (b) QIF in
terval estimator frequently leads to under-coverage due to the negative 
bias in its robust variance estimator. 

In an effort to potentially reduce the bias in QIF variance estimator 
under MM2, we additionally explore two bias-corrections for the vari
ance proposed by Westgate [9]. These two bias-corrections are exten
sions of the Mancl-DeRouen (MD) and Kauermann-Carroll (KC) methods 
proposed in the GEE literature [27,28], and we denote them by QIFMD 
and QIFKC. The details of the two bias-correction methods for QIF are 
given in Appendix III. Table 4 shows that the type I error rates from the 
two bias-correction methods are closer to the nominal 0.05 level that 
from QIF without correction. However, the type I error rate of 
bias-corrected QIF remains liberal and consistently larger than that of 
GEE, cautioning the use of QIF in CRTs when the marginal mean model 
is complex with multiple individual-level covariates. 

Table 3 
The GEE and QIF results for MM2 with CS0, CS1, CS2, CS3 and different true β1’s, each of which is from 3000 simulations (S ¼ 3000).  

DGP: MM2 RBS ESE MRSE Power PR Coverage 

Analysis: MM2a GEE QIF GEE QIF GEE QIF GEE QIF Q/G GEE QIF 

CS0 β1 ¼ 0  – – – – – – 5:27%  6:93%  – 94.73% 93.07% 
β1 ¼

0:40  
� 0:83%  � 1:03%  0.120 0.123 0.117 0.114 91:47%  91:67%  1.0022 94.50% 92.97% 

β1 ¼

0:45  
� 0:09%  0:02%  0.122 0.127 0.117 0.114 96:47%  96:30%  0.9983 93.53% 91.90% 

β1 ¼

0:50  
0:62%  0:64%  0.120 0.124 0.117 0.114 98:67%  98:57%  0.9990 94.40% 92.67% 

β1 ¼

0:55  
0:18%  0:22%  0.116 0.120 0.117 0.114 99:70%  99:70%  0.9990 94.37% 93.13% 

CS1 β1 ¼ 0  – – – – – – 6:07%  7:83%  – 93.93% 92.17% 
β1 ¼

0:40  
� 0:33%  � 0:10%  0.150 0.154 0.146 0.142 77:00%  78:37%  1.0178 94.87% 93.47% 

β1 ¼

0:45  
0:58%  0:73%  0.154 0.159 0.146 0.142 84:67%  84:73%  1.0001 93.27% 91.80% 

β1 ¼

0:50  
0:56%  0:48%  0.151 0.156 0.145 0.141 90:10%  90:13%  1.0003 94.17% 92.93% 

β1 ¼

0:55  
� 0:35%  � 0:64%  0.157 0.163 0.146 0.142 92:87%  92:90%  1.0003 93.77% 91.73% 

CS2 β1 ¼ 0  – – – – – – 5:67%  7:30%  – 94.33% 92.70% 
β1 ¼

0:40  
0:48%  0:65%  0.151 0.153 0.148 0.143 77:17%  78:73%  1.0202 94.40% 93.20% 

β1 ¼

0:45  
0:58%  0:69%  0.154 0.158 0.148 0.143 85:33%  86:57%  1.0145 94.37% 92.03% 

β1 ¼

0:50  
0:01%  0:06%  0.151 0.154 0.148 0.143 91:80%  92:23%  1.0003 94.93% 93.53% 

β1 ¼

0:55  
� 0:35%  � 0:64%  0.152 0.155 0.148 0.143 95:30%  95:40%  1.0010 94.10% 92.43% 

CS3 β1 ¼ 0  – – – – – – 5:93%  7:17%  – 94.07% 92.83% 
β1 ¼

0:40  
1:05%  1:13%  0.221 0.228 0.212 0.206 47:93%  50:07%  1.0446 94.07% 92.10% 

β1 ¼

0:50  
� 0:14%  � 0:22%  0.220 0.227 0.212 0.206 64:90%  66:60%  1.0262 93.67% 91.87% 

β1 ¼

0:60  
1:26%  1:15%  0.215 0.221 0.211 0.205 81:97%  82:50%  1.0065 94.10% 92.67% 

β1 ¼

0:70  
� 0:04%  � 0:09%  0.216 0.223 0.212 0.206 90:67%  90:73%  1.0007 94.13% 92.93% 

β1 ¼

0:80  
� 0:25%  � 0:29%  0.213 0.220 0.212 0.206 96:37%  96:37%  1.0000 94.53% 93.33%  

a The analysis utilizes mean model MM2 and exchangeable working correlation matrix with robust SE. 
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As pointed out by a reviewer, a possible explanation for the bias of 
the variance estimator for QIF and the associated inflated type I error 
could be the large variability of the empirical weighting or covariance 
matrix CNðβÞ. Previous studies have suggested that including additional 
covariates in the mean model could lead to increased variability in 
estimating CNðβÞ, which affects the efficiency of the QIF estimator [23, 
25,29,30]. It remains to be explored whether improved estimation of 
CNðβÞ along the lines of Westgate [29] and Westgate [30] coupled with 
the bias-corrected variances could reduce the negative bias in the robust 
variance of QIF and improve the coverage rate of the interval estimator. 

5. Analysis of HALI trial 

We apply GEE and QIF to the analysis of the HALI trial and focus on 
the continuous outcome of spelling score at the 9-month follow-up [15]. 
From the descriptive statistics, we observe the baseline covariates are 
approximately the same across arms, but the mean value of the spelling 
score at 9-month follow-up differs between the arms, indicating a po
tential intervention effect due to the literacy intervention. In the mar
ginal mean model, we sequentially include the cluster-level intervention 
Xi, age Bij, sex Cij, presence of handwash facilities Ei and baseline 
spelling score Dij. We utilize both independence and exchangeable cor
relation structures based on three models on the marginal mean 
outcome μij in Table 5 to estimate the unadjusted and covariate-adjusted 
literacy intervention effects. The intervention parameter is denoted as 
β1. Specifically, the first mean model is an unadjusted model with 
intervention indicator as the only covariate, which corresponds to MM1 
in simulation studies. The second and third mean models are 
covariate-adjusted models with three and four other covariates, with the 
third model corresponding to MM2 in simulation studies. We denote 
GEEind and GEEexc as GEE with the independence and exchangeable 
correlation structures, respectively. The notations of QIFind and QIFexc 

are similarly used for QIF. In addition, we also consider the 
bias-correction techniques of QIF [9] for the two correlation structures 
and denote them as QIFind� MD, QIFind� KC, QIFexc� MD and QIFexc� KC. 

We summarize the results in Table 6. The intervention effect esti
mates from GEE and QIF are generally close to each other under mean 
model 1, but may be slightly different under mean model 2 and 3. 
Specifically, the intervention effect estimate tends to be larger using QIF 
and assuming working exchangeable correlation compared to the rest of 
methods. Although the standard error of the uncorrected variance of QIF 
appears to be the smallest, it may carry negative bias as suggested in 
simulation studies. The two bias-corrected variances of QIF could 
slightly reduce the bias and improve the variance estimator. For 
example, the MD corrected QIF standard error is close to the GEE 
standard error with the exchangeable working correlation. Overall, the 
standard error estimates are similar across methods under each specific 
mean model, suggesting that the application of QIF may have limited 
efficiency improvement over GEE in this data example. However, across 
the mean models, the standard error estimates for all methods sharply 
decrease when mean model 3 is considered compared to the rest of mean 
models, suggesting a strong predictive effect of the baseline spelling 
score. 

6. Discussion 

In this paper, we compare the QIF approach with the more 
commonly-used GEE approach for the estimation of intervention effect 
in CRTs. In particular, we focus on CRTs with continuous outcomes at 

Table 4 
The GEE, QIF and two corrected QIF results for MM2 with CS0, CS1, CS2, CS3, 
each of which is from 3000 simulations (S ¼ 3000).  

DGP: MM2 
Analysis: MM2a 

Method ESE MRSE Power (Type I error) 

CS0 β1 ¼ 0  GEE 0.119 0.117 5.27%  
QIF 0.123 0.114 6.93%  
QIFMD  0.123 0.117 5.93%  
QIFKC  0.123 0.115 6.33% 

CS1 β1 ¼ 0  GEE 0.152 0.145 6.07%  
QIF 0.159 0.141 7.83%  
QIFMD  0.159 0.146 7.27%  
QIFKC  0.159 0.143 7.50% 

CS2 β1 ¼ 0  GEE 0.152 0.148 5.67%  
QIF 0.155 0.143 7.30%  
QIFMD  0.155 0.148 6.43%  
QIFKC  0.155 0.145 6.90% 

CS3 β1 ¼ 0  GEE 0.215 0.212 5.93%  
QIF 0.220 0.206 7.17%  
QIFMD  0.220 0.212 6.33%  
QIFKC  0.220 0.209 6.73%  

a The analysis utilizes mean model MM2 and exchangeable working correla
tion matrix with robust SE and bias-corrected SEs. 

Table 5 
Mean models of the 9-month spelling score.  

Model Formulation 

1 μij ¼ EðYijÞ ¼ β0 þ β1Xi  

2 μij ¼ EðYijÞ ¼ β0 þ β1Xi þ βBBij þ βCCij þ βEEi  

3 μij ¼ EðYijÞ ¼ β0 þ β1Xi þ βBBij þ βCCij þ βDDij þ βEEi   

Table 6 
The results of the intervention effects on the 9-month spelling score.  

Model Method Estimate S.E. 95% confidence 
interval  

p-value 

1 GEEind  1.766 0.4813 (0.823, 2.709) 0.00024 
GEEexc  1.758 0.4819 (0.813, 2.703) 0.00026 
QIFind  1.766 0.4813 (0.822, 2.709) 0.00024 
QIFind� MD  1.766 0.4913 (0.803, 2.728) 0.00033 
QIFind� KC  1.766 0.4863 (0.812, 2.719) 0.00028 
QIFexc  1.797 0.4748 (0.866, 2.727) 0.00015 
QIFexc� MD  1.797 0.4847 (0.847, 2.747) 0.00021 
QIFexe� KC  1.797 0.4797 (0.856, 2.737) 0.00018 

2 GEEind  1.811 0.4758 (0.878, 2.744) 0.00014 
GEEexc  1.842 0.4774 (0.906, 2.778) 0.00011 
QIFind  1.811 0.4758 (0.879, 2.744) 0.00014 
QIFind� MD  1.811 0.4943 (0.842, 2.780) 0.00025 
QIFind� KC  1.811 0.4849 (0.861, 2.762) 0.00019 
QIFexc  2.056 0.4583 (1.158, 2.955) 0.00001 
QIFexc� MD  2.056 0.4734 (1.128, 2.984) 0.00001 
QIFexc� KC  2.056 0.4659 (1.143, 2.969) 0.00001 

3 GEEind  1.413 0.2868 (0.851, 1.975) 8:4�
10� 7  

GEEexc  1.446 0.2934 (0.871, 2.021) 8:3�
10� 7  

QIFind  1.413 0.2868 (0.851, 1.975) 8:4�
10� 7  

QIFind� MD  1.413 0.2980 (0.829, 1.997) 2:1�
10� 6  

QIFind� KC  1.413 0.2924 (0.840, 1.986) 1:3�
10� 6  

QIFexc  1.601 0.2817 (1.049, 2.153) 1:3�
10� 8  

QIFexc� MD  1.601 0.2922 (1.028, 2.173) 4:3�
10� 8  

QIFexc� KC  1.601 0.2872 (1.038, 2.164) 2:5�
10� 8   
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one follow-up time point, a large number of clusters and equal cluster 
sizes, similar to the motivating data example. We present three analyt
ical results on the equivalence between GEE and QIF under specific 
conditions to explicitly acknowledge their connections. Our simulation 
studies also confirm these analytical results. Although our simulations 
show a potential power advantage of QIF over GEE, the inflated type I 
error rate of QIF cautions its use when the marginal mean model in
cludes multiple baseline covariate. On the other hand, the GEE approach 
performs quite stable under complex mean and correlation models in 
our setting with a large number of clusters. 

Our simulation results suggest that the two specific limitations of QIF 
in the application to CRTs, which may be addressed by further research. 
First, we found an inflated type I error rate of QIF when the DGP con
cerns a complex marginal mean model MM2. Surprisingly, the appli
cation of the two bias-correction techniques does not fully address this 
issue, as the empirical type I error rate is still above 7% across 3000 
simulations. The type I error inflation is mostly due to the negative bias 
of the QIF variance estimator. In CRTs, a better control of type I error 
rate may be achieved by permutation test. In future studies, one could 
consider developing the marginal-model-based permutation analysis as 
in Braun and Feng [31] and Li et al. [32] for QIF to achieve better 
finite-sample properties. Second, despite a potential power advantage of 
QIF over GEE suggested by Table 3, we additionally saw a larger ESE for 
QIF compared to GEE. In fact, if we define the relative efficiency based 
on the ratio of the ESE, then Table 3 suggests that QIF could be slightly 
less efficient than GEE, even though the asymptotic theory states 
otherwise. As we explain in the simulations, the reduced efficiency of 
QIF may be attributed to the large variability in estimating the empirical 
weighting or covariance matrix CNðβÞ under a complex mean model 

[25]. Additionally studies are required to systematically evaluate 
whether improved estimation of CNðβÞ [25,29,30] can lead to better 
efficiency of QIF and eventually address the bias of its variance 
estimates. 

To conclude, our empirical evaluation supports the use of GEE over 
QIF in CRTs with a large number of clusters. We observe that the QIF 
could exhibit inflated type I error rate and under-coverage when the 
marginal mean model includes baseline adjustment variables other than 
the intervention status, while the GEE approach performs consistently 
well across all scenarios. The bias-corrected variances of QIF also shows 
limited improvement in terms of type I error rate, and more empirical 
evaluations of QIF are required to clearly demonstrate its theoretical 
efficiency advantage over GEE before recommending its routine appli
cations in CRTs. 
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APPENDIX I. Proof of Result 1, 2, 3 

Result 1 

Suppose that there are only cluster-level covariate vector for each individual in the ith cluster with covariate-vector denoted by Ti. We have gðμijÞ ¼

TT
i β and the individual-level variance σ2

ij ¼ φνðμijÞ. With only cluster-level covariates, the individual-level means and also variances are equal in the ith 
cluster with μij ¼ μik and σ2

ij ¼ σ2
ik for j 6¼ k. For convenience, we set πi ¼ μij, ωi ¼ σ2

ij ¼ φνðμijÞ and ηi ¼ ∂πi=∂β. Thus, we can express the cluster-level 

mean vector as follows: μi ¼ ðμ1; μ2;…; μmÞ
T
¼ πi1, Di ¼ ∂μi=∂β ¼ 1ηT

i and Ai ¼ φ� 1ωiI. 
For an independence working correlation structure, we can simplify the GEE with as follows: 

PN
i¼1DT

i V� 1
i ðYi � μiÞ ¼

PN
i¼1ω� 1

i ηi1TðYi � μiÞ ¼ 0. 
Furthermore, the ‘‘sandwich’’ covariance matrix for the independence working correlation matrix can be denoted by  

VR;ind ¼ m� 2
�XN

i¼1
ω� 1

i ηiηT
i

�� 1�XN

i¼1
ω� 2

i ηi1
T covðYiÞ1ηT

i

��XN

i¼1
ω� 1

i ηiηT
i

�� 1  

which shares the same form with the consistent covariance estimator bVR;ind with only covðYiÞ being replaced by ðY � μiÞðY � μiÞ
T. 

For an exchangeable working correlation structure, there is some value ρ for which RðαÞ ¼ ð1 � ρÞI þ ρJ and R� 1ðαÞ ¼ ð1 � ρÞ� 1I �
ρð1 � ρÞ� 1

f1þ ðm � 1Þρg� 1J. We thus let α1 ¼ ð1 � ρÞ� 1 and α2 ¼ � ρð1 � ρÞ� 1
f1þ ðm � 1Þρg� 1. As a consequence, we can simplify the GEE as 

follows:  
XN

i¼1
DT

i V� 1
i ðYi � μiÞ ¼ ðα1þmα2Þ

XN

i¼1
ω� 1

i ηi1
TðYi � μiÞ ¼ 0:

Since α1 þmα2 ¼ f1þ ðm � 1Þρg� 1
6¼ 0 for 0 � ρ < 1, we can further drop out the non-zero scalar α1 þmα2 to give 

PN
i¼1ω� 1

i ηi1
TðYi � μiÞ ¼ 0. 

Therefore, the estimating equations reduce to the same form for GEE with independence and exchangeable correlation structures. Furthermore, the 
‘‘sandwich’’ covariance matrix for the exchangeable working correlation is  

VR;exc ¼ m� 2
�XN

i¼1
ω� 1

i ηiηT
i

�� 1�XN

i¼1
ω� 2

i ηi1
T covðYiÞ1ηT

i

��XN

i¼1
ω� 1

i ηiηT
i

�� 1  

with covðYiÞ replaced by ðY � μiÞðY � μiÞ
T for bVR;exc. Therefore, GEE with independence and exchangeable correlation structures share the same 

estimating equation form as well as robust ‘‘sandwich’’ covariance estimator, which further implies numerically equivalent estimators and robust 
covariance estimators. 
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Result 2 

For convenience, we set εi ¼ Yi � μi. We have M1 ¼ I and M2 ¼ J þ sI with s 2 R for a more general choice of basis matrices of QIF with the 
exchangeable correlation structure. We use s ¼ � 1 specifically in our numerical studies. For general exchangeable correlation structure, we have 

gNðβÞ ¼
φ
N

XN

i¼1

8
><

>:

ω� 1
i ηi1

T εi

ω� 1
i ηiðmþ sÞ1T εi

9
>=

>;
¼

φ
N

0

@
1

mþ s

1

A�
XN

i¼1
ω� 1

i ηi1
T εi;

∂gNðβÞ
∂β

¼ N � 1φ
XN

i¼1

8
><

>:

� mω� 1
i ηiηT

i

�
�
m2 þ sm

�
ω� 1

i ηiηT
i

9
>=

>;
¼ � N � 1φm

0

@
1

mþ s

1

A�
XN

i¼1
ω� 1

i ηiηT
i ;

and 

CNðβÞ ¼ N � 1φ2
XN

i¼1
ω� 2

i

(
ηi1

T

ðmþ sÞηi1
T

)

εiεT
i

(
ηi1

T

ðmþ sÞηi1
T

)T

¼ N � 1φ2

(
1 mþ s

mþ s ðmþ sÞ2

)

�
XN

i¼1
ω� 2

i ηi1
T εiεT

i 1ηT
i :

We set Θ ¼
PN

i¼1ω� 1
i ηiηT

i , Δ ¼
PN

i¼1ω� 2
i ηi1

TεiεT
i 1ηT

i and Σ ¼
PN

i¼1ω� 1
i ηi1

Tεi. As is known, QIF has the asymptotic estimating equation WNðβÞ ¼ 0, 
which is implemented for the QIF estimator. We have 

WNðβÞ¼N
�
∂gN

�
∂βT�C� 1

N gN ¼ ð � m� 1Þ �
�
ΘT Δ� 1Σ

�
¼ 0;

which further implies that ΘTΔ� 1Σ ¼ 0. Both Θ and Δ are positive-definite and non-singular, the estimating equation is equivalent to Σ ¼
PN

i¼1ω� 1
i ηi1Tεi ¼

P
i¼1Nω� 1

i ηi1TðYi
� μiÞ ¼ 0. Therefore, the estimating equations for GEE and QIF are simplified to the same form with exchangeable 

working correlation structure. Furthermore, the covariance estimator for QIF with exchangeable working correlation is 

N � 1
�

∂gNð
bβÞ

∂βT C� 1
N ð
bβÞ

∂gNð
bβÞ

∂β

�� 1

¼m� 2�
�
ΘT Δ� 1Θ

�� 1 

¼ m� 2

 
X

i¼1

N

ω� 1
i ηiηT

i

!� 1 
X

i¼1

N

ω� 2
i ηi1

T εiεT
i 1ηT

i

! 
X

i¼1

N

ω� 1
i ηiηT

i

!� 1

;

which is the same as the ‘‘sandwich’’ covariance estimator bVR;exc of GEE with exchangeable working correlation structure. Therefore, GEE and QIF 
with exchangeable correlation structures share the same estimating equation form and covariance estimator, which further implies numerically 
equivalent estimators and covariance estimators. 

Result 3 

Based on Result 1 and Result 2, we need only to prove that QIF with independence and exchangeable working correlation structures have identical 
estimating equations and covariance estimators to fulfill Result 3. For QIF with independence correlation structure, we have gNðβÞ ¼ N� 1PN

i¼1giðβÞ ¼
N� 1φΣ, CNðβÞ ¼ N� 1φ2Δ, and ∂gNðβÞ=∂β ¼ � mN� 1φΘ. Therefore, under independence correlation structure, we have the asymptotic estimating 
equation of QIF to be WNðβÞ ¼ � mΘTΔ� 1Σ ¼ 0, which also implies that ΘTΔ� 1Σ ¼ 0 and is the same as the result in QIF with exchangeable cor
relation structure. The covariance estimator for QIF with independence working correlation is 

N � 1
�

∂gNð
bβÞ

∂βT C� 1
N ð
bβÞ

∂gNð
bβÞ

∂β

�� 1 

¼ m� 2

 
X

i¼1

N

ω� 1
i ηiηT

i

!� 1 
X

i¼1

N

ω� 2
i ηi1

T εiεT
i 1ηT

i

! 
X

i¼1

N

ω� 1
i ηiηT

i

!� 1

:

Thus, both the asymptotic estimating equations and covariance estimators for QIF are simplified to the same forms with independence and 
exchangeable correlation structures. Combining with Result 1 and Result 2, Result 3 is proven. 

APPENDIX II. Additional details of the data generating process 

A potential difference between our data generating process (DGP) and previously published simulations (in the GEE or QIF literature) is that we 
have assumed that the correlation matrix is randomly sampled from some population distribution. Here, we show that this DGP is valid as it cor
responds to an induced and fixed marginal correlation matrix. In other words, once we marginalize over the population distribution of the correlation 
matrix, our DGP follows a specific marginal mean and marginal correlation structure, but dispenses with the multivariate normality assumption. We 
will explain details of DGP under CS0, CS1, CS2 and CS3 below. Throughout, we let σ2 ¼ φ be the individual-level variance, as we are simulating 
correlated continuous outcomes. 
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Fixed-regular exchagneable (CS0) 

With a fixed off-diagonal value ρ ¼ 0:05 in the correlation matrix, we have for each cluster i 

Yi
�
�μi; ρ; σ2 � N

�
μi; σ2fð1 � ρÞIþ ρJg

�
:

For 8 ​ i 6¼ j, we also have covðYi;Yj
�
�μi;μj;ρ; σ2Þ ¼ 0. Therefore, under CS0, Yi follows multivariate normal outcomes, and has a zero covariance 

matrix with Yj for j 6¼ i. 

Regular exchangeable (CS1) 

In this scenario, we assume the common correlation ρ is sampled from a uniform distribution with lower and upper bounds ðl ¼ 0:01;u ¼ 0:2Þ. 
Denote EðρÞ ¼ ρ ¼ ðlþuÞ=2 and observe that conditional on a realized value of ρ, Yi

�
�μi;ρ;σ2 � N½μi;σ2fð1 � ρÞI þ ρJg�. We can then marginalize over 

the sampling variability of ρ to get EðYi
�
�μi; ρ; σ2Þ ¼ EfEðYi

�
�μi; ρ; σ2Þ

�
�μi; ρ; σ2g ¼ μi and 

cov
�
Yi
�
�μi; ρ; σ2�¼ cov

�
E
�
Yi
�
�μi; ρ; σ2���μi; ρ; σ2�þE

�
cov
�
Yi
�
�μi; ρ; σ2���μi; ρ; σ2�

¼ σ2fð1 � ρÞIþ ρJg:

For 8 ​ i 6¼ j, we also have 

cov
�
Yi;Yj

�
�μi; μj; ρ; σ2�¼ cov

�
E
�
Yijμi; ρ; σ2�;E

�
Yj
�
�μj; ρ; σ2���μi; μj; ρ; σ2�

þE
�

cov
�
Yi;Yj

�
�μi; μj; ρ; σ2���μi; μj; ρ; σ2�¼ 0:

Therefore, under CS1, Yi and Yj have a zero covariance matrix, and Yi still follows a distribution with mean μi and exchangeable correlation σ2fð1 �
ρÞI þ ρJg, but is no longer multivariate normal (after accounting for the sampling variability of ρ). 

Cluster-specific exchangeable (CS2) 

Given that the cluster-specific correlation ρi is now sampled from a uniform distribution with lower and upper bounds ðl¼ 0:01; u¼ 0:2Þ 8 ​ i, we 
similarly have EðρiÞ ¼ ρ ¼ ðlþuÞ=2 and Yi

�
�μi; ρ; σ2 � N½μi; σ2fð1 � ρÞI þ ρJg�. We then marginalize over the variability of ρi to get EðYi

�
�μi; σ2Þ ¼

EfEðYi
�
�μi; ρi; σ2Þ

�
�μi; ρ; σ2g ¼ μi and 

cov
�
Yi
�
�μi; ρ; σ2�¼ cov

�
E
�
Yi
�
�μi; ρi; σ2���μi; ρ; σ2�þE

�
cov
�
Yi
�
�μi; ρi; σ2���μi; ρ; σ2�

¼ σ2fð1 � ρÞIþ ρJg:

For 8 ​ i 6¼ j, we also have 

cov
�
Yi;Yj

�
�μi; μj; ρ; σ2�¼ cov

�
E
�
Yijμi; ρi; σ2�;E

�
Yj
�
�μj; ρj; σ2���μi; μj; ρ; σ2�

þE
�

cov
�
Yi;Yj

�
�μi; μj; ρi; ρj; σ2���μi; μj; ρ; σ2�¼ 0:

Therefore, under CS2, we still have a zero covariance matrix for Yi and Yj, and Yi follows a distribution with mean μi and exchangeable correlation 
σ2fð1 � ρÞI þ ρJg, but again is no longer multivariate normal (after accounting for the sampling variability of ρ). 

Cluster-specific exchangeable with sub-clustering (CS3) 

Let Fi ¼ ðFi1;…; FimÞ
T with Fij sampled from a discrete uniform distribution in f1;2; 3;4g, we have the correlation matrix RðFiÞ, which is uniquely 

determined by Fi. Then, the outcome Yi has conditional distribution 

Yi
�
�μi;RðFiÞ; σ2 � N

�
μi; σ2RðFiÞ

�
:

We now denote the population-level mean of RðFiÞ is R ¼ EfRðFiÞg, which averages over the sampling variability of Fi. We then marginalize over 
the variability of Fi to get EðYijμi;R; σ2Þ ¼ EfEðYijμi;RðFiÞ; σ2Þjμi;R; σ2g ¼ μi and 

cov
�
Yi
�
�μi;R; σ2�¼ cov

�
E
�
Yi
�
�μi;RðFiÞ; σ2���μi;R; σ2�þE

�
cov
�
Yi
�
�μi;RðFiÞ; σ2���μi;R; σ2�¼ R:

For 8 ​ i 6¼ j, we also have 

cov
�
Yi;Yj

�
�μi; μj;R; σ2�¼ cov

�
E
�
Yijμi;RðFiÞ; σ2�;E

�
Yj
�
�μj;R

�
Fj
�
; σ2���μi; μj;R; σ2�

þE
�

cov
�
Yi;Yj

�
�μi; μj;RðFiÞ;R

�
Fj
�
; σ2���μi; μj;R; σ2�¼ 0:

Therefore, under CS3, we still have a zero covariance matrix for Yi and Yj, and Yi follows a distribution with mean μi and marginal common 
correlation R, but again is no longer multivariate normal (after accounting for the sampling variability of Fi). 

APPENDIX III. Bias-corrected covariance estimators 

The Mancl-DeRouen and Kauermann-Carroll bias-correction methods for QIF [9] are introduced in the similar expressions as the corresponding 
bias-correction methods for GEE [27,28]. Let 

▽gNð
bβÞ¼ ∂gNð

bβÞ = ∂β;
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and 

JN ¼f▽gNð
bβÞgT C� 1

N ð
bβÞf▽gNð

bβÞg;

we have the covariance estimator of QIF dcovðbβÞ ¼N� 1J� 1
N . The Mancl-DeRouen and Kauermann-Carroll bias-corrected covariance estimators have the 

general form 

dcovMD=KCðbβÞ¼N � 1ðIþGÞJ� 1
N f▽gNð

bβÞgT C� 1
N ð
bβÞ~CN;MD=KCðbβÞC� 1

N ð
bβÞf▽gNð

bβÞgJ� 1
N ðI þ GÞT ;

where 

G¼ �
�
J� 1

N f▽gNð
bβÞgT C� 1

N ð
bβÞgNð

bβÞ
� �

∂β:

Define 

Oi ¼N � 1DiðIþGÞJ� 1
N f▽gNð

bβÞgT C� 1
N ð
bβÞ

8
>>>>>><

>>>>>>:

DT
i A� 1

i

DT
i A� 1=2

i M2A� 1=2
i

⋮
DT

i A� 1=2
i MKA� 1=2

i

9
>>>>>>=

>>>>>>;

;

the Mancl-DeRouen bias-corrected covariance estimator has 

~CN;MDðbβÞ ¼ N � 1
XN

i¼1

8
>>>>>><

>>>>>>:

DT
i A� 1

i

DT
i A� 1=2

i M2A� 1=2
i

⋮
DT

i A� 1=2
i MKA� 1=2

i

9
>>>>>>=

>>>>>>;

ðI þ OiÞ
� 1
ðYi � μiÞðYi � μiÞ

T � I þ OT
i

�� 1

8
>>>>>><

>>>>>>:

DT
i A� 1

i

DT
i A� 1=2

i M2A� 1=2
i

⋮
DT

i A� 1=2
i MKA� 1=2

i

9
>>>>>>=

>>>>>>;

T

;

while the Kauermann-Carroll bias-corrected covariance estimater has 

~CN;KCðbβÞ ¼ N � 1
XN

i¼1

8
>>>>>><

>>>>>>:

DT
i A� 1

i

DT
i A� 1=2

i M2A� 1=2
i

⋮
DT

i A� 1=2
i MKA� 1=2

i

9
>>>>>>=

>>>>>>;

ðI þ OiÞ
� 1
ðYi � μiÞðYi � μiÞ

T

8
>>>>>><

>>>>>>:

DT
i A� 1

i

DT
i A� 1=2

i M2A� 1=2
i

⋮
DT

i A� 1=2
i MKA� 1=2

i

9
>>>>>>=

>>>>>>;

T

:

APPENDIX IV. Table of abbreviations 

We present the acronyms and abbreviations in Table 7.  

Table 7 
Table of Abbreviations  

Acronym Full name 

CRT cluster randomized trial 
ICC intracluster correlation coefficient 
GEE generalized estimating equations 
QIF quadratic inference function 
GMM generalized method of moments 
HALI health and literacy intervention 
IQR interquartile range 
SD standard deviation 
TGI the godambe infomration criterion 
DGP data generating process 
CS correlation structure in the data generating process 
MM mean model in the data generating process 
CS0 fixed-regular exchangeable correlation structure 
CS1 regular exchangeable correlation structure 
CS2 cluster-specific exchangeable correlation structure 
CS3 cluster-specific exchangeable with sub-clustering correlation structure 
MM1 intervention-arm only model 
MM2 intervention-arm with 4 covariates model 
RBS relative bias 
SE standard error 
ESE empirical standard error 

(continued on next page) 
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Table 7 (continued ) 

Acronym Full name 

MRSE mean robust standard error 
PR power ratio 
Q/G quadratic inference function relative to generalized estimating equations 
QIFMD  quadratic inference function with the Mancl-DeRouen bias-correction method 
QIFKC  quadratic inference function with the Kauermann-Carroll bias-correction method 
GEEind  generalized estimating equations using independence working correlation 
GEEexc  generalized estimating equations using exchangeable working correlation 
QIFind� MD  quadratic inference function with Mancl-DeRouen bias correction and independence 
QIFind� KC  quadratic inference function with Kauermann-Carroll bias correction and independence 
QIFexc� MD  quadratic inference function with Mancl-DeRouen bias correction and exchangeable 
QIFexc� KC  quadratic inference function with Kauermann-Carroll bias correction and exchangeable  
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