Abstract
Cenozoic mammal evolution and faunal turnover are considered to have been influenced and triggered by global climate change. Teeth of large terrestrial ungulates are reliable proxies to trace long‐term climatic changes due to their morphological and physicochemical properties; however, the role of premolar molarization in ungulate evolution and related climatic change has rarely been investigated. Recently, three patterns of premolar molarization among perissodactyls have been recognized: endoprotocrista‐derived hypocone (type I); paraconule–protocone separation (type II); and metaconule‐derived pseudohypocone (type III). These three patterns of premolar molarization play an important role in perissodactyl diversity coupled with global climate change during the Cenozoic in Asia. Those groups with a relatively higher degree of premolar molarization, initiated by the formation of the hypocone, survived into Neogene, whereas those with a lesser degree of molarization, initiated by the deformation of existing ridges and cusps, went extinct by the end of the Oligocene. In addition, the hypothesis of the “Ulan Gochu Decline” is proposed here to designate the most conspicuous decrease of perissodactyl diversity that occurred in the latest middle Eocene rather than at the Eocene–Oligocene transition in Asia, as conventionally thought; this event was likely comparable to the contemporaneous post‐Uintan decline of the North American land fauna.
Keywords: Asian perissodactyl diversity, Cenozoic, premolar molarization, Ulan Gochu Decline
Three patterns of premolar molarization play an important role in perissodactyl diversity coupled with global climate change during the Cenozoic in Asia. In addition, the hypothesis of the “Ulan Gochu Decline” is proposed to designate the most conspicuous decrease of perissodactyl diversity that occurred in the latest middle Eocene rather than at the Eocene–Oligocene transition in Asia, as conventionally thought.
1. INTRODUCTION
Living perissodactyls (odd‐toed ungulates) represent the remnants of a major evolutionary sequence and comprise only six genera and 17 species with many in danger of extinction (Nowak & Walker, 1999). However, perissodactyls had a rich, diverse fossil record spanning 56 Myr, and have not only long been used as a strong evidence for evolution since Huxley (e.g., horses), but also for inferring climatic and environmental changes, and their coevolution with such changes (Franzen, 2010; MacFadden, 1992; Mihlbachler, Rivals, Solounias, & Semprebon, 2011; Secord et al., 2012; Simpson, 1951). The most conspicuous fauna turnover during the Paleogene in Asia is considered to have occurred during the Eocene–Oligocene transition, and the Eocene perissodactyl‐dominant faunas were abruptly replaced by the Oligocene rodent/lagomorph‐dominant faunas (Meng & McKenna, 1998). This major faunal turnover, known as “Mongolian Remodelling,” is attributed to climatic changes from the warm, humid Eocene to the cooler and more arid Oligocene (Meng & McKenna, 1998; Zachos, Pagani, Sloan, Thomas, & Billups, 2001). However, there is controversy as to whether this faunal turnover either predates (Wasiljeff, Kaakinen, Salminen, & Zhang, 2020), coincides with (Sun et al., 2014; Zhang, Kravchinsky, & Yue, 2012), or postdates (Kraatz & Geisler, 2010) the Eocene–Oligocene boundary.
Perissodactyls have been considered to have originated from within the radiation of phenacodont condylarths (Radinsky, 1966; Thewissen & Domning, 1992) or to be a sister group to Radinskya from the middle Paleocene of China (Holbrook, 2014; McKenna, Chow, Ting, & Luo, 1989), while more recent work has shown cambaytheres from the early Eocene of Indian subcontinent to be more closely related to perissodactyls than either of these previously considered taxa (Rose et al., 2014). Recent research on ancient proteins suggests that crown perissodactyls are the sister group to some extinct South American ungulates among more recent mammals (Welker et al., 2015). Teeth, composed of the hardest vertebrate tissues, are the best preserved material in perissodactyls as in other mammal fossils, and the most sensitive proxy to environmental changes (Mihlbachler et al., 2011; Secord et al., 2012). Previous studies on the dentition of extinct perissodactyls (and other ungulates) have focused on molar crown height, enamel stable isotopes, micro‐mesowear, and overall morphology through the Cenozoic (Ackermans, 2020; Evans & Pineda‐Munoz, 2018; Jernvall, Hunter, & Fortelius, 1996; Mihlbachler et al., 2011; Secord et al., 2012), but little attention has been paid to the evolutionary patterns of premolar molarization in perissodactyls (Butler, 1952; Holbrook, 2015).
Molarization of the premolars generally results in dental homogeneity and increases the grinding area of the dentition; this is especially important for hindgut fermenting ungulates such as perissodactyls as they are highly reliant on oral processing of the food before its initial ingestion (Clauss, Nunn, Fritz, & Hummel, 2009; Fletcher, Janis, & Rayfield, 2010). In contrast, the foregut fermenting artiodactyls, ruminants and camelids, are less reliant on oral processing: they only have partially molarized premolars, and their premolar complexity decreases from P4 to P2 (P1 is usually lost). However, it is unclear what the role of premolar molarization is in perissodactyl evolution and diversity, how perissodactyl diversity and premolar molariform changed through the Cenozoic in Asia, and whether perissodactyl diversity tracked the Cenozoic climatic changes. Here, we show that three recently proposed patterns of premolar molarization in perissodactyls may have played an important role in their response to climatic and environmental changes during the Cenozoic. Further, based on analysis of perissodactyl diversity with an updated Cenozoic timescale of China in Asia, we note that the most distinct change occurred during the latest middle Eocene, rather than at Eocene–Oligocene transition as conventionally considered, and is likely comparable to the contemporaneous post‐Uintan decline of North American land fauna (Prothero, 1994).
2. METHODS
2.1. Premolar molarization
Five categories of premolar molarization, initially used for rhinoceroses, were assigned to the P2‐4 of perissodactyls: nonmolariform, premolariform, submolariform, semimolariform, and molariform (Qiu & Wang, 2007) (Figure 1). In the premolariform morphology, the hypocone is united with the protoloph, but the metaloph is not completely formed (i.e., is separate from the hypocone) (Figure 1a). In the submolariform morphology, the metaloph is completely formed (connected to the hypocone) and united with the protoloph on the lingual side (Figure 1b). In the semimolariform morphology, the protocone and hypocone are distinctly separate, but still connected by an enamel ridge (Figure 1c). In the molariform morphology, the protoloph and metaloph are completely separate (Figure 1d). Numbers from one to five were assigned to the five categories, respectively, similar to those proposed by Prothero (2005). These numbers were assigned to each premolar (P2‐4) according to their degree of premolar molarization (Appendix Tables A1, A2, A3). The mean values for P2‐4 were then calculated, which represent the degree of premolar molarization of each genus. We then calculated the mean value of the degree of premolar molarization in each perissodactyl family during each Asian Land Mammal Age (ALMA) (Appendix Table A2).
FIGURE 1.
The degree of premolar molarization in perissodactyls as shown by rhinoceros premolars (modified from Qiu and Wang (2007)). (a) Premolariform (assigned value 2); (b) submolariform (assigned value 3); (c) semimolariform (assigned value 4); (d) molariform (assigned value 5). hy, hypocone; mel, metaloph; pr, protocone; prl: protoloph
Among perissodactyls, brontotheres are characterized by bunodont–lophodont teeth with relatively weak transverse lophs on the upper premolars, unlike the condition in other perissodactyls that are more strictly lophodont, and so we characterized their teeth in a somewhat different fashion. We assigned premolariform (value 2) to the brontotheres with a “lingual crest” (Mihlbachler, 2008) on the upper premolars, semimolariform (value 4) to those with distinct hypocones on the “lingual crest,” and molariform (value 5) to those with distinct hypocones completely separated from the protocone.
Three patterns of premolar molarization among perissodactyls have been recognized, including an endoprotocrista‐derived hypocone (type I), paraconule–protocone separation (type II), and a metaconule‐derived pseudohypocone (type III) (Bai, Meng, Mao, Zhang, & Wang, 2019; Holbrook, 2015). The premolar molarization in most perissodactyls was initiated by the type I pattern, which means that the hypocone developed from a crista posterior to the protocone (endoprotocrista) (Holbrook, 2015). However, the P2‐4 of deperetellid tapiroids, the P3 of the Eocene equids, and the P2 of the hyrachyid Metahyrachyus adopted the type II pattern, which entails the separation of the paraconule from the protocone, and the paraconule is enlarged and lingually extended (Bai et al., 2019). Only amynodontid rhinocerotoids had the type III pattern, where the metaconule is separated from the protocone and is lingually extended (Bai et al., 2019). In contrast, the molar hypocones evolved either from the postprotocingulum, as in most eutherians, or from the metaconule, as in artiodactyls (Hunter & Jernvall, 1995).
2.2. Hypsodonty
Different methods for calculating the Hypsodonty Index (HI) have been proposed (Fortelius et al., 2002; Janis, Damuth, & Theodor, 2002; MacFadden, 1992; Van Valen, 1960), but all entail the comparison of the unworn tooth crown height with some other dental linear measurement. Here, we follow Fortelius et al. (2002) in using HI as a ratio of height to length of the second molar (upper or low), although the deficiency of using length instead of width has been noticed (Damuth & Janis, 2011). Three classes of hypsodonty were proposed by Fortelius et al. (2002) based on the following criteria: brachydont teeth with a ratio of less than 0.8 (assigned a value of 1); mesodont teeth with a ratio of 0.8–1.2 (assigned a value of 2); and hypsodont teeth with a ratio of greater than 1.2 (assigned a value of 3). For the Neogene perissodactyls from Asia, the classes of hypsodonty for almost all genera can be found in the NOW (New and Old World) database (NOW: http://www.helsinki.fi/science/now/) (Appendix Tables A1 and A4). However, data for the classes of hypsodonty of Paleogene perissodactyls in Asia are almost entirely lacking. We considered all Eocene perissodactyls to have brachydont teeth except for the amynodontids Huananodon (mesodont) (You, 1977) and Hypsamynodon (hypsodont) (Gromova, 1954).
2.3. Taxa selection
The Paleogene Asian faunas and comparisons were mainly based on references from the literature (Li & Ting, 1983; Russell & Zhai, 1987; Tong, Zheng, & Qiu, 1995; Wang et al., 2019). The Neogene Asian faunas were mainly based on Savage and Russell (1983) with updated data from Deng, Hou, and Wang (2019a) and Qiu et al. (2013). Indeterminate taxon identifications and taxonomic modifications such as “cf.” or “?” or some cases of “sp.” were ignored in our analyses. If more than one species of a genus was known from an ALMA, the type species of the genus was selected; otherwise, the most common and well‐preserved species was selected if the type species of the genus was absent during the period in Asia. If intraspecific variation was present, the characteristics of the dentition of the holotype were followed. In the middle Miocene, four genera of elasmotheres were considered to be synonyms of Hispanotherium (Deng & Chen, 2016); however, we treated them all as valid genera pending the discovery of more complete material. The subgenera of Hipparion from the late Neogene have been elevated to generic levels in recent analyses (Bernor, Wang, Liu, Chen, & Sun, 2018; Sun, Zhang, Liu, & Bernor, 2018a), and we followed this taxonomy.
3. RESULTS AND DISCUSSION
Taking advantages of the updated Cenozoic timescale in China (Deng et al., 2019a; Wang et al., 2019), and revisions of perissodactyl fossils from China (Bai, Wang, Li, et al., 2018; Deng & Chen, 2016), we compiled a count of the genera of the Cenozoic perissodactyls from Asia and calculated their premolar molarization values (Figures 2 and 3) (Appendix Tables A1 and A3). In general, perissodactyl generic diversity fluctuated in relation to paleoclimatic changes (Bai, Wang, Li, et al., 2018; Zachos, Dickens, & Zeebe, 2008). At the beginning of the early Eocene, perissodactyls had a relatively high diversity, which is consistent with the notion that different lineages of perissodactyls diverged as early as the earliest Eocene during Paleocene–Eocene Thermal Maximum (PETM) (Bai, Wang, & Meng, 2018b). An abrupt increase of diversity from the Arshantan to the Irdinmanhan is likely related to the rising temperatures of the Mid‐Eocene Climatic Optimum (MECO), but the high diversity in the Irdinmanhan may be biased by the overestimation of generic numbers (Bai, Wang, Li, et al., 2018). Deperetellids, helaletids, and paraceratheriids attained a relatively high or the maximum degree of premolar molarization (mean values ranging from 2.5 to 4.7) in the middle Eocene ALMA, the Irdinmanhan and Sharamurunian (Figure 3b) (Appendix Table A4); this may reflect an increasing ability to process larger amounts of low quality vegetation and the adoption of a relatively more open habitat (Bai, Wang, Li, et al., 2018; Bai, Wang, & Meng, 2018c; Gong et al., 2019, 2020), following the temperature decline after the MECO and the intense of seasonality (Figueirido, Janis, Perez‐Claros, De Renzi, & Palmqvist, 2012; Janis, 1989). However, the degree of premolar molarization shows a degree of fluctuation rather than an average sustained increase at the family level during the Paleogene. It is noteworthy that a few amynodontids possessed mesodont or hypsodont teeth in the middle‐late Eocene, when artiodactyls with teeth that were more lophodont and higher‐crowned (e.g., the oreodont Leptauchenia and the hypertragulid Hypisodus) also appeared in North America (Janis, 2000). After the Irdinmanhan, the tapiroid‐dominant perissodactyl faunas were gradually replaced by the rhinocerotoid‐dominant ones (Figure 2a–c), and the diversity of perissodactyls generally decreased. However, the most conspicuous event occurred between the Sharamurunian and the Ulangochuian (~39.9 Mya), rather than at the Eocene–Oligocene transition (EOT) (33.9 Mya), when the generic diversity of perissodactyls was reduced from around 33 to 13 (Figure 3a): Lophialetid tapiroids became extinct, deperetellids were reduced from four genera to a single genus (Figure 2b), and rhinocerotoids also suffered (Figure 2c). Similarly, the entire mammalian fauna from China showed a similar abrupt decrease after the Sharamurunian in terms of number of both species and genera (Wang, Meng, Ni, & Li, 2007). We named this event the “Ulan Gochu Decline,” which is likely comparable to the contemporaneous post‐Uintan decline of the North American land fauna (Berggren & Prothero, 1992; Prothero, 1994; Stucky, 1990) and the beginning of the White River Chronofauna in the late Duchesnean (Woodburne, 2004). The mammalian fauna turnover in the late Duchesnean was considered to have had more influence on the North American fauna than did events at the EOT (Berggren & Prothero, 1992; Meng & McKenna, 1998). The “Ulan Gochu Decline” was probably related to the sustained cooling following the MECO. The diversity of perissodactyls somewhat increased in the late Eocene (Ergilian) when the temperature rose again slightly (Figure 3a).
FIGURE 2.
Asian perissodactyl composition (in percentage of genera) and diversity of Tapiroidea and Rhinocerotoidea during the Cenozoic. (a) Histogram showing the composition of five main groups of perissodactyls during the Cenozoic in Asia. (b) Histogram showing the diversity and composition of Asian Tapiroidea during the Cenozoic. (c) Histogram showing the diversity and composition of Asian Rhinocerotoidea during the Cenozoic. Bu, Bumbanian; Ar, Arshantan; Ir, Irdinmanhan; Sh, Sharamurunian; Ul, Ulangochuian; Er, Ergilian; Hs, Hsandagolian; Ta, Tabenbulukian; Xs, Xiejian and Shanwangian; Tu, Tunggurian; Bh, Bahean, Bd, Baodean; Gz, Gaozhuangian; Mz, Mazegouan; Q, Quaternary
FIGURE 3.
Cenozoic Perissodactyl diversity in Asia and the degree of premolar molarization in different perissodactyl lineages. (a) Perissodactyl diversity and dental hypsodonty in relation to global climatic change (modified from Zachos et al. (2008)) with the most conspicuous decrease of diversity occurring during the latest middle Eocene (“Ulan Gochu Decline”); (b) degree of premolar molarization as represented by the mean value and standard error in different perissodactyl lineages during the Cenozoic in Asia. Equoids are excluded because they were scarce in Asia during the Paleogene. The red, yellow, and blue bars show the time periods of the “Ulan Gochu Decline,” “Mongolian Remodelling,” and the beginning of the Neogene, respectively. The degree of premolar molarization is assigned into five categories (Qiu & Wang, 2007): nonmolariform (1), premolariform (2), submolariform (3), semimolarifom (4), and molariform (5). EECO, Early Eocene Climatic Optimum; MECO, Mid‐Eocene Climatic Optimum; MMCO, Mid‐Miocene Climatic Optimum; and PETM, Paleocene–Eocene Thermal Maximum. The abbreviations along the horizontal axis are Asian Land Mammal Ages as in Figure 2
The Asian mammalian fauna turnover during the EOT is known as the “Mongolian Remodelling,” with the perissodactyl‐dominant fauna replaced by the rodent/lagomorph‐dominant fauna, a turnover that was attributed to the dramatic drop of temperature at the end of the Eocene (Meng & McKenna, 1998). Recent integrated analyses, however, suggest that the faunal turnover predated the Eocene–Oligocene boundary (Wasiljeff et al., 2020). The climatic deterioration during the EOT also affected primates in southern Asia, favoring the survival of strepsirhines over haplorhines (Ni, Li, Li, & Beard, 2016). In North America, primates (all nonanthropoids) were in decline through the middle Eocene and were essentially extinct by the late Eocene, although a single taxon is known from the latest Oligocene/earliest Miocene (Gunnell, Rose, & Rasmussen, 2008). Among perissodactyls, only brontotheres went extinct during the transition in Asia, as they did in North America (Figures 2a and 3a). The mean value of premolar molarization in hyracodontids gradually increased from 1.4 in the middle Eocene to 3.4 in the late Oligocene, approaching a moderate extent before their extinction by the end of Oligocene (Figure 3b) (Appendix Table A2). Amynodontids reached a peak of premolar molarization in the late middle Eocene with a relatively low value (mean value 2.3), which then decreased gradually to the lowest value (value 1) by the end of the Oligocene before their extinction (Figure 3b). In contrast, paraceratheriids, rhinocerotids, and tapirids, which had higher values of premolar molarization (>3), all survived into the Neogene (Figure 3b), with the implication that this greater degree of premolar molarization contributed to their advantage over those with lower values during the Oligocene/Miocene transition. In addition, premolar molarization type I was likely more advantageous than types II and III, as inferred from the fact that the groups with latter two types of dentitions went extinct before the end of the Paleogene, while almost all perissodactyls with type I dentitions survived into Neogene. Furthermore, the cascade of premolar molarization in a species varied in different groups, such as the premolars of paraceratheres becoming molarized from anterior to posterior teeth (Qiu & Wang, 2007), whereas those of tapiroids took place from posterior to anterior teeth.
In short, the Eocene mammal faunas from Asia showed two pulses of decline in diversity that may be related to global climatic changes. The first one (the “Ulan Gochu Decline”), comparable to the post‐Uintan decline of North American land fauna, took place after the MECO when temperatures declined slowly, and was reflected most clearly in changes in the diversity of perissodactyls. The second one (the “Mongolian Remodelling”), comparable to the European “Grande Coupure,” was at the EOT and may have been a response to the sudden global drop of temperature. It is noteworthy that the endemic Asian taxa sporadically dispersed to North America during the Paleogene, but there was apparently little dispersal in the opposite direction (Beard, 1998). A very few taxa of Asian perissodactyls, such as early equids and palaeotheres, are considered to have dispersed from North America or Europe to Asia during the Paleogene (Bai, 2017; Bai et al., 2018b; Woodburne, 2004), so the immigrants would have had limited impact on the Paleogene Asian perissodactyl diversity.
In the early Miocene, rhinocerotids replaced paraceratheriids and dominated the perissodactyl groups (Figure 2c). The Chinese rhinocerotid diversity and responses to the Neogene climatic change have been investigated by Deng and Chen (2016) and Deng and Downs (2002), and it is not necessary to replicate them here. However, the following statements need to be addressed: The appearance of the rhinocerotid Hispanotherium with hypsodont teeth in the middle Miocene indicates a more abrasive diet and a slightly more open and drier habitat, which is enhanced in the late Miocene with the spread of Old World savanna palaeobiome (Kaya et al., 2018). The decrease of rhinocerotid diversity and the rise of equid diversity during the mid‐late Miocene transition have been mainly attributed to the cooling event and the dispersal of hipparionine equids from North America to Eurasia in the late Miocene (MacFadden, 1992). During the late Miocene, the hypsodont equids and rhinocerotids coexisted with brachydont or mesodont ones (Figure 3a; Appendix Table A1), but the proportion of hypsodont groups gradually increased. The decreased diversity of rhinocerotids in the early Pliocene was probably due to the expansion of C4 grasses (Han, Wang, & Liu, 2002), although the climate was relatively warm and humid except in the high altitude, cold Tibetan Plateau (Deng et al., 2019b). The hypsodont equids became the dominant taxa among perissodactyl groups in the Pliocene (Figure 3a; Appendix Table A1). In addition, the distribution of Chinese mammals has also been influenced by the East Asian Monsoon (Qiu & Li, 2005), which was probably initiated in the Eocene and intensified in the late Miocene, driven by the uplift of the Tibetan Plateau (Qiu & Li, 2005; Quan et al., 2014). The degree of premolar molarization in tapirids, rhinocerotids, and equids remained high (mean value >4.2) and virtually stable through the Neogene, and the main modification of the teeth in the latter two clades lay in increasing the height of the molar/premolar crowns and the complexity of the occlusal enamel (Figure 3, Appendix Table A4) (Deng & Chen, 2016; Famoso, Davis, Feranec, Hopkins, & Price, 2016; Fortelius et al., 2002; Simpson, 1951). Paraceratheriids, with a relatively lesser degree of premolar molarization and persistently mesodont teeth, disappeared after the early Miocene, possibly related to the competition from proboscideans and their effects on the environment (Prothero, 2013).
Among perissodactyls, chalicotheres were conservative with almost unmolarized premolars, and they had a relatively low diversity from the early Eocene to the early Pleistocene (Figure 3). Their extinction in the Plio‐Pleistocene may be attributed to climatic change.
To investigate the evolution and relationships of variable degrees of premolar molarization among different perissodactyl lineages, mean values of premolar molarization degrees at ancestral nodes were reconstructed on a phylogenetic tree of Perissodactyla by a parsimonious criterion (Figure 4). The mean values at the ancestral nodes generally increased from the basal nodes to more derived nodes. The mean value at the equoid ancestral node (Node A) is low and then increased in later equoids. Chalicotheres and brontotheres diverged from a common ancestor (Node B) with a low mean value. Among Ceratomorpha (Node C), the stem taxa Isectolophidae and Lophialetidae had low mean values, and their premolars remained unmolarized, while the common ancestor of crown Ceratomorpha (Node D) had an increasing degree of premolar molarization. The mean value of premolar molarization increased toward the Tapiridae–Deperetellidae clade from the ancestral node with the Helaletidae (Node E), and Deperetellidae was the first group to evolve a relatively high degree of premolar molarization. Among Rhinocerotoidea (Node F), the mean values of premolar molarization were relatively low in basal Hyrachyidae and Hyracodontidae and gradually increased in the lineage leading to the Paraceratheriidae and Rhinocerotidae. However, Amynodontidae had a decreasing mean value from the ancestral node. The explanation for this reverse is uncertain and would be resolved by better data on basal taxa and a more comprehensive phylogenetic analysis of Perissodactyla in near future.
FIGURE 4.
Phylogeny and distribution of perissodactyls from Asia showing the ancestral mean values of degrees of premolar molarization. A proposed phylogeny of Perissodactyla was combined from McKenna and Bell (1997), Rose et al. (2014), and updated data. Each family name is followed by information (in parentheses) listing (separated by slashes): the mean value of premolar molarization, the pattern of premolar molarization, and the hypsodonty level. The ancestral mean values were reconstructed using the parsimonious criterion with the linear cost assumption in Mesquite 3.6 (Maddison & Maddison, 2018). The letters from A to E at the nodes refer to the following clades: A for Equoidea, B for Selenida, C for Ceratomorpha, D for crown Ceratomorpha, E for Tapiroidea, and F for Rhinocerotoidea. B, brachydont; M, Mesodont; H, Hypsodont; UGD, “Ulan Gochu Decline.”
4. CONCLUSIONS
Different patterns of premolar molarization likely played an important role in patterns of perissodactyl diversity in concert with global climatic changes during the Cenozoic in Asia. Most perissodactyls with a relatively higher degree of premolar molarization, and with this molarization formed by the hypocone, survived into Neogene; whereas those with less molarized premolars, and with molarization initiated by the deformation of existing ridges and cusps, went extinct by the end of Oligocene. Although perissodactyl diversity has generally declined since the early middle Eocene, the most conspicuous decrease (the Ulan Gochu Decline) occurred during the latest middle Eocene rather than at the Eocene–Oligocene boundary in Asia, as conventionally thought. However, whether this event also impacted other fossil mammals in Asia needs further investigation.
CONFLICT OF INTEREST
None declared.
AUTHOR CONTRIBUTIONS
Bin Bai: Data curation (equal); formal analysis (equal); funding acquisition (equal); investigation (equal); methodology (equal); project administration (equal); software (lead); visualization (lead); writing–original draft (lead); writing–review and editing (lead). Jin Meng: Methodology (equal); project administration (equal); supervision (equal); writing–original draft (supporting). Christine M. Janis: Formal analysis (equal); investigation (equal); methodology (equal); writing–original draft (supporting); writing–review and editing (supporting). Zhao‐Qun Zhang: Data curation (equal); formal analysis (equal); funding acquisition (equal); methodology (equal). Yuan‐Qing Wang: Funding acquisition (equal); project administration (equal); supervision (equal).
ACKNOWLEDGMENTS
Funding was provided by grants from the National Natural Science Foundation of China (41672014), the Strategic Priority Research Program of Chinese Academy of Sciences (grant no. XDB26000000), Youth Innovation Promotion Association CAS (2017101), China Scholarship Council, Geological Investigation Project of the China Geological Survey (DD20190009), and the Frick Fund from the Division of Paleontology, American Museum of Natural History. We thank Zhan‐Xiang Qiu, J. Hooker, L. Holbrook, M. Coombs, Tao Deng, Ying‐Qi Zhang, and Bo‐Yang Sun for discussion. We are grateful to Yong Xu for the drawing of Figure 1. Thanks to two anonymous reviewers for constructive comments that greatly improve this manuscript.
APPENDIX 1.
TABLE A1.
Values of the degree of premolar molarization and Hypsodonty in Cenozoic perissodactyls in Asia
Family | Genus | P2 | P3 | P4 | M. | N. | H. | Ref. | |
---|---|---|---|---|---|---|---|---|---|
Bumbanian | |||||||||
Tapir. | 'Isecto.' | Meridiolophus | ? | 6 | Bai, Wang, Meng, Li, and Jin (2014) | ||||
Chowliia | 1 | 1 | 1 | 1 | Tong and Wang (2006) | ||||
Homogalax | 1 | 1 | 1 | Tong and Wang, (2006) | |||||
Karagalax | 1 | 1 | 1 | Maas, Hussain, Leinders, and Thewissen (2001) | |||||
Ampholophus | 1 | 1 | 1 | 1 | Tong and Wang (2006), Wang and Tong (1996) | ||||
Orientolophus | ? | Bai et al. (2018b), Ting (1993) | |||||||
Hela. | Heptodon | 1 | 2 | Xu, Yan, Zhou, Han, and Zhong (1979) | |||||
Vastanolophus | ? | Smith et al. (2015) | |||||||
Loph. | Minchenoletes | 1 | 1 | 2 | Wang et al. (2011) | ||||
Ampholophus | 1 | 1 | 1 | 1 | Tong and Wang (2006) | ||||
Indet. | Cambaylophus | ? | 2 | Kapur and Bajpai (2015) | |||||
Orientolophus | ? | Ting (1993) | |||||||
Rhino. | Hyraco. | Pataecops | 1 | 1 | 1 | 1 | 3 | Radinsky (1965), Wang et al. (2011) | |
Indet. | Minchenoletes | 1 | 1 | Wang et al. (2011) | |||||
Yimengia | |||||||||
Equ. | Equidae | Erihippus | ? | 2 | Bai et al. (2018b), Ting (1993) | ||||
Ghazijhippus | 1 | 1 | 1 | 1 | Missiaen and Gingerich (2014) | ||||
Bron. | Danjiangia | 1 | 1 | 1 | 1 | 1 | Bai et al. (2018b), Wang (1995) | ||
Ch. | Eomo. | Protomoropus | 1 | 1 | 2 | Hooker and Dashzeveg (2004) | |||
Pappomoropus | ? | Tong and Wang (2006) | |||||||
Arshantan | |||||||||
Tapir. | 'Isecto.' | Gandheralophus | 1 | 1 | 1 | 2 | Missiaen and Gingerich (2012) | ||
Isectolophus | 1 | 1 | 1 | Lucas, Holbrook, and Emry (2003) | |||||
Helal. | Heptodon | 1 | 1 | Qi (1987) | |||||
Loph. | Schlosseria | 1 | 1 | 1 | 1 | 2 | Radinsky (1965) | ||
Parabreviodon | 1 | 1 | 1 | 1 | Reshetov (1975) | ||||
Dep. | Irenolophus | 1 | 1 | 1 | 1 | 1 | Bai et al. (2019) | ||
Rhino. | Hy. | Hyrachyus | 3 | 1 | Qi (1987) | ||||
Hyraco. | Ephyrachyus | 4 | 3 | 3 | 3.3 | 2 | |||
Triplopus | ? | ||||||||
Para. | Pappaceras | 3 | 3 | 3 | 3 | 2 | Lucas, Schoch, and Manning (1981), Wang, Bai, Meng, and Wang (2016), Wood (1963) | ||
gen. nov. | ? | ||||||||
Amy. | Euryodon | ? | 1 | Xu et al. (1979) | |||||
Indet. | Yimengia | 1 | |||||||
Equ. | Equidae | Propalaeotherium | ? | 1 | Zdansky (1930) | ||||
Bron. | Desmatotitan | ? | 4 | Qi (1987) | |||||
Paleosyops | 1 | Russell and Zhai (1987), Xu et al. (1979) | |||||||
Balochititanops | 1 | 1 | Missiaen, Gunnell, and Gingerich (2011) | ||||||
Eotitanops | 1 | 1 | Missiaen et al. (2011) | ||||||
Ch. | 'Eomo.’ | Litolophus | 1 | 1 | 1 | 1 | 2 | Bai, Wang, and Meng (2010), Colbert (1934), Missiaen and Gingerich (2012), Radinsky (1964) | |
Grangeria | 1 | 1 | 1 | 1 | Zdansky (1930) | ||||
Irdinmanhan | |||||||||
Tapir. | Isecto. | Sastrilophus | 1 | 1 | 1 | Sahni and Khare (1971) | |||
Helal. | Paracolodon | 4 | 4 | 4 | 4 | 4 | Bai, Wang, Mao, and Meng (2017), Matthew and Granger (1925c) | ||
Desmatotherium | 3 | 3 | 3 | 3 | Bai et al. (2017) | ||||
Helaletes | 2 | Gabunia (1961), Radinsky (1965) | |||||||
Rhodopagus | 1 | 1 | 1 | ||||||
Loph. | Lophialetes | 1 | 1 | 1 | 1 | 6 | Matthew and Granger (1925c), Radinsky (1965) | ||
Simplaletes | ? | Qi (1980) | |||||||
Zhongjianletes | ? | Ye (1983) | |||||||
Schlosseria | 1 | 1 | 1 | 1 | Tong and Lei (1984) | ||||
Kalakotia | 1 | 2 | 1 | 1.3 | Ranga Rao (1972) | ||||
Eoletes | 1 | 1 | 1 | 1 | Biryukov (1972) | ||||
Dep. | Teleolophus | 4 | 4 | 4 | 4 | 3 | Radinsky (1965), Tong and Lei (1984) | ||
Pachylophus | ? | Tong and Lei (1984) | |||||||
Deperetella | 5 | Chow, Li, and Zhang (1973), Reshetov (1979) | |||||||
Rhino. | Hy. | "Hyrachyus" | 4 | 3 | 3 | 3.3 | 1 | Huang and Wang (2002) | |
Hyraco. | Triplopus | 1 | 1 | 1 | 1 | 4 | Matthew and Granger (1925c), Radinsky (1967) | ||
Prohyracodon meridionale | 1 | 2 | 2 | 1.7 | Chow et al. (1973), Chow and Xu (1961), Xu et al. (1979) | ||||
Caenolophus sp. | |||||||||
Ilianodon | ? | Chow and Xu (1961) | |||||||
Para. | Forstercooperia | 4 | 3 | 3 | 3.3 | 1 | Chow et al. (1973), Sahni and Khare (1973), Wang, Bai, Meng, and Wang (2018), Wood (1938) | ||
Amy. | Rostriamynodon | 1 | 1 | 1 | 1 | 6 | Wall and Manning (1986) | ||
Sianodon | 1 | 1 | Chow and Xu (1965), Xu et al. (1979) | ||||||
Lushiamynodon | 1 | 1 | Chow and Xu (1965) | ||||||
Amynodon | 1 | Chow, Xu, and Zhen (1964) | |||||||
Sharamynodon | 1 | Zheng (1978) | |||||||
Teilhardia? sp. | ? | Zheng, Tang, Zhai, Ding, and Huang (1978) | |||||||
Indet. | Breviodon | ? | 2 | Huang (1982), Radinsky (1965) | |||||
Yimengia | 1 | 1 | 1 | 1 | Wang (1988) | ||||
Equ. | Equidae | Gobihippus | ? | 1 | Dashzeveg (1979) | ||||
Bron. | Microtitan | 1 | 1 | 1 | 1 | 14 | Granger and Gregory (1943), Mihlbachler (2008) | ||
Hyotitan | ? | Granger and Gregory (1943), Mihlbachler (2008) | |||||||
Metatelmatherium | 2 | 2 | 2 | 2 | Granger and Gregory (1943), Mihlbachler (2008) | ||||
Protitian | 2 | 2 | 2 | 2 | Granger and Gregory (1943), Mihlbachler (2008), Xu et al. (1979) | ||||
Gnathotitan | 2 | 2 | 2 | 2 | Granger and Gregory (1943), Mihlbachler (2008) | ||||
Metatitan | 4 | 4 | 4 | 4 | Granger and Gregory (1943), Mihlbachler (2008) | ||||
Desmatotitan | ? | Granger and Gregory (1943), Mihlbachler (2008) | |||||||
Acrotitan | ? | Ye (1983) | |||||||
Epimanteoceras | 4 | 4 | 2 | 3.3 | Granger and Gregory (1943), Mihlbachler (2008) | ||||
Arctotitan | 1 | 1 | 1 | Wang (1978) | |||||
Nanotitanops | 2 | 2 | 2 | 2 | Qi and Beard (1996), Qi and Beard (1998) | ||||
Mulkrajanops | 2 | 2 | 2 | Kumar and Sahni (1985), Mihlbachler (2008) | |||||
Pakotitanops | ? | West (1980) | |||||||
Palaeosyops sp. | Gabounia (1977) | ||||||||
Ch. | 'Eomo' | Eomoropus | 1 | 2 | Chow et al. (1973) | ||||
Lunania | ? | Chow (1957) | |||||||
Sharamurunian | |||||||||
Tapir. | Hela. | Colodon | 4 | 4 | 4 | 2 | Takai (1939) | ||
Rhodopagus? | 1 | Matthew and Granger (1925a), Radinsky (1965) | |||||||
Loph. | Simplaletes | ? | 1 | Zhang and Qi (1981) | |||||
Dep. | Deperetella | 4 | 5 | 5 | 4.7 | 4 | Matthew and Granger (1925a), Radinsky (1965) | ||
Diplolophodon | 5 | 5 | 5 | Zdansky (1930), Zong, Chen, Huang, and Xu (1996) | |||||
Teleolophus | 4 | Zong et al. (1996) | |||||||
Bahinolophus | 5 | 5 | 5 | 5 | Tsubamoto, Egi, Takai, Sein, and Maung (2005) | ||||
Rhino. | Hy. | Akauhyus | 1 | 1 | 1 | Huang and Qi (1982), Kordikova (1998) | |||
Hyraco. | Triplopus? | ? | 3 | Matthew and Granger (1925a), Radinsky (1965) | |||||
Prohyracodon major | 2 | 2 | 2 | 2 | Zong et al. (1996) | ||||
Lijiangia | 1 | 1 | Zong et al. (1996) | ||||||
Para. | Juxia | 4 | 4 | 2 | 4.7 | 4 | Qiu and Wang (2007) | ||
Imequincisoria | Wang (1976), Zhai (1977) | ||||||||
Forstercooperia | 3 | 3 | 2 | 2.7 | Qiu and Wang (2007), Wang et al. (2018), Wang (1976) | ||||
Urtinotherium | 2 | 2 | 2 | 2 | Chow (1958), Qiu and Wang (2007) | ||||
Amy. | Sharamynodon | 1 | 1 | 1 | 1 | 8 | Osborn (1936) | ||
Sianodon | 1 | 1 | 1 | 1 | Xu (1965), Xu (1966), Xu (1978) | ||||
Lushiamynodon | ? | Xu (1966) | |||||||
Gigantamynodon | ? | Xu (1966) | |||||||
Caenolophus | 1 | 1 | 1 | Matthew and Granger (1925a), Shi (1989) | |||||
Huananodon hui | 5 | 5 | 2 | You (1977) | |||||
Paramynodon | 1 | 1 | 1 | 1 | Colbert (1938) | ||||
Procadurcodon | 1 | 1 | 1 | Gromova (1960) | |||||
Rh. | Guxia simplex | 4 | 4 | 1 | You (1977) | ||||
indet. | Breviodon | ? | 2 | Tong and Wang (1980), Zong et al. (1996) | |||||
Indolophus | 1 | 2 | 2 | 1.7 | Pilgrim (1925), Radinsky (1965) | ||||
Equ. | Palae. | Lophiohippus | ? | 1 | Bai (2017) | ||||
Bron. | Rhinotitan | 4 | 4 | 4 | 4 | 4 | Granger and Gregory (1943), Mihlbachler (2008) | ||
Dianotitan | 4 | 4 | 4 | 4 | Chow and Hu (1959), Chow, Zhang, and Ding (1974) | ||||
Sivatitanops | 1 | 1 | Mihlbachler (2008), Pilgrim (1925) | ||||||
Bunobrontops | ? | Holroyd and Ciochon (2000) | |||||||
Ch. | 'Eomo.' | Eomoropus | 1 | 1 | 2 | Shi (1989), Tsubamoto et al. (2005), Zdansky (1930) | |||
Grangeria | 1 | Zdansky (1930) | |||||||
Ulangochuian | |||||||||
Tapir. | Dep. | Teleolophus | 4 | 4 | 4 | Radinsky (1965) | |||
Rhino. | Hyraco. | Ulania | 2 | 2 | 1 | Qi (1990) | |||
Para. | Juxia | 3 | 2 | 2.5 | 2 | Qi and Zhou (1989) | |||
Urtinotherium | 4 | 3 | 3 | 3.3 | Qiu and Wang (2007) | ||||
Amy. | Amynodontopsis | 1 | 1 | 1 | 1 | 4 | Wall (1981) | ||
Amynodon | 1 | Qi (1975) | |||||||
Paracadurcodon | ? | Xu (1966) | |||||||
Huananodon hypsodonta | 5 | 5 | 5 | 2 | You (1977) | ||||
Rh. | Guxia youjiangensis | 4 | 4 | 4 | 4 | 1 | You (1977) | ||
Bron. | Pachytitan | 4 | 4 | 4 | 4 | 3 | Granger and Gregory (1943), Mihlbachler (2008) | ||
Titanodectes | ? | Granger and Gregory (1943), Mihlbachler (2008) | |||||||
Embolotherium | 4 | 5 | 5 | 4.7 | Granger and Gregory (1943), Mihlbachler (2008), Qi (1975) | ||||
Ch. | Chal. | Schizotherium | 1 | 1 | Zhang (1976) | ||||
Ergilian | |||||||||
Tapir. | Hela. | Paracolodon | 4 | 4 | 1 | 3 | 1 | Bai et al. (2017), Matthew and Granger (1925b) | |
Rhino. | Hyraco. | Ardynia | 5 | 3 | 3 | 3.3 | 5 | Bai, Wang, and Zhang (2018d), Matthew and Granger (1923) | |
Proeggysodon | ? | Bai and Wang (2012) | |||||||
Prohyracodon | ? | Dashzeveg (1991) | |||||||
Armania | 1 | 1 | 1 | 1 | Dashzeveg (1991) | ||||
Guangnanodon | Wang, Bai, Gao, Huang, and Wang (2013) | ||||||||
Para. | Urtinotherium | 4 | 3 | 3.5 | 1 | Qi (1989), Qiu and Wang (2007), Tang (1978) | |||
Amy. | Zaisanamynodon | 1 | 1 | 1 | 1 | 4 | Lucas, Emry, and Bayshashov (1996) | ||
Gigantamynodon | 1 | 3 | 2 | Gromova (1954), Tang (1978), Xu (1961) | |||||
Cadurcodon | 1 | 1 | 3 | 1.7 | Gromova (1954), Xu (1961) | ||||
Hypsamynodon | ? | 3 | Gromova (1954) | ||||||
Rh. | Symphysorrachis | ? | 2 | Beliayeva (1954) | |||||
Ronzotherium | 4.5 | 2.5 | 2.5 | 3.2 | Dashzeveg (1991), Heissig (1969) | ||||
Equ. | Palae. | Qianohippus | 5 | 1 | 1 | 2.3 | 1 | Bai (2017), Miao (1982) | |
Bron. | Embolotherium andrewsi | 4 | 4 | 4 | 4 | 6 | Granger and Gregory (1943), Mihlbachler (2008), Qi (1975) | ||
Parabrontops | 2 | 5 | 5 | 4 | Granger and Gregory (1943), Mihlbachler (2008), Qi (1975) | ||||
Pygmaetitan | 2 | 2 | 2 | 2 | Miao (1982) | ||||
Metatitan | 4 | 4 | 4 | 4 | Yanovskaya (1980) | ||||
Protembolotherium | 4 | 4 | 4 | 4 | Yanovskaya (1954) | ||||
Titanodectes | ? | Granger and Gregory (1943) | |||||||
Ch. | Chal. | Schizotherium | 1 | 1 | 1 | 1 | 1 | Matthew and Granger (1923) | |
Hsandagolian | |||||||||
Tapir. | Hela. | Colodon | 4 | 4 | 1 | 1 | Borissiak (1918) | ||
Rhino. | Hyraco. | Ardynia | 3.4 | 3 | 1 | Beliayeva (1952) | |||
Triplopus? | ? | 1 | Beliayeva (1954), Radinsky (1967) | ||||||
Allacerops | 4 | 3 | 3 | 3.3 | 1 | Borissiak (1915) | |||
Para. | Paraceratherium | 4 | 3 | 3 | 3.3 | 3 | 1 | Qiu and Wang (2007), Wang, Chang, Meng, and Chen (1981) | |
Dzungariotherium | 4 | 1 | Qiu and Wang (2007), Wang et al. (1981) | ||||||
Turpanotherium sp. | ? | 2 | |||||||
Amy. | Cadurcodon | 1.7 | 1 | 1 | Huang (1982), Wang et al. (1981) | ||||
Rh. | Aceratherium sp. | 4 | 2 | ? | Huang (1982) | ||||
Aprotodon | 4 | 1 | Wang et al. (1981) | ||||||
Ch. | Chal. | Schizotherium | 1 | 1 | 1 | Borissiak (1920), Gabunia (1951) | |||
Tanbenbulukian | |||||||||
Rhino. | indet. | Meschotherium | ? | ? | Gabunia (1964) | ||||
Hyraco. | Ardynia | 3.4 | 2 | 2 | Qiu, Wang, and Deng (2004) | ||||
Allacerops | 3.3 | 1 | |||||||
Para. | Dzungariotherium | 5 | 4 | 4 | 4.3 | 5 | 1 | Qiu et al. (2004), Qiu (1973), Qiu and Wang (2007), Xu and Wang (1978) | |
Paraceratherium | 3.3 | 1 | Qiu and Wang (2007), Xu and Wang (1978) | ||||||
Turpanotherium | ? | 2 | Qiu and Wang (2007) | ||||||
Aralotherium | 4 | 3 | 3 | 3.3 | 1 | Gromova (1959), Qiu and Wang (2007), Ye, Meng, and Wu (2003) | |||
Benaratherium | ? | 1 | Gabunia (1964) | ||||||
Amy. | Cadurcotherium | 1 | 1 | 1 | 1 | De Bonis (1995), Pilgrim (1910), Pilgrim (1912) | |||
Rh. | Aceratherium | 4 | 4 | 4 | 4 | 2 | 2 | Borissiak (1944) | |
Aprotodon | 4 | 4 | 4 | 4 | 1 | Qiu and Xie (1997), Qiu et al. (2004) | |||
Ch. | Chal. | Schizotherium | 1 | 1 | 1 | Qiu et al. (2004), Zhai (1978a) | |||
Xiejian + Shanwangian | |||||||||
Tapir. | Tap. | Plesiotapirus | 5 | 5 | 5 | 5 | 1 | 1 | Qiu, Yan, and Sun (1991) |
Rhino. | Para. | Turpanotherium | 4 | 4 | 1 | 2 | Qiu and Wang (2007) | ||
Rh‐Ace. | Plesiaceratherium | 4 | 4 | 4 | 4 | 6 | 1 | Lu, Zheng, Sullivan, and Tan (2016), Young (1937) | |
Aceratherium | 5 | ? | Pilgrim (1912) | ||||||
Subchilotherium | 5 | 5 | 5 | 5 | 1 | Colbert (1935), Deng and Gao (2006) | |||
Brachypotherium | 5 | 1 | Khan, Akhtar, Khan, and Shaheen (2012), Pilgrim (1910) | ||||||
Aprotodon | 4 | 1 | |||||||
Lartetotherium | 4 | 1 | Chen and Wu (1976), Ginsburg (1974), Qiu et al. (2013) | ||||||
Rh‐Rhi. | "Dicerorhinus" | 5 | 5 | 4 | 4.7 | 2 | 1 | Pilgrim (1910) | |
Bugtirhinus | 4 | 4 | 4 | 1 | Antoine and Welcomme (2000) | ||||
Rh‐Dic. | Protaceratherium | 5 | 1 | 2 | Antunes and Ginsburg (1983) | ||||
Equ. | Anchitherium | 5 | 1 | 1 | Colbert (1939) | ||||
Ch. | Chal. | Phyllotillon | 3 | 4 | 1 | Forster‐Cooper (1920), Pilgrim (1910), Qiu, Wang, and Xie (1998) | |||
Chalicotherium | 1 | 1 | Forster‐Cooper (1920) | ||||||
Anisodon | 1 | 1 | |||||||
Borissiakia | 1 | 1 | 1 | 1 | Borissiak (1946), Butler (1965) | ||||
Tunggurian | |||||||||
Tapir. | Tap. | Plesiotapirus | 5 | 1 | 1 | Qiu et al. (1991) | |||
Rhino. | Rh‐Ace. | Aceratherium | 5 | 5 | 2 | ||||
Subchilotherium | 5 | 1 | Colbert (1935), Deng and Gao (2006) | ||||||
Brachypotherium | 5 | 1 | |||||||
Plesiaceratherium | 4 | 1 | |||||||
Acerorhinus | 5 | 5 | 5 | 5 | 1 | Cerdeño (1996) | |||
Rh‐Rhi. | Hispanotherium | 4 | 4 | 4 | 4 | 7 | 3 | Cerdeño (1996), Zhai (1978b) | |
H. ("Tesselodon") | 3 | Yan (1979) | |||||||
H.("Caementodon") | 3 | Guan (1988) | |||||||
H.("Huaqingtherium") | ? | Guan (1993) | |||||||
H. ("Beliajevina") | 3 | Heissig (1974) | |||||||
Shennongtherium | 4 | 4 | 4 | 4 | ? | Huang and Yan (1983) | |||
Alicornops | 5 | 5 | 5 | 5 | 1 | Deng (2006a) | |||
Equ. | Anchitherium | 5 | 1 | 1 | |||||
Ch. | Chal. | Anisodon | 1 | 2 | 1 | ||||
Chalicotherium | 1 | 1 | 1 | 1 | 1 | Colbert (1934) | |||
Bahean | |||||||||
Tapir. | Tap. | Tapirus | 5 | 5 | 5 | 5 | 1 | 1 | Deng, He, and Chen (2008) |
Rhino. | Rh‐Ace. | Chilotherium | ? | 4 | 2 | Deng (2006b) | |||
Subchilotherium | 5 | 1 | Deng and Gao (2006) | ||||||
Acerorhinus | 5 | 1 | |||||||
Brachypotherium | 5 | 1 | |||||||
Rh‐Rhi. | Gaindatherium | 5 | 5 | 5 | 5 | 6 | 1 | Colbert and Brown (1934) | |
Parelasmotherium | 4 | 4 | 4 | 4 | 3 | Deng (2001b), Deng (2007) | |||
Sinotherium | 4 | 4 | 4 | 4 | 3 | Ringström (1923) | |||
Ningxiatherium | 4 | 4 | 4 | 4 | 3 | Chen (1977), Deng (2008) | |||
Diceros | 5 | 5 | 5 | 5 | 1 | Deng and Qiu (2007) | |||
Dicerorhinus | 5 | 1 | Savage and Russell (1983) | ||||||
Equ. | Anchitherium | 5 | 5 | 1 | |||||
Sinohippus | 5 | 5 | 5 | 5 | 1 | Hou, Deng, He, and Chen (2007), Zhai (1962) | |||
Cormohipparion | 5 | 3 | MacFadden and Bakr (1979) | ||||||
Hipparion (Hipparion) | 5 | 3 | Qiu and Xie (1998), Qiu, Huang, and Guo (1987) | ||||||
H. (Sivalhippus) | 5 | 3 | Sun et al. (2018a) | ||||||
Ch. | Chal. | Chalicotherium | 1 | 1 | 1 | 1 | 4 | 1 | Colbert (1934) |
Nestoritherium | 1 | 1 | 1 | 1 | 1 | Chen, Deng, He, and Chen (2012) | |||
Ancylotherium | 1 | 1 | |||||||
Anisodon | 1 | 1 | |||||||
Baodean | |||||||||
Tapir. | Tap. | Tapirus | 5 | 5 | 5 | 5 | 1 | 1 | Ji et al. (2015) |
Rhino. | Rh‐Ace. | Chilotherium | 4 | 4 | 4 | 4 | 4 | 2 | Deng (2001a), Sun, Li, and Deng (2018b) |
Dihoplus | 4 | 2 | Pandolfi, Gasparik, and Piras (2015) | ||||||
Shansirhinus | 5 | 4 | 4 | 4.3 | 2 | Deng (2005a) | |||
Acerorhinus | 5 | 1 | |||||||
Rh‐Rhi. | Iranotherium | 4 | 4 | 4 | 4 | 4 | 3 | Deng (2005b) | |
Sinotherium | 4 | 3 | |||||||
Dicerorhinus | 5 | 1 | Deng and Chen (2016), Ringström (1924) | ||||||
Rhinoceros | 5 | 1 | Colbert (1935), Falconer and Cautley (1847), Zin Maung Maung et al. (2010) | ||||||
Equ. | Sinohippus | 5 | 7 | 1 | |||||
Hipparion (Hipparion) | 5 | 3 | Qiu et al. (1987) | ||||||
H. (Sivalhippus) | 5 | 3 | Sun et al. (2018a) | ||||||
H. (Hippotherium) | 3 | Sun (2018) | |||||||
H. (Cremohipparion) | 3 | Sun (2018) | |||||||
H. (Baryhipparion) | 3 | ||||||||
Shanxihippus | 5 | 3 | Bernor et al. (2018) | ||||||
Ch. | Chal. | Nestoritherium | 1 | 2 | 1 | Xue and Coombs (1985) | |||
Ancylotherium | 1 | 1 | |||||||
A. (="Huanghotherium") | ? | Tong, Huang, and Qiu (1975) | |||||||
A. (="Gansodon") | Wu and Chen (1976) | ||||||||
Gaozhuangian | |||||||||
Tapir. | Tap. | Tapirus | 5 | 1 | 1 | ||||
Rhino. | Rh‐Ace. | Dihoplus | 4 | 2 | 2 | ||||
Shansirhinus | 4.3 | 2 | |||||||
Equ. | Hipparion (Hipparion) | 5 | 5 | 3 | |||||
H. (Plesiohipparion) | 3 | ||||||||
H. (Cremohipparion) | 3 | ||||||||
H. (Baryhipparion) | 3 | ||||||||
Proboscidipparioon | 5 | 3 | Deng (2012) | ||||||
Ch. | Chal. | Ancylotherium | 1 | 1 | 1 | ||||
Mazegouan | |||||||||
Tapir. | Tap. | Tapirus | 5 | 1 | 1 | ||||
Rhino. | Rh‐Ace. | Dihoplus | 4 | 1 | 2 | ||||
Rh‐Rhi. | Dicerorhinus | 5 | 3 | 1 | Zin Maung Maung et al. (2010) | ||||
Rhinoceros | 5 | 1 | |||||||
Coelodonta | 4 | 4 | 4 | 4 | 3 | Deng et al. (2011) | |||
Equ. | Hipparion (Plesiohipparion) | 5 | 4 | 3 | |||||
H. (Baryhipparion) | 3 | ||||||||
Proboscidipparioon | 5 | 3 | |||||||
Plesippus | 5 | 3 | Sun (2018) | ||||||
Quaternary | |||||||||
Tapir. | Tap. | Tapirus | 5 | 2 | 1 | ||||
Megatapirus | 5 | 5 | 5 | 5 | 1 | Colbert and Hooijer (1953) | |||
Rhino. | Rh‐Rhi. | Dicerorhinus | 5 | 4 | 1 | ||||
Rhinoceros | 5 | 1 | Yan, Wang, Jin, and Mead (2014), Zin Maung Maung et al. (2010) | ||||||
Coelodonta | 4 | 4 | 5 | 4.3 | 3 | Deng (2002) | |||
Stephanorhinus | 5 | 2 | Tong and Wu (2010) | ||||||
Equ. | Hipparion (Plesiohipparion) | 5 | 4 | 3 | |||||
Proboscidipparioon | 5 | 3 | Deng (2012) | ||||||
Equus | 5 | 3 | |||||||
Plesippus | 5 | 3 | Sun (2018) | ||||||
Ch. | Chal. | Hesperotherium | 1 | 1 | 2 | 1 | Qiu (2002), Tong (2006) | ||
Nestoritherium | 1 | 1 | 1 | 1 | 1 | Falconer (1868) |
Almost all Eocene perissodactyls from Asia were considered to have brachydont teeth, which were left blank in the table.
Abbreviations: Ace., Aceratheriinae; Amy., Amynodontidae; Bron., Brontotheriidae; Ch., Chalicotherioidea; Chal., Chalicotheriidae; Dep., Deperetellidae; Dic., Diceratheriinae; Eomo., Eomoropidae; Equ., Equoidea; H., Hypsodonty; Hela., Helaletidae; Isecto., Isectolophidae; Hy., Hyrachyidae; Hyraco., Hyracodontidae; Loph., Lophialetidae; M., mean value of degree of premolar molarization; N., number of genera in each family; Palae., Palaeotheriidae; Para., Paraceratheriidae; Rh., Rhinocerotidae; Rhi., Rhinocerotinae; Rhino., Rhinocerotoidea; Tap., Tapiridae; Tapir., Tapiroidea.
TABLE A2.
The mean value of premolar molarization degrees in different perissodactyl families through the post‐Paleocene Asian Land Mammal Ages (ALMA)
ALMA | Isecto. | Hela. + Tapir. | Loph. | De. | Hy. | Hyraco. | Para. | Amy. | Rhino. | Bron. | Chali. |
---|---|---|---|---|---|---|---|---|---|---|---|
Bumbanian | 1 | 1 | 1 | 1 | 1 | 1 | |||||
Arshantan | 1 | 1 | 1 | 1 | 3 | 3.3 | 3 | 1 | 1 | ||
Irdinmanhan | 1 | 2.5 | 1.1 | 4.5 | 3.3 | 1.4 | 3.3 | 1 | 2.1 | 1 | |
Sharamurunian | 2.5 | ? | 4.7 | 1 | 1.5 | 3.1 | 1.7 | 4 | 3 | 1 | |
Ulangochuian | 4 | 2 | 2.9 | 2.3 | 4 | 4.4 | 1 | ||||
Ergilian | 3 | 2.2 | 3.5 | 1.6 | 3.2 | 3.6 | 1 | ||||
Hsandagolian | 4 | 3.4 | 3.3 | 1.7 | 4 | 1 | |||||
Tanbenbulukian | 3.4 | 3.6 | 1 | 4 | 1 | ||||||
Xiejian + Shan‐wangian | 5 | 4 | 4.5 | 1.5 | |||||||
Tunggurian | 5 | 4.6 | 1 | ||||||||
Bahean | 5 | 4.7 | 1 | ||||||||
Baodean | 5 | 4.4 | 1 | ||||||||
Gaozhuangian | 5 | 4.2 | 1 | ||||||||
Mazegouan | 5 | 4.5 | |||||||||
Quaternary | 5 | 4.8 | 1 |
Abbreviations: Amy., Amynodontidae; Bron., Brontotheriidae; Chali., Chalicotherioidea; De. Deperetellidae; Hela., Helaletidae; Hy., Hyrachyidae; Hyraco., Hyracodontidae; Loph., Lophialetidae; Para., Paraceratheriidae; Rhino., Rhinocerotidae; Tapir., Tapiridae.
TABLE A3.
Generic numbers of different perissodactyl groups through the post‐Paleocene Asian Land Mammal Ages (ALMA)
ALMA | Tapiroidea | Rhinocerotoidea | Equoidea | Brontotheriidae | Chalicoth‐erioidea |
---|---|---|---|---|---|
Bumbanian | 10 | 3 | 2 | 1 | 2 |
Arshantan | 6 | 7 | 1 | 4 | 2 |
Irdinmanhan | 14 | 14 | 1 | 14 | 2 |
Sharamurunian | 7 | 19 | 1 | 4 | 2 |
Ulangochuian | 1 | 8 | 0 | 3 | 1 |
Ergilian | 1 | 12 | 1 | 6 | 1 |
Hsandagolian | 1 | 9 | 0 | 0 | 1 |
Tanbenbulukian | 0 | 10 | 0 | 0 | 1 |
Xiejian‐Shanwangia | 1 | 10 | 1 | 0 | 4 |
Tunggurian | 1 | 12 | 1 | 0 | 2 |
Bahean | 1 | 10 | 5 | 0 | 4 |
Baodean | 1 | 8 | 7 | 0 | 2 |
Gaozhuangian | 1 | 2 | 5 | 0 | 1 |
Mazegouan | 1 | 4 | 4 | 0 | 0 |
Quaternary | 2 | 4 | 4 | 0 | 2 |
TABLE A4.
Generic numbers of three classes of hypsodonty through the post‐Paleocene Asian Land Mammal Ages (ALMA)
ALMA | Brachydont | Mesodont | Hypsodont |
---|---|---|---|
Bumbanian | 18 | 0 | 0 |
Arshantan | 20 | 0 | 0 |
Irdinmanhan | 45 | 0 | 0 |
Sharamurunian | 32 | 1 | 0 |
Ulangochuian | 12 | 1 | 0 |
Ergilian | 20 | 0 | 1 |
Hsandagolian | 9 | 1 | 0 |
Tanbenbulukian | 8 | 3 | 0 |
Xiejian‐Shanwangia | 13 | 2 | 0 |
Tunggurian | 9 | 1 | 4 |
Bahean | 13 | 1 | 6 |
Baodean | 7 | 3 | 8 |
Gaozhuangian | 2 | 2 | 5 |
Mazegouan | 3 | 1 | 5 |
Quaternary | 6 | 1 | 5 |
Bai B, Meng J, Janis CM, Zhang Z‐Q, Wang Y‐Q. Perissodactyl diversities and responses to climate changes as reflected by dental homogeneity during the Cenozoic in Asia. Ecol Evol. 2020;10:6333–6355. 10.1002/ece3.6363
DATA AVAILABILITY STATEMENT
All relevant data are within the manuscript and Appendix 1.
REFERENCES
- Ackermans, N. (2020). The history of mesowear: A review. Peerj, 8, e8519 10.7717/peerj.8519 [DOI] [PMC free article] [PubMed] [Google Scholar]
- Antoine, P.‐O. , & Welcomme, J.‐L. (2000). A new rhinoceros from the lower Miocene of the Bugti Hills, Baluchistan, Pakistan: The earliest Elasmotheriine. Palaeontology, 43(5), 795–816. 10.1111/1475-4983.00150 [DOI] [Google Scholar]
- Antunes, M. , & Ginsburg, L. (1983). Les rhinocerotides du Miocene de Lisbonne‐systematique, ecologie, paleobiogeographie, valeur stratigraphique. Ciencias Da Terra (UNL), 7, 17–98. [Google Scholar]
- Bai, B. (2017). Eocene Pachynolophinae (Perissodactyla, Palaeotheriidae) from China, and their palaeobiogeographical implications. Palaeontology, 60(6), 837–852. 10.1111/pala.12319 [DOI] [Google Scholar]
- Bai, B. , Meng, J. , Mao, F.‐Y. , Zhang, Z.‐Q. , & Wang, Y.‐Q. (2019). A new early Eocene deperetellid tapiroid illuminates the origin of Deperetellidae and the pattern of premolar molarization in Perissodactyla. PLoS ONE, 14(11), 1–26. 10.1371/journal.pone.0225045 [DOI] [PMC free article] [PubMed] [Google Scholar]
- Bai, B. , & Wang, Y. Q. (2012). Proeggysodon gen. nov., a primitive Eocene eggysodontine (Mammalia, Perissodactyla) from Erden Obo, Siziwangqi, Nei Mongol, China. Vertebrata PalAsiatica, 50(3), 204–218. [Google Scholar]
- Bai, B. , Wang, Y. Q. , Li, Q. , Wang, H. B. , Mao, F. Y. , Gong, Y. X. , & Meng, J. (2018). Biostratigraphy and diversity of Paleogene perissodactyls from the Erlian Basin of Inner Mongolia, China. American Museum Novitates, 3914, 1–60. 10.1206/3914.1 [DOI] [Google Scholar]
- Bai, B. , Wang, Y. Q. , Mao, F. Y. , & Meng, J. (2017). New material of Eocene Helaletidae (Perissodactyla, Tapiroidea) from the Irdin Manha Formation of the Erlian Basin, Inner Mongolia, China and comments on related localities of the Huheboerhe Area. American Museum Novitates, 3878(3878), 1–44. 10.1206/3878.1 [DOI] [Google Scholar]
- Bai, B. , Wang, Y. Q. , & Meng, J. (2010). New craniodental materials of Litolophus gobiensis (Perissodactyla, "Eomoropidae") from Inner Mongolia, China, and phylogenetic analyses of Eocene chalicotheres. American Museum Novitates, 3688, 1–27. [Google Scholar]
- Bai, B. , Wang, Y. Q. , & Meng, J. (2018b). The divergence and dispersal of early perissodactyls as evidenced by early Eocene equids from Asia. Communications Biology, 1(115), 1–10. 10.1038/s42003-018-0116-5 [DOI] [PMC free article] [PubMed] [Google Scholar]
- Bai, B. , Wang, Y. Q. , & Meng, J. (2018c). Postcranial morphology of Middle Eocene deperetellid Teleolophus (Perissodactyla, Tapiroidea) from Shara Murun region of the Erlian Basin, Nei Mongol, China. Vertebrata PalAsiatica, 56(3), 193–215. 10.19615/j.cnki.1000-3118.171214 [DOI] [Google Scholar]
- Bai, B. , Wang, Y. , Meng, J. , Li, Q. , & Jin, X. (2014). New Early Eocene basal tapiromorph from Southern China and Its phylogenetic implications. PLoS ONE, 9(10), 1–9. 10.1371/journal.pone.0110806 [DOI] [PMC free article] [PubMed] [Google Scholar]
- Bai, B. , Wang, Y. Q. , & Zhang, Z. Q. (2018d). The late Eocene hyracodontid perissodactyl Ardynia from Saint Jacques, Inner Mongolia, China and its implications for the potential Eocene‐Oligocene boundary. Palaeoworld, 27(2), 247–257. 10.1016/j.palwor.2017.09.001 [DOI] [Google Scholar]
- Beard, K. C. (1998). East of Eden: Asia as an important center of taxonomic origination in mammalian evolution In Beard K. C., & Dawson M. R. (Eds.), Dawn of the Age of Mammals in Asia, Bulletin of Carnegie Museum of Natural History (Vol. 34, pp. 5–39). [Google Scholar]
- Beliayeva, E. I. (1952). Primitive rhinocerotoids of Mongolia. Trudy Paleontologicheskogo Instituta. Akademiya Nauk SSSR, 41, 120–143. [Google Scholar]
- Beliayeva, E. I. (1954). New materials of Tertiary rhinoceroids of Kazakhstan. Trudy Paleontologicheskogo Instituta, Akademiya Nauk SSSR, 47, 24–54. [Google Scholar]
- Berggren, W. A. , & Prothero, D. R. (1992). Eocene‐Oligocene climatic and biotic evolution: An overview In Berggren W. A., & Prothero D. R. (Eds.), Eocene‐Oligocene climatic and biotic evolution (pp. 1–28). Princeton, NJ: Princeton University Press. [Google Scholar]
- Bernor, R. , Wang, S. , Liu, Y. , Chen, Y. , & Sun, B. (2018). Shanxihippus dermatorhinus comb. nov. with comparisons to Old World hipparions with specialized nasal apparati. Rivista Italiana Di Paleontologia E Stratigrafia, 124, 361–386. [Google Scholar]
- Biryukov, M. D. (1972). New data on the tapiroid (Tapiroidea) fauna of Kazakhstan. Teriologiya, 1, 160–171. [Google Scholar]
- Borissiak, A. A. (1915). On the remains of Epiaceratherium turgaicum n. sp. Bulletin of the Imperial Academy of Sciences, Moscow, 1(3), 781–787. [Google Scholar]
- Borissiak, A. (1918). On the remains of a lophiodontoid ungulate from the Oligocene deposits of Turgai. Annales De La Société Paléontologique Russie, 2, 27–31. [Google Scholar]
- Borissiak, A. A. (1920). On the remains of Chalicotherioidea from the Oligocene of Turgai. Bulletin de l'Académie impériale des sciences de St.‐Pétersbourg, Série 6, 13, 687–710. [Google Scholar]
- Borissiak, A. (1944). Aceratherium aralense n. sp. Doklady Akademiye Nauk SSSR, 43, 30–32. [Google Scholar]
- Borissiak, A. A. (1946). A new chalicothere from the Tertiary of Kazakhstan. Trudy Paleontologicheskovo Instituta, Akademia Nauk SSSR, 13, 1–134. [Google Scholar]
- Butler, P. M. (1952). Molarization of the premolars in the Perissodactyla. Proceedings of the Zoological Society of London, 121(4), 819–843. [Google Scholar]
- Butler, P. M. (1965). Fossil mammals of Africa No. 18: East African Miocene and Pleistocene chalicotheres. Bulletin of the British Museum (Natural History), 10, 163–237. [Google Scholar]
- Cerdeño, E. (1996). Rhinocerotidae from the Middle Miocene of the Tung‐gur Formation, Inner Mongolia (China). American Museum Novitates, 3184, 1–43. [Google Scholar]
- Chen, G. F. (1977). A new genus of Iranotheriinae of Ningxia. Vertebrata PalAsiatica, 15(2), 143–147. [Google Scholar]
- Chen, G. , & Wu, W. (1976). Miocene mammalian fossils of Jiulongkou, Ci Xian district, Hebei. Vertebrata PalAsiatica, 14(1), 6–15. [Google Scholar]
- Chen, S. K. , Deng, T. , He, W. , & Chen, S. Q. (2012). A new species of Chalicotheriinae (Perissodactyla, Mammalia) from the late Miocene in the Linxia Basin of Gansu, China. Vertebrata PalAsiatica, 50(1), 53–73. [Google Scholar]
- Chow, M. C. (1957). On some Eocene and Oligocene mammals from Kwangsi and Yunnan. Vertebrata PalAsiatica, 1(3), 201–214. [Google Scholar]
- Chow, M. C. (1958). Some Oligocene mammals from Lunan, Yunnan. Vertebrata PalAsiatica, 2(4), 263–266. [Google Scholar]
- Chow, M. C. , & Hu, C. C. (1959). A new species of Parabrontops from the Oligocene of Lunan, Yunnan. Acta Palaeontologica Sinica, 7(2), 85–88. [Google Scholar]
- Chow, M. C. , Li, C. K. , & Zhang, Y. P. (1973). Late Eocene Mammalian faunas of Honan and Shansi with notes on some vertebrate fossils collected therefrom. Vertebrata PalAsiatica, 11(2), 165–181. [Google Scholar]
- Chow, M. C. , & Xu, Y. X. (1961). New primitive true rhinoceroses from the Eocene of Iliang, Yunnan. Vertebrata PalAsiatica, 5(4), 291–304. [Google Scholar]
- Chow, M. C. , & Xu, Y. X. (1965). Amynodonts from the upper Eocene of Honan and Shansi. Vertebrata PalAsiatica, 9(2), 190–204. [Google Scholar]
- Chow, M. C. , Xu, Y. X. , & Zhen, S. N. (1964). Amynodon from the Eocene of Lunan, Yunnan. Vertebrata PalAsiatica, 8(4), 355–360. [Google Scholar]
- Chow, M. C. , Zhang, Y. P. , & Ding, S. Y. (1974). Some Early Tertiary Perissodactyla from Lunan Basin, E. Yunnan. Vertebrata PalAsiatica, 12(4), 262–273. [Google Scholar]
- Clauss, M. , Nunn, C. , Fritz, J. , & Hummel, J. (2009). Evidence for a tradeoff between retention time and chewing efficiency in large mammalian herbivores. Comparative Biochemistry and Physiology Part A: Molecular & Integrative Physiology, 154(3), 376–382. [DOI] [PubMed] [Google Scholar]
- Colbert, E. H. (1934). Chalicotheres from Mongolia and China in the American Museum. Bulletin of American Museum of Natural History, 67, 353–387. [Google Scholar]
- Colbert, E. H. (1935). Siwalik mammals in the American Museum of Natural History. Transactions of the American Philosophical Society, 26, i–x and 1–401. 10.2307/1005467 [DOI] [Google Scholar]
- Colbert, E. H. (1938). Fossil mammals from Burma in the American Museum of Natural History. Bulletin of the American Museum of Natural History, 74(6), 255–436. [Google Scholar]
- Colbert, E. H. (1939). A new anchitheriine horse from the Tung Gur Formation of Mongolia. American Museum Novitates, 1019, 1–9. [Google Scholar]
- Colbert, E. H. , & Brown, B. (1934). A new rhinoceros from the Siwalik beds of India. American Museum Novitates, 749, 1–13. [Google Scholar]
- Colbert, E. , & Hooijer, D. (1953). Pleistocene mammals from the limestone fissures of Szechuan, China. Bulletin of the American Museum of Natural History, 102, l–134. [Google Scholar]
- Damuth, J. , & Janis, C. M. (2011). On the relationship between hypsodonty and feeding ecology in ungulate mammals, and its utility in palaeoecology. Biological Reviews, 86(3), 733–758. 10.1111/j.1469-185X.2011.00176.x [DOI] [PubMed] [Google Scholar]
- Dashzeveg, D. (1979). On an archaic representative of the equoids (Mammalia, Perissodactyla) from the Eocene of central Asia. Transactions of the Joint Soviet‐Mongolian Paleontological Expedition, 8, 10–22. [Google Scholar]
- Dashzeveg, D. (1991). Hyracodontids and rhinocerotids (Mammalia, Perissodactyla, Rhinocerotoidea) from the Paleogene of Mongolia. Palaeovertebrata, 21(1–2), 1–84. [Google Scholar]
- De Bonis, L. (1995). The Le Garouillas and contemporaneous (Oligocene, MP 25) localities from the phosphorites of Quercy (Lot, Tarn‐et‐Garonne, France), and their vertebrate faunas: 9. Perissodactyla: Amynodontidae. Palaeontographica Abteilung A Palaeozoologie‐Stratigraphie, 236(1–6), 157–175. [Google Scholar]
- Deng, T. (2001a). New materials of Chilotherium wimani (Perrisodactyle, Rhinocerotidae) from the Late Miocene of Fugu, Shaanxi. Vertebrata Pal Asiatica, 39(2), 129–138. [Google Scholar]
- Deng, T. (2001b). New remains of Parelasmotherium (Perissodactyla, Rhinocerotidae) from the late Miocene in Dongxiang, Gansu, China. Vertebrata PalAsiatica, 39(4), 306–311. [Google Scholar]
- Deng, T. (2002). The earliest known wooly rhino discovered in the Linxia Basin, Gansu Province, China. Geological Bulletin of China, 21(10), 604–608. [Google Scholar]
- Deng, T. (2005a). New cranial material of Shansirhinus (Rhinocerotidae, Perissodactyla) from the Lower Pliocene of the Linxia Basin in Gansu, China. Geobios, 38(3), 301–313. [Google Scholar]
- Deng, T. (2005b). New discovery of Iranotherium morgani (Perissodactyla, Rhinocerotidae) from the Late Miocene of the Linxia Basin in Gansu, China, and its sexual dimorphism. Journal of Vertebrate Paleontology, 25(2), 442–450. [Google Scholar]
- Deng, T. (2006a). Neogene rhinoceroses of the Linxia Basin (Gansu, China). Courier‐Forschungsinstitut Senckenberg, 256, 43–56. [Google Scholar]
- Deng, T. (2006b). A primitive species of Chilotherium (Perissodactyla, Rhinocerotidae) from the late Miocene of the Linxia Basin (Gansu, China). Cainozoic Research, 5(1/2), 93–100. [Google Scholar]
- Deng, T. (2007). Skull of Parelasmotherium (Perissodactyla, Rhinocerotidae) from the upper Miocene in the Linxia Basin (Gansu, China). Journal of Vertebrate Paleontology, 27(2), 467–475. [Google Scholar]
- Deng, T. (2008). A new elasmothere (Perissodactyla, Rhinocerotidae) from the late Miocene of the Linxia Basin in Gansu, China. Geobios, 41(6), 719–728. 10.1016/j.geobios.2008.01.006 [DOI] [Google Scholar]
- Deng, T. (2012). A skull of Hipparion (Proboscidipparion) sinense (Perissodactyla, Equidae) from Longdan, Dongxiang of Northwestern China‐Addition to the Early Pleistocene Longdan Mammalian Fauna (3). Vertebrata PalAsiatica, 50(1), 74–84. [Google Scholar]
- Deng, T. , & Chen, Y. (2016). Chinese Neogene rhinoceroses. Shanghai, Chaina: Shanghai Scientific & Technical Publishers. [Google Scholar]
- Deng, T. , & Downs, W. (2002). Evolution of Chinese Neogene Rhinocerotidae and its response to climatic variations. Acta Geologica Sinica, 76(2), 139–145. 10.1111/j.1755-6724.2002.tb00080.x [DOI] [Google Scholar]
- Deng, T. , & Gao, F. (2006). Perissodactyla In Qi G. Q., & Dong W. (Eds.), Lufengpithecus hudienensis Site (pp. 188–195, 334–335). Beijing, China: Science Press. [Google Scholar]
- Deng, T. , He, W. , & Chen, S. (2008). A new species of the Late Miocene Tapirus (Perissodactyla, Tapiridae) from the Linxia Basin in Gansu, China. Vertebrata PalAsiatica, 46(3), 190–209. [Google Scholar]
- Deng, T. , Hou, S. , & Wang, S. (2019a). Neogene integrative stratigraphy and timescale of China. Science China Earth Sciences, 62(1), 310–323. 10.1007/s11430-017-9155-4 [DOI] [Google Scholar]
- Deng, T. , & Qiu, Z. (2007). First discovery of Diceros (Perissodactyla, Rhinocerotidae) in China. Vertebrata PalAsiatica, 45(4), 287–306. [Google Scholar]
- Deng, T. , Wang, X. , Fortelius, M. , Li, Q. , Wang, Y. , Tseng, Z. J. , … Xie, G. (2011). Out of Tibet: Pliocene woolly rhino suggests high‐plateau origin of ice Age megaherbivores. Science, 333(6047), 1285–1288. 10.1126/science.1206594 [DOI] [PubMed] [Google Scholar]
- Deng, T. , Wang, X. , Wu, F. , Wang, Y. , Li, Q. , Wang, S. , & Hou, S. (2019b). Review: Implications of vertebrate fossils for paleo‐elevations of the Tibetan Plateau. Global and Planetary Change, 174, 58–69. 10.1016/j.gloplacha.2019.01.005 [DOI] [Google Scholar]
- Evans, A. R. , & Pineda‐Munoz, S. (2018). Inferring mammal dietary ecology from dental morphology In Croft D. A., Su D. F., & Simpson S. W. (Eds.), Methods in paleoecology: Reconstructing Cenozoic terrestrial environments and ecological communities (pp. 37–51). Cham, Switzerland: Springer International Publishing. [Google Scholar]
- Falconer, H. (1868). On Chalicotherium sivalense In Murchison C. A. (Ed.), Palaeontological Memoirs and Notes of the late Hugh Falconer, A. M (Vol. 1, pp. 208–226). London, UK: M. D., Robert Hardwicke. [Google Scholar]
- Falconer, H. , & Cautley, P. T. (1847). Fauna Antiqua Sivalensis, being the fossil zoology of the Sewalik hills, in the north of India. London, UK: Smith, Elder & Company. [Google Scholar]
- Famoso, N. A. , Davis, E. B. , Feranec, R. S. , Hopkins, S. S. B. , & Price, S. A. (2016). Are hypsodonty and occlusal enamel complexity evolutionarily correlated in ungulates? Journal of Mammalian Evolution, 23(1), 43–47. 10.1007/s10914-015-9296-7 [DOI] [Google Scholar]
- Figueirido, B. , Janis, C. M. , Perez‐Claros, J. A. , De Renzi, M. , & Palmqvist, P. (2012). Cenozoic climate change influences mammalian evolutionary dynamics. Proceedings of the National Academy of Sciences of the United States of America, 109(3), 722–727. 10.1073/Pnas.1110246108 [DOI] [PMC free article] [PubMed] [Google Scholar]
- Fletcher, T. M. , Janis, C. M. , & Rayfield, E. J. (2010). Finite element analysis of ungulate jaws: Can mode of digestive physiology be determined? Palaeontologia Electronica, 13(3), 1–15. [Google Scholar]
- Forster‐Cooper, C. (1920). Chalicotheroidea from Baluchistan. Proceedings of the Zoological Society of London, 90(3), 357–366. 10.1111/j.1469-7998.1920.tb07076.x [DOI] [Google Scholar]
- Fortelius, M. , Eronen, J. , Jernvall, J. , Liu, L. , Pushkina, D. , Rinne, J. , … Zhou, L. (2002). Fossil mammals resolve regional patterns of Eurasian climate change over 20 million years. Evolutionary Ecology Research, 4(7), 1005–1016. [Google Scholar]
- Franzen, J. L. (2010). The rise of horses (K. M. Brown, Trans.) (pp. 1–211). Baltimore, MD: The Johns Hopkins University Press. [Google Scholar]
- Gabounia, L. (1977). Contribution a la connaissance des Mammifères paléogènes du Bassin de Zaissan (Kazakhstan central). GEOBIOS, 10, Mémoire Spécial, 1, 29–37. 10.1016/S0016-6995(77)80004-1 [DOI] [Google Scholar]
- Gabunia, L. K. (1951). Concerning chalicothere remains from Tertiary deposits of Georgia. Bulletin of the Georgian National Academy of Sciences S.S.R., 12, 279–284. [Google Scholar]
- Gabunia, L. K. (1961). The Obayla fauna: The most ancient complex of fossil mammals of the USSR. Soobshcheniya Akademii Nauk Gruzinskoy SSR, 27(6), 711–713. [Google Scholar]
- Gabunia, L. K. (1964). Benara fauna of Oligocene vertebrates (pp. 1–266). Tbilisi, Georgia: Akad Nauk Gruzinskoy SSR, Institute of Paleobiology. [Google Scholar]
- Ginsburg, L. (1974). Les Rhinocérotidea du Miocène de Sansan (Gers). Comptes Rendus de l’Académie des Sciences De Paris, 278(Série D), 597–600. [Google Scholar]
- Gong, Y.‐X. , Wang, Y.‐Q. , Mao, F.‐Y. , Bai, B. , Li, Q. , Wang, H.‐B. , … Meng, J. (2020). Dietary reconstruction and palaeoecology of Eocene Lophialetidae (Mammalia: Tapiroidea) from the Erlian Basin of China: Evidence from dental microwear. Historical Biology, 1–12. 10.1080/08912963.2020.1722660 [DOI] [Google Scholar]
- Gong, Y. X. , Wang, Y. Q. , Wang, Y. , Mao, F. Y. , Bai, B. , Wang, H. B. , … Meng, J. (2019). Dietary adaptations and palaeoecology of Lophialetidae (Mammalia, Tapiroidea) from the Eocene of the Erlian Basin, China: Combined evidence from mesowear and stable isotope analyses. Palaeontology, 1–18. 10.1111/pala.12471 [DOI] [Google Scholar]
- Granger, W. , & Gregory, W. K. (1943). A revision of the Mongolian titanotheres. Bulletin of American Museum of Natural History, 80(10), 349–389. [Google Scholar]
- Gromova, V. (1954). Marsh rhinoceroses (Amynodontidae) of Mongolia. Akademiya Nauk SSSR Trudy Paleontologicheskiy Institut, 55, 85–189. [Google Scholar]
- Gromova, V. (1959). Giant rhinoceroses. Trudy Paleontology Institut Akademii Nauk SSSR, 71, 1–164. [Google Scholar]
- Gromova, V. (1960). New materials on Paleogene tapiroids of Asia. Trudy Paleontologicheskogo Instituta. Akademiya Nauk SSSR, 77, 79–107. [Google Scholar]
- Guan, J. (1988). The Miocene strata and mammals from Tongxin, Ningxia and Guanghe, Gansu. Memoirs of the Beijing Natural History Museum, 41, 1–21. [Google Scholar]
- Guan, J. (1993). Primitive elasmotherines from the Middle Miocene, Ningxia (northwestern China). Memoirs of the Beijing Natural History Museum, 53, 200–207. [Google Scholar]
- Gunnell, G. F. , Rose, K. D. , & Rasmussen, D. T. (2008). Euprimates In Janis C. M., Gunnell G. F., & Uhen M. D. (Eds.), Evolution of Tertiary mammals of North America (pp. 239–261). Cambridge, UK: Cambridge University Press. [Google Scholar]
- Han, J. M. , Wang, G. A. , & Liu, T. S. (2002). Appearance of C4 plants and global changes. Earth Science Frontiers, 9(1), 233–241. [Google Scholar]
- Heissig, K. (1969). Die Rhinocerotidae (Mammalia) aus der oberoligozänen Spaltenfüllung von Gaimersheim bei Ingolstadt in Bayern und ihre phylogenetische Stellung. Abhandlungen Der Bayerischen Akademie Der Wissenschaften, Mathematisch‐Naturwissenschaftliche Klasse, 138, 1–133. [Google Scholar]
- Heissig, K. (1974). Neue Elasmotherini (Rhinocerotidae, Mammalia) aus dem Obermiozän Anatoliens. Mitteilungen Der Bayerische Staatssammlung Für Paläontologie Und Historische Geologie, 14, 21–35. [Google Scholar]
- Holbrook, L. T. (2014). On the skull of Radinskya (Mammalia) and its phylogenetic position. Journal of Vertebrate Paleontology, 34(5), 1203–1215. 10.1080/02724634.2014.854249 [DOI] [Google Scholar]
- Holbrook, L. (2015). The identity and homology of the postprotocrista and its role in molarization of upper premolars of Perissodactyla (Mammalia). Journal of Mammalian Evolution, 22(2), 259–269. 10.1007/s10914-014-9276-3 [DOI] [Google Scholar]
- Holroyd, P. A. , & Ciochon, R. L. (2000). Bunobrontops savagei: A new genus and species of brontotheriid perissodactyl from the Eocene Pondaung fauna of Myanmar. Journal of Vertebrate Paleontology, 20(2), 408–410. [Google Scholar]
- Hooker, J. J. , & Dashzeveg, D. (2004). The origin of chalicotheres (Perissodactyla, Mammalia). Palaeontology, 47, 1363–1386. [Google Scholar]
- Hou, S. , Deng, T. , He, W. , & Chen, S. (2007). New materials of Sinohippus from Gansu and Nei Mongol, China. Vertebrata PalAsiatica, 45(3), 213–231. [Google Scholar]
- Huang, W. , & Yan, D. (1983). New Material of Elasmotherini from Shennongjia, Hubei. Vertebrata PalAsiatica, 21(3), 223–229. [Google Scholar]
- Huang, X. S. (1982). Preliminary observations on the Oligocene deposits and mammalian fauna from Alashan Zuoqi, Nei Monggol. Vertebrata PalAsiatica, 20(4), 337–349. [Google Scholar]
- Huang, X. S. , & Qi, T. (1982). Notes on late Eocene tapiroids from the Lunan Basin eastern Yunnan. Vertebrata PalAsiatica, 20(4), 315–326. [Google Scholar]
- Huang, X. S. , & Wang, J. W. (2002). Notes on Classification of mammals above the species Hyrachyus (Mammalia, Perissodactyla, Tapiroidea) from the Middle Eocene of Yunqu basin, Shanxi Province. Vertebrata PalAsiatica, 40(3), 211–218. [Google Scholar]
- Hunter, J. P. , & Jernvall, J. (1995). The hypocone as a key innovation in mammalian evolution. Proceedings of the National Academy of Sciences of the United States of America, 92(23), 10718–10722. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Janis, C. M. (1989). A climatic explanation for patterns of evolutionary diversity in ungulate mammals. Palaeontology, 32(3), 463–481. [Google Scholar]
- Janis, C. M. (2000). Patterns in the evolution of herbivory in large terrestrial mammals: The Paleogene of North America In Sues H.‐D. (Ed.), Evolution of herbivory in terrestrial vertebrates (pp. 168–222). Cambridge, UK: Cambridge University Press. [Google Scholar]
- Janis, C. M. , Damuth, J. , & Theodor, J. M. (2002). The origins and evolution of the North American grassland biome: The story from the hoofed mammals. Palaeogeography, Palaeoclimatology, Palaeoecology, 177(1–2), 183–198. [Google Scholar]
- Jernvall, J. , Hunter, J. P. , & Fortelius, M. (1996). Molar tooth diversity, disparity, and ecology in Cenozoic ungulate radiations. Science, 274(5292), 1489–1492. [DOI] [PubMed] [Google Scholar]
- Ji, X. , Jablonski, N. G. , Tong, H. , Su Denise, F. , Ebbestad Jan Ove, R. , Liu, C. , & Yu, T. (2015). Tapirus yunnanensis from Shuitangba, a terminal Miocene hominoid site in Zhaotong. Yunnan Province of China. Vertebrata PalAsiatica, 53(3), 177–192. [Google Scholar]
- Kapur, V. V. , & Bajpai, S. (2015). Oldest South Asian tapiromorph (Perissodactyla, Mammalia) from the Cambay Shale Formation, western India, with comments on its phylogenetic position and biogeographic implications. The Palaeobotanist, 64, 95–103. [Google Scholar]
- Kaya, F. , Bibi, F. , Zliobaite, I. , Eronen, J. T. , Hui, T. , & Fortelius, M. (2018). The rise and fall of the Old World savannah fauna and the origins of the African savannah biome. Nature Ecology and Evolution, 2, 241–246. 10.1038/s41559-017-0414-1 [DOI] [PubMed] [Google Scholar]
- Khan, A. , Akhtar, M. , Khan, M. , & Shaheen, A. (2012). New fossil remains of Brachypotherium perimense from the Chinji and Nagri formations of Pakistan. The Journal of Animal and Plant Sciences, 22(2), 347–352. [Google Scholar]
- Kordikova, E. G. (1998). A new Eocene vertebrate fauna from South‐eastern Kazakhstan (Aktau Mountaains, Dzhungarian Alatau). Vestnik KazGU, 5, 180–185. [Google Scholar]
- Kraatz, B. P. , & Geisler, J. H. (2010). Eocene‐Oligocene transition in Central Asia and its effects on mammalian evolution. Geology, 38(2), 111–114. 10.1130/g30619.1 [DOI] [Google Scholar]
- Kumar, K. , & Sahni, A. (1985). Eocene Mammals from the Upper Subathu Group, Kashmir Himalaya, India. Journal of Vertebrate Paleontology, 5(2), 153–168. [Google Scholar]
- Li, C. K. , & Ting, S. Y. (1983). The Paleogene mammals of China. Bulletin of Carnegie Museum of Natural History, 21, 1–93. [Google Scholar]
- Lu, X. , Zheng, X. , Sullivan, C. , & Tan, J. (2016). A skull of Plesiaceratherium gracile (Rhinocerotidae, Perissodactyla) from a new lower Miocene locality in Shandong Province, China, and the phylogenetic position of Plesiaceratherium . Journal of Vertebrate Paleontology, 36(3), e1095201 10.1080/02724634.2016.1095201 [DOI] [Google Scholar]
- Lucas, S. G. , Emry, R. J. , & Bayshashov, B. U. (1996). Zaisanamynodon, a Late Eocene amynodontid (Mammalia, Perissodactyla) from Kazakhstan and China. Tertiary Research, 17, 51–58. [Google Scholar]
- Lucas, S. G. , Holbrook, L. T. , & Emry, R. J. (2003). Isectolophus (Mammalia, Perissodactyla) from the Eocene of the Zaysan Basin, Kazakstan and its biochronological significance. Journal of Vertebrate Paleontology, 23(1), 238–243. [Google Scholar]
- Lucas, S. G. , Schoch, R. M. , & Manning, E. (1981). The systematics of Forstercooperia, a middle to late Eocene hyracodontid (Perissodactyla, Rhinocerotoidea) from Asia and Western North‐America. Journal of Paleontology, 55(4), 826–841. [Google Scholar]
- Maas, M. C. , Hussain, S. T. , Leinders, J. J. M. , & Thewissen, J. G. M. (2001). A new isectolophid tapiromorph (Perissodactyla, Mammalia) from the Early Eocene of Pakistan. Journal of Paleontology, 75(2), 407–417. [DOI] [Google Scholar]
- MacFadden, B. J. (1992). Fossil horses: Systematics, paleobiology, and evolution of the family Equidae (pp. 1–369). Cambridge, UK: Cambridge University Press. [Google Scholar]
- MacFadden, B. J. , & Bakr, A. (1979). The horse Cormohipparion theobaldi from the Neogene of Pakistan, with comments on Siwalik hipparions. Palaeontology, 22(2), 439–447. [Google Scholar]
- Maddison, W. P. , & Maddison, D. R. (2018). Mesquite: A modular system for evolutionary analysis. Version 3.51. Retrieved from http://www.mesquiteproject.org [Google Scholar]
- Matthew, W. D. , & Granger, W. (1923). The fauna of the Ardyn Obo Formation. American Museum Novitates, 98, 1–5. [Google Scholar]
- Matthew, W. D. , & Granger, W. (1925a). New mammals from the Shara Murun Eocene of Mongolia. American Museum Novitates, 196, 1–12. [Google Scholar]
- Matthew, W. D. , & Granger, W. (1925b). New ungulates from the Ardyn Obo Formation of Mongolia with faunal list and remarks on correlation. American Museum Novitates, 195, 1–12. [Google Scholar]
- Matthew, W. D. , & Granger, W. (1925c). The smaller perissodactyls of the Irdin Manha Formation, Eocene of Mongolia. American Museum Novitates, 199, 1–9. [Google Scholar]
- McKenna, M. C. , & Bell, S. K. (1997). Classification of mammals above the species level. (pp. 1–631). New York, NY: Columbia University Press. [Google Scholar]
- McKenna, M. C. , Chow, M. , Ting, S. , & Luo, Z. (1989). Radinskya yupingae, a perissodactyl‐like mammal from the late Paleocene of southern China In Prothero D. R., & Schoch R. M. (Eds.), The evolution of perissodactyls (pp. 24–36). New York, NY: Oxford University Press. [Google Scholar]
- Meng, J. , & McKenna, M. C. (1998). Faunal turnovers of Palaeogene mammals from the Mongolian plateau. Nature, 394(6691), 364–367. 10.1038/28603 [DOI] [Google Scholar]
- Miao, D. S. (1982). Early Tertiary fossil mammals from the Shinao Basin, Panxian County, Guizhou Province. Acta Palaeontologica Sinica, 21(5), 526–536. [Google Scholar]
- Mihlbachler, M. C. (2008). Species taxonomy, phylogeny, and biogeography of the Brontotheriidae (Mammalia: Perissodactyla). Bulletin of the American Museum of Natural History, 311, 1–475. [Google Scholar]
- Mihlbachler, M. C. , Rivals, F. , Solounias, N. , & Semprebon, G. M. (2011). Dietary change and evolution of horses in North America. Science, 331(6021), 1178–1181. 10.1126/Science.1196166 [DOI] [PubMed] [Google Scholar]
- Missiaen, P. , & Gingerich, P. D. (2012). New early Eocene tapiromorph perissodactyls from the Ghazij Formation of Pakistan, with implications for mammalian biochronology in Asia. Acta Palaeontologica Polonica, 57(1), 21–34. 10.4202/App.2010.0093 [DOI] [Google Scholar]
- Missiaen, P. , & Gingerich, P. D. (2014). New basal perissodactyla (mammalia) from the lower eocene Ghazij formation of Pakistan. Contributions from the Museum of Paleontology, the University of Michigan, 32(9), 139–160. [Google Scholar]
- Missiaen, P. , Gunnell, G. F. , & Gingerich, P. D. (2011). New Brontotheriidae (Mammalia, Perissodactyla) from the early and middle Eocene of Pakistan with implications for mammalian paleobiogeography. Journal of Paleontology, 85(4), 665–677. [Google Scholar]
- Ni, X. , Li, Q. , Li, L. , & Beard, K. C. (2016). Oligocene primates from China reveal divergence between African and Asian primate evolution. Science, 352(6286), 673–677. 10.1126/science.aaf2107 [DOI] [PubMed] [Google Scholar]
- Nowak, R. M. , & Walker, E. P. (1999). Walker's mammals of the world (pp. 1–1936). Baltimore, MD: Johns Hopkins University Press. [Google Scholar]
- Osborn, H. F. (1936). Amynodon mongoliensis from the Upper Eocene of Mongolia. American Museum Novitates, 859, 1–9. [Google Scholar]
- Pandolfi, L. , Gasparik, M. , & Piras, P. (2015). Earliest occurrence of “Dihoplus” megarhinus (Mammalia, Rhinocerotidae) in Europe (Late Miocene, Pannonian Basin, Hungary): Palaeobiogeographical and biochronological implications. Annales De Paléontologie, 101(4), 325–339. [Google Scholar]
- Pilgrim, G. E. (1910). Notices of new mammalian genera and species from the tertiaries of India. Records of the Geological Survey of India, 40, 63–71. [Google Scholar]
- Pilgrim, G. E. (1912). The vertebrate fauna of the Gaj Series in the Bugti Hills and the Punjab. Palaeontologia Indica, 4, 1–83. [Google Scholar]
- Pilgrim, G. E. (1925). The Perissodactyla of the Eocene of Burma. Palaeontologica Indica, New Series, 8, 1–28. [Google Scholar]
- Prothero, D. R. (1994). The Eocene‐Oligocene transition: Paradise lost (pp. 1–283). New York, NY: Columbia University Press. [Google Scholar]
- Prothero, D. R. (2005). The evolution of North American Rhinoceroses (pp. 1–218). Cambridge, UK: Cambridge University Press. [Google Scholar]
- Prothero, D. R. (2013). Rhinoceros giants: The paleobiology of indricotheres (pp. 1–140). Bloomington, IN: Indiana University Press. [Google Scholar]
- Qi, T. (1975). An Early Oligocene mammlian fauna of Ningxia. Vertebrata PalAsiatica, 13(4), 217–224. [Google Scholar]
- Qi, T. (1980). A new Eocene lophialetid genus of Inner‐Mongolia. Vertebrata PalAsiatica, 18(3), 215–219. [Google Scholar]
- Qi, T. (1987). The Middle Eocene Arshanto fauna (Mammalia) of inner Mongolia. Annals of Carnegie Museum, 56, 1–73. [Google Scholar]
- Qi, T. (1989). A new species of Dzungariothterium (Perissodactyla, Mammalia). Vertebrata PalAsiatica, 27(4), 301–305. [Google Scholar]
- Qi, T. (1990). A new genus, Ulania, of Hyracodontidae Perissodactyla, Mammalia. Vertebrata PalAsiatica, 28(3), 218–227. [Google Scholar]
- Qi, T. , & Beard, K. C. (1996). Nanotitan shanghuangensis, gen. et sp. nov.: The smallest known brontothere (Mammalia: Perissodactyla). Journal of Vertebrate Paleontology, 16(3), 578–581. [Google Scholar]
- Qi, T. , & Beard, K. C. (1998). Nanotitanops, a new name for Nanotitan Qi and Beard, 1996, not Nanotitan Sharov, 1968. Journal of Vertebrate Paleontology, 18(4), 812–812. [Google Scholar]
- Qi, T. , & Zhou, M. Z. (1989). A new species of Juxia (Perissodactyla), Nei Mongol. Vertebrata PalAsiatica, 27(3), 205–208. [Google Scholar]
- Qiu, Z. D. , & Li, C. K. (2005). Evolution of Chinese mammalian faunal regions and elevation of the Qinghai‐Xizang (Tibet) Plateau. Science in China Series D: Earth Sciences, 48(8), 1246–1258. 10.1360/03yd0523 [DOI] [Google Scholar]
- Qiu, Z. X. (1973). A New Genus of Giant Rhinoceros from Oligocene of Dzungaria, Sinkiang. Vertebrata PalAsiatica, 11(2), 182–191. [Google Scholar]
- Qiu, Z. X. (2002). Hesperotherium—A new genus of the last chalicotheres. Vertebrata PalAsiatica, 40(4), 317–325. [Google Scholar]
- Qiu, Z. X. , Huang, W. L. , & Guo, Z. H. (1987). The Chinese hipparionine fossils. Palaeontologia Sinica, New Series C, 25, 1–243. [Google Scholar]
- Qiu, Z. X. , Qiu, Z. D. , Deng, T. , Li, C. K. , Zhang, Z. Q. , Wang, B. Y. , & Wang, X. M. (2013). Neogene land mammal stages/ages of China In Wang X. M., Flynn L. J., & Fortelius M. (Eds.), Fossil mammals of Asia: Neogene biostratigraphy and chronology (pp. 29–90). New York, NY: Columbia University Press. [Google Scholar]
- Qiu, Z. X. , & Wang, B. Y. (2007). Paracerathere fossils of China. Palaeontologia Sinica, New Series C, 29, 1–396. [Google Scholar]
- Qiu, Z. X. , Wang, B. Y. , & Deng, T. (2004). Mammal fossils from Yagou, Linxia Basin, Gansu, and related stratigraphic problems. Vertebrata PalAsiatica, 42(4), 276–296. [Google Scholar]
- Qiu, Z. X. , Wang, B. Y. , & Xie, J. Y. (1998). Mid‐Tertiary chalicothere (Perissodactyla) fossils from Lanzhou, Gansu, China. Vertebrata PalAsiatica, 36(4), 297–318. [Google Scholar]
- Qiu, Z. X. , & Xie, J. Y. (1997). A new species of Aprotodon (Perissodactyla, Rhlnocerotidae) from Lanzhou Basin, Gansu, China. Vertebrata PalAsiatica, 35(4), 250–267. [Google Scholar]
- Qiu, Z. X. , & Xie, J. Y. (1998). Notes on Parelasmotherium and Hipparion fossils from Wangji, Dongxiang, Gansu. Vertebrata PalAsiatica, 36(1), 13–23. [Google Scholar]
- Qiu, Z. X. , Yan, D. F. , & Sun, B. (1991). A new genus of Tapiridae from Shanwang, Shandong. Vertebrata PalAsiatica, 29, 119–135. [Google Scholar]
- Quan, C. , Liu, Z. H. , Utescher, T. , Jin, J. H. , Shu, J. W. , Li, Y. X. , & Liu, Y. S. (2014). Revisiting the Paleogene climate pattern of East Asia: A synthetic review. Earth‐Science Reviews, 139, 213–230. [Google Scholar]
- Radinsky, L. B. (1964). Paleomoropus, a new early Eocene chalicothere (Mammalia, Perissodactyla), and a revision of Eocene chalicotheres. American Museum Novitates, 2179, 1–28. [Google Scholar]
- Radinsky, L. B. (1965). Early Tertiary Tapiroidea of Asia. Bulletin of American Museum of Natural History, 129(2), 181–264. [Google Scholar]
- Radinsky, L. B. (1966). The adaptive radiation of the phenacodontid condylarths and the origin of the Perissodactyla. Evolution, 20(3), 408–417. [DOI] [PubMed] [Google Scholar]
- Radinsky, L. B. (1967). A review of the rhinocerotoid family Hyracodontidae (Perissodactyla). Bulletin of the American Museum of Natural History, 136(1), 1–46. [Google Scholar]
- Ranga Rao, A. (1972). New mammalian genera and species from the Kalakot Zone of Himalayan Foot Hills near Kalakot, Jammu & Kashmir State, India. Special Paper‐India, Oil and Natural Gas Commission, Directorate of Geology, 1(1), 1–19. [Google Scholar]
- Reshetov, V. Y. (1975). A review of the early Tertiary tapiroids of Mongolia and the USSR In Kramarenko N. N. (Ed.), Fossil fauna and flora of Mongolia, The Joint Soviet‐Mongolian Paleontological Expedition, (Vol. 2, pp. 19–53). [Google Scholar]
- Reshetov, V. Y. (1979). Early Tertiary Tapiroidea of mongolia and the USSR. The Joint Soviet‐Mongolian Paleontological Expedition, 11, 1–141. [Google Scholar]
- Ringström, T. J. (1923). Sinotherium lagrelii, a new fossil rhinocerotid from Shansi. Bulletin of the Geological Survey of China, 5(1), 91–93. [Google Scholar]
- Ringström, T. (1924). Nashorner Der Hipparion‐fauna Nord‐Chinas. Palaeontologia Sinica, 1, 1–156. [Google Scholar]
- Rose, K. D. , Holbrook, L. T. , Rana, R. S. , Kumar, K. , Jones, K. E. , Ahrens, H. E. , … Smith, T. (2014). Early Eocene fossils suggest that the mammalian order Perissodactyla originated in India. Nature Communications, 5, 1–9. 10.1038/ncomms6570 [DOI] [PubMed] [Google Scholar]
- Russell, D. E. , & Zhai, R. J. (1987). The Palaeogene of Asia: Mammals and stratigraphy. Mémoires Du Muséum National D’histoire Naturelle, Ser. C, 52, 1–488. [Google Scholar]
- Sahni, A. , & Khare, S. K. (1971). Three new Eocene mammals from Rajauri District, Jammu and Kashmir. Journal of the Palaeontological Society of India, 16, 41–53. [Google Scholar]
- Sahni, A. , & Khare, S. K. (1973). Additional Eocene mammals from the Subathu Formation of Jammu and Kashmir. Journal of the Palaeontological Society of India, 17, 31–49. [Google Scholar]
- Savage, D. E. , & Russell, D. E. (1983). Mammalian paleofaunas of the world (pp. 1–432). Reading, MA: Addison‐Wesley. [Google Scholar]
- Secord, R. , Bloch, J. I. , Chester, S. G. B. , Boyer, D. M. , Wood, A. R. , Wing, S. L. , … Krigbaum, J. (2012). Evolution of the earliest horses driven by climate change in the Paleocene‐Eocene Thermal Maximum. Science, 335(6071), 959–962. 10.1126/Science.1213859 [DOI] [PubMed] [Google Scholar]
- Shi, R. (1989). Late Eocene Mammalian Fauna of Huangzhuang, Qufu, Shandong. Vertebrata PalAsiatica, 27(2), 87–102. [Google Scholar]
- Simpson, G. G. (1951). Horses: The story of the horse family in the modern world and through sixty million years of history (pp. 1–245). New York, NA: Oxford University Press. [Google Scholar]
- Smith, T. , Solé, F. , Missiaen, P. , Rana, R. , Kumar, K. , Sahni, A. , & Rose, K. D. (2015). First early Eocene tapiroid from India and its implication for the paleobiogeographic origin of perissodactyls. Palaeovertebrata, 39((2)‐e5), 1–9. 10.18563/pv.39.2.e5 [DOI] [Google Scholar]
- Stucky, R. K. (1990). Evolution of land mammal diversity in North America during the Cenozoic In Genoways H. H. (Ed.), Current mammalogy (Vol. 2, pp. 375–432). New York, NY: Plenum Publishing Corporation. [Google Scholar]
- Sun, B. Y. (2018). Systematic revision, phylogenetic analysis on Chinese fossil horses of Equinae and discussion on their evolution, migration and environment setting (pp. 1–169). Beijing, China: University of Chinese Academy of Sciences. [Google Scholar]
- Sun, B. Y. , Zhang, X. X. , Liu, Y. , & Bernor, R. L. (2018a). Sivalhippus ptychodus and Sivalhippus platyodus (Perissodactyla, Mammalia) from the late Miocene of China. Rivista Italiana Di Paleontologia E Stratigrafia, 124(1), 1–22. 10.13130/2039-4942/9523 [DOI] [Google Scholar]
- Sun, D. H. , Li, Y. , & Deng, T. (2018b). A new species of Chilotherium (Perissodactyla, Rhinocerotidae) from the Late Miocene of Qingyang, Gansu, China. Vertebrata PalAsiatica, 56(3), 216–228. 10.19615/j.cnki.1000-3118.180109 [DOI] [Google Scholar]
- Sun, J. M. , Ni, X. J. , Bi, S. D. , Wu, W. Y. , Ye, J. , Meng, J. , & Windley, B. F. (2014). Synchronous turnover of flora, fauna, and climate at the Eocene‐Oligocene Boundary in Asia. Scientific Reports, 4, 1–6. 10.1038/srep07463 [DOI] [PMC free article] [PubMed] [Google Scholar]
- Takai, F. (1939). Eocene mammals found from the Hosan coal‐field, Tyosen. Journal of the Faculty of Science Tokyo, 2(5), 199–217. [Google Scholar]
- Tang, Y. (1978). New materials of Oligocene mammalian fossils from Qujing Basin, Yunnan. Professional Papers on Stratigraphy and Paleontology, Beijing, 7, 75–79. [Google Scholar]
- Thewissen, J. G. M. , & Domning, D. P. (1992). The role of phenacodontids in the origin of the modern orders of ungulate mammals. Journal of Vertebrate Paleontology, 12(4), 494–504. [Google Scholar]
- Ting, S. Y. (1993). A preliminary report on an Early Eocene mammalian fauna from Hengdong, Hunan Province, China. Kaupia, 3, 201–207. [Google Scholar]
- Tong, H. (2006). Hesperotherium sinense, a chalicothere (Perissodactyla, Mammalia) from the Early Pleistocene Liucheng Gigantopithecus Cave. Vertebrata PalAsiatica, 44(4), 347–365. [Google Scholar]
- Tong, H. W. , & Wu, X. Z. (2010). Stephanorhinus kirchbergensis (Rhinocerotidae, Mammalia) from the Rhino Cave in Shennongjia, Hubei. Chinese Science Bulletin, 55(12), 1157–1168. 10.1007/s11434-010-0050-5 [DOI] [Google Scholar]
- Tong, Y. S. , Huang, W. P. , & Qiu, Z. D. (1975). Hipparion fauna in Anlo, Hohsien, Shansi. Vertebrata PalAsiatica, 13(1), 34–47. [Google Scholar]
- Tong, Y. S. , & Lei, Y. Z. (1984). Fossil tapiroids from the upper Eocene of Xichuan, Henan. Vertebrata PalAsiatica, 22, 269–280. [Google Scholar]
- Tong, Y. S. , & Wang, J. W. (1980). Subdivision of the upper Cretaceous and lower Tertiary of the Tantou Basin, the Lushi Basin and the Lingbao Basin of W. Henan. Vertebrata PalAsiatica, 18(1), 21–27. [Google Scholar]
- Tong, Y. S. , & Wang, J. W. (2006). Fossil mammals from the Early Eocene Wutu Formation of Shandong Province. Palaeontologia Sinica, New Series C, 28, 1–195. [Google Scholar]
- Tong, Y. S. , Zheng, S. H. , & Qiu, Z. D. (1995). Cenozoic mammal ages of China. Vertebrata PalAsiatica, 33(4), 290–314. [Google Scholar]
- Tsubamoto, T. , Egi, N. , Takai, M. , Sein, C. , & Maung, M. (2005). Middle Eocene ungulate mammals from Myanmar: A review with description of new specimens. Acta Palaeontologica Polonica, 50(1), 117–138. [Google Scholar]
- Van Valen, L. (1960). A functional index of hypsodonty. Evolution, 14(4), 531–532. [Google Scholar]
- Wall, W. P. (1981). Systematics, phylogeny, and functional morphology of the Amynodontidae (Perissodactyla: Rhinocerotoidea) (pp. 1–307). Amherst, MA: University of Massachusetts. (Doctor. of Philosophy). [Google Scholar]
- Wall, W. P. , & Manning, E. (1986). Rostriamynodon grangeri n. gen., n. sp. of amynodontid (Perissodactyla, Rhinocerotoidea) with comments on the phylogenetic history of Eocene Amynodontidae. Journal of Paleontology, 60(4), 911–919. [Google Scholar]
- Wang, B. Y. (1978). Perissodactyla from the late Eocene of Lantain, Shensi. Professional Papers of Stratigraphy and Palaeontology, 7, 118–121. [Google Scholar]
- Wang, B. Y. , Chang, J. , Meng, X. J. , & Chen, J. R. (1981). Stratigraphy of the upper and middle Oligocene of Qianlishan District, Nei Mongol (Inner Mongolia). Vertebrata PalAsiatica, 19(1), 26–34. [Google Scholar]
- Wang, H. B. , Bai, B. , Gao, F. , Huang, W. C. , & Wang, Y. Q. (2013). New eggysodontid (Mammalia, Perissodactyla) material from the Paleogene of the Guangnan Basin, Yunnan Province, China. Vertebrata PalAsiatica, 51(4), 305–320. [Google Scholar]
- Wang, H. B. , Bai, B. , Meng, J. , & Wang, Y. Q. (2016). Earliest known unequivocal rhinocerotoid sheds new light on the origin of Giant Rhinos and phylogeny of early rhinocerotoids. Scientific Reports, 6(39607), 1–9. 10.1038/srep39607 [DOI] [PMC free article] [PubMed] [Google Scholar]
- Wang, H. B. , Bai, B. , Meng, J. , & Wang, Y. Q. (2018). A new species of Forstercooperia (Perissodactyla: Paraceratheriidae) from Northern China with a systematic revision of Forstercooperiines. American Museum Novitates, 3897, 1–41. 10.1206/3897.1 [DOI] [Google Scholar]
- Wang, J. W. (1976). A new genus of Forstercooperiinae from the Late Eocene of Tongbo, Henan. Vertebrata PalAsiatica, 14(2), 104–111. [Google Scholar]
- Wang, J. W. (1988). A new genus of ceratomorphs (Mammalia) from middle Eocene of China. Vertebrata PalAsiatica, 26, 20–34. [Google Scholar]
- Wang, J. W. , & Tong, Y. S. (1996). A new lophialetid perissodactyl (Mammalia) from the early Eocene of Wutu Basin, Shandong Province. Vertebrata PalAsiatica, 34(4), 312–321. [Google Scholar]
- Wang, Y. (1995). A new primitive chalicothere (Perissodactyla, Mammalia) from the early Eocene of Hubei, China. Vertebrata PalAsiatica, 33, 138–159. [Google Scholar]
- Wang, Y. Q. , Li, Q. , Bai, B. , Jin, X. , Mao, F. Y. , & Meng, J. (2019). Paleogene integrative stratigraphy and timescale of China. Science China Earth Sciences, 62(1), 287–309. [Google Scholar]
- Wang, Y. Q. , Meng, J. , Jin, X. , Beard, K. C. , Bai, B. , Li, P. , … Gebo, D. L. (2011). Early Eocene perissodactyls (Mammalia) from the upper Nomogen Formation of The Erlian Basin, Nei Mongol, China. Vertebrata PalAsiatica, 49(1), 123–140. [Google Scholar]
- Wang, Y. Q. , Meng, J. , Ni, X. J. , & Li, C. K. (2007). Major events of Paleogene mammal radiation in China. Geological Journal, 42(3–4), 415–430. [Google Scholar]
- Wasiljeff, J. , Kaakinen, A. , Salminen, J. M. , & Zhang, Z. Q. (2020). Magnetostratigraphic constraints on the fossiliferous Ulantatal sequence in Inner Mongolia, China: Implications for Asian aridification and faunal turnover before the Eocene‐Oligocene boundary. Earth and Planetary Science Letters, 535, 1–15. 10.1016/j.epsl.2020.116125 [DOI] [Google Scholar]
- Welker, F. , Collins, M. J. , Thomas, J. A. , Wadsley, M. , Brace, S. , Cappellini, E. , … MacPhee, R. D. (2015). Ancient proteins resolve the evolutionary history of Darwin's South American ungulates. Nature, 522(7554), 81–84. 10.1038/nature14249 [DOI] [PubMed] [Google Scholar]
- West, R. M. (1980). Middle Eocene large mammal assemblage with Tethyan affinities, Ganda Kas region, Pakistan. Journal of Paleontology, 508–533. [Google Scholar]
- Wood, H. E. (1938). Cooperia totadentata, a remarkable rhinoceros from the Eocene of Mongolia. American Museum Novitates, 1012, 1–20. [Google Scholar]
- Wood, H. E. (1963). A primitive rhinoceros from the late Eocene of Mongolia. American Museum Novitates, 2146, 1–11. [Google Scholar]
- Woodburne, M. O. (2004). Global events and the North American mammalian biochronology In Woodburne M. O. (Ed.), Late Cretaceous and Cenozoic Mammals of North America (pp. 315–344). New York, NY: Columbia University Press. [Google Scholar]
- Wu, W. , & Chen, G. (1976). A new schizotheriine genus from the Neogene of Pingliang, Gansu. Vertebrata PalAsiatica, 14, 194–197. [Google Scholar]
- Xu, Y. X. (1961). Some Oligocene mammals from Chuching, Yunnan. Vertebrata PalAsiatica, 5(4), 315–325. [Google Scholar]
- Xu, Y. X. (1965). A new genus of amynodont from the Eocene of Lantian, Shensi. Vertebrata PalAsiatica, 9(1), 83–86. [Google Scholar]
- Xu, Y. X. (1966). Amynodonts of Inner Mongolia. Vertebrata PalAsiatica, 10(2), 123–162. [Google Scholar]
- Xu, Y. X. (1978). Amynodonts from the upper Oligocene of Lantian, Shansi. Professional Papers of Stratigraphy and Palaeontology, 7, 109–117. [Google Scholar]
- Xu, Y. X. , & Wang, J. W. (1978). New materials of giant rhinoceros. Reports of Paleontological Expedition to Sinkiang (III) – Permian and Triassic Vertebrate Fossils of Dzungaria Basin and Tertiary Stratigraphy and Mammalian Fossils of Turfan Basin. Memoirs of the Institute for Vertebrate Paleontology and Paleoanthropology, 13, 132–140. [Google Scholar]
- Xu, Y. X. , Yan, D. F. , Zhou, S. Q. , Han, S. J. , & Zhong, Y. C. (1979). On stratigraphic subdivision of the red beds and the mammal fossils in the Liguanqiao Basin, Henan In N. C. IVPP (Ed.), The Mesozoic and Cenozoic Red Beds of South China (pp. 416–432). Beijing, China: Science Press. [Google Scholar]
- Xue, X. X. , & Coombs, M. C. (1985). A new species of Chalicotherium from the upper Miocene of Gansu Province, China. Journal of Vertebrate Paleontology, 5(4), 336–344. [Google Scholar]
- Yan, D. F. (1979). Einige Fossilen der Miozänen Säugetiere der Kreis von Fangxian in der Provinz Hupei. Vertebrata PalAsiatica, 17(3), 189–199. [Google Scholar]
- Yan, Y. , Wang, Y. , Jin, C. , & Mead, J. I. (2014). New remains of Rhinoceros (Rhinocerotidae, Perissodactyla, Mammalia) associated with Gigantopithecus blacki from the Early Pleistocene Yanliang Cave, Fusui, South China. Quaternary International, 354, 110–121. 10.1016/j.quaint.2014.01.004 [DOI] [Google Scholar]
- Yanovskaya, N. M. (1954). A new genus of Embolotheriinae from the Paleogene in Mongolia. Trudy Paleontologicheskogo Instituta, Akademiya Nauk SSSR, 55, 4–43. [Google Scholar]
- Yanovskaya, N. M. (1980). Brontoterii Mongolii (The Brontotheres of Mongolia). Trudy Sovmestnaya Sovestko‐Mongoliskaia Paleontologicheskaia Ekspeditsiia, 12, 1–220. [Google Scholar]
- Ye, J. (1983). Mammalian Fauna from the Late Eocene of Ulan Shireh Area, Inner Mongolia. Vertebrata PalAsiatica, 21(2), 109–118. [Google Scholar]
- Ye, J. , Meng, J. , & Wu, W. (2003). Discovery of Paraceratherium in the Northern Junggar Basin of Xinjiang. Vertebrata PalAsiatica, 41(3), 220–229. [Google Scholar]
- You, Y. Z. (1977). Note on the new genus of early Tertiary Rhinocerotidae from Bose, Guangxi. Vertebrata PalAsiatica, 15(1), 46–53. [Google Scholar]
- Young, C. (1937). On a Miocene mammalian fauna from Shantung. Bulletin of the Geological Society of China, 17(2), 209–244. 10.1111/j.1755-6724.1937.mp17002007.x [DOI] [Google Scholar]
- Zachos, J. C. , Dickens, G. R. , & Zeebe, R. E. (2008). An early Cenozoic perspective on greenhouse warming and carbon‐cycle dynamics. Nature, 451(7176), 279–283. 10.1038/Nature06588 [DOI] [PubMed] [Google Scholar]
- Zachos, J. , Pagani, M. , Sloan, L. , Thomas, E. , & Billups, K. (2001). Trends, rhythms, and aberrations in global climate 65 Ma to present. Science, 292(5517), 686–693. 10.1126/science.1059412 [DOI] [PubMed] [Google Scholar]
- Zdansky, O. (1930). Die alttertiären Säugetiere Chinas nebst stratigraphischen Bemerkungen. Palaeontologia Sinica Series C, 6, 5–87. [Google Scholar]
- Zhai, R. J. (1962). On the generic character of “Hypohippus zitteli”. Vertebrata PalAsiatica, 6(1), 48–55. [Google Scholar]
- Zhai, R. J. (1977). Supplementary remarks on the age of Changxindian Formation. Vertebrata PalAsiatica, 15(3), 173–176. [Google Scholar]
- Zhai, R. J. (1978a). Late Oligocene mammals from the Taoshuyuanzi Formation of Eastern Turfan Basin. Reports of Paleontological Expedition to Sinkiang (III) – Permian and Triassic Vertebrate Fossils of Dzungaria Basin and Tertiary Stratigraphy and Mammalian Fossils of Turfan Basin. Memoirs of the Institute for Vertebrate Paleontology and Paleoanthropology, 13, 126–131. [Google Scholar]
- Zhai, R. J. (1978b). A primitive Elasmothere from the Miocene of Lintung, Shensi. Professional Papers of Stratigraphy and Palaeontology, 7, 122–126. [Google Scholar]
- Zhang, R. , Kravchinsky, V. A. , & Yue, L. P. (2012). Link between global cooling and mammalian transformation across the Eocene‐Oligocene boundary in the continental interior of Asia. International Journal of Earth Sciences, 101(8), 2193–2200. 10.1007/S00531-012-0776-1 [DOI] [Google Scholar]
- Zhang, Y. (1976). The early Tertiary chalicotheres of the Bose and Yungle basins, Guangxi. Vertebrata PalAsiatica, 14(2), 128–130. [Google Scholar]
- Zhang, Y. , & Qi, T. (1981). A new species of Simplaletes (Lophialetidae, Mammalia) from the lower Tertiary of Shaanxi Province. Vertebrata PalAsiatica, 19(3), 214–217. [Google Scholar]
- Zheng, J. J. (1978). Description of some late Eocene mammals from Lian‐kan Formation of Turfan Basin, Sinkiang. Reports of Paleontological Expedition to Sinkiang (III) – Permian and Triassic Vertebrate Fossils of Dzungaria Basin and Tertiary Stratigraphy and Mammalian Fossils of Turfan Basin. Memoirs of the Institute of Vertebrate Paleontology and Paleoanthropology, 13, 116–125. [Google Scholar]
- Zheng, J. , Tang, Y. , Zhai, R. , Ding, S. , & Huang, X. (1978). Early Tertiary strata of Lunan Basin, Yunnan. Professional Papers on Stratigraphy and Paleontology, Beijing, 7, 22–29. [Google Scholar]
- Zin Maung Maung, T. , Takai, M. , Tsubamoto, T. , Egi, N. , Thaung, H. , Nishimura, T. , … Zaw, W. (2010). A review of fossil rhinoceroses from the Neogene of Myanmar with description of new specimens from the Irrawaddy Sediments. Journal of Asian Earth Sciences, 37(2), 154–165. 10.1016/j.jseaes.2009.08.009 [DOI] [Google Scholar]
- Zong, G. , Chen, W. , Huang, X. , & Xu, Q. (1996). Cenezoic mammals and environment of Hengduan Mountains region (pp. 1–279). Beijing, China: China Ocean Press. [Google Scholar]
Associated Data
This section collects any data citations, data availability statements, or supplementary materials included in this article.
Data Availability Statement
All relevant data are within the manuscript and Appendix 1.