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a b s t r a c t 

Coronaviruses are a huge family of viruses that affect neurological, gastrointestinal, hepatic and respi- 

ratory systems. The numbers of confirmed cases are increased daily in different countries, especially in 

Unites State America, Spain, Italy, Germany, China, Iran, South Korea and others. The spread of the COVID- 

19 has many dangers and needs strict special plans and policies. Therefore, to consider the plans and 

policies, the predicting and forecasting the future confirmed cases are critical. The time series models are 

useful to model data that are gathered and indexed by time. Symmetry of error’s distribution is an essen- 

tial condition in classical time series. But there exist cases in the real practical world that assumption of 

symmetric distribution of the error terms is not satisfactory. In our methodology, the distribution of the 

error has been considered to be two-piece scale mixtures of normal ( TP –SMN ). The proposed time series 

models works well than ordinary Gaussian and symmetry models (especially for COVID-19 datasets), and 

were fitted initially to the historical COVID-19 datasets. Then, the time series that has the best fit to each 

of the dataset is selected. Finally, the selected models are applied to predict the number of confirmed 

cases and the death rate of COVID-19 in the world. 

© 2020 Elsevier Ltd. All rights reserved. 
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. Introduction 

Coronaviruses are a huge family of viruses that affect neurolog-

cal, gastrointestinal, hepatic and respiratory systems. This family

an be grown among humans, bats, mice, livestock, birds, and oth-

rs [1–3] . In 2003, a type of coronavirus, called SARS coronavirus

SARS-CoV), was distributed from animal to animal [4] . In 2012,

nother type of coronavirus, named as MERS coronavirus (MERS-

oV), was significantly distributed from human to human [4] . Late

n year 2019, the World Health Organization (WHO) reported many

ases in China with respiratory diseases. It was verified that most

f the reported cases contacted with the persons that had went

o a seafood market in Wuhan [5] . Recently, a new type of coro-

avirus, named COVID-19 (it may be also named 2019-nCoV), is
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preading in Wuhan [6] . The scientists believe that the COVID-19

cts in human similar to that are in bats. However, to know the

ain source of the COVID-19, more scientific studies are needed.

ased on the reports, the COVID-19 has been observed in others

ities in China and also in about other 198 countries (up to 06

ebruary 2020). The Centers for Disease Control and Prevention

CDC) verified that the COVID-19 is distributed from human to hu-

an. Based on the CDC’s reports, the COVID-19 is spread by touch-

ng surfaces, close contact, air, or objects that contain viral parti-

les. The COVID-19 is a dangerous virus, because the incubation

eriod of the COVID-19 is at least 14 days [7] , and it can spread

o others in the incubation period. A recent research indicates that

he median age and incubation period of confirmed cases are re-

pectively 3 days and 47.0 years [8] . 

The number of confirmed cases has increased daily in different

ountries, specially in United State American, Italy, Spanish, Ger-

any, Iran, China and other countries. The spread of the COVID-

9 has many dangers and needs strict special plans and policies.

herefore, to consider the plans and policies, the prediction and

orecasting the future confirmed cases are critical. The number of
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the unreported COVID-19 cases in China has been mathematically

estimated by [9] . Using a data-driven analysis, they estimated that

there are 469 unreported COVID-19 cases in China in 1–15 Jan-

uary 2020. Based on the information of some Japanese passen-

gers in Wuhan, Nishiura et al. [10] estimated the rate of the infec-

tion for COVID-19 in Wuhan. The results indicated a rate of 9.5%

for infection and a rate from 0.3% to 0.6%, for death. Since the

size of the considered population is very small, there is doubt in

about accuracy of estimated rates. Based on a mathematical model,

Tang et al. [11] concluded that the transmission risk of COVID-19

is averagely about 6.47 persons and predicted the time that the

peak of COVID-19 will be reached. Using the information of 47

patients, Thompson [12] estimated a sustained human-to-human

transmission equal to 0.4 for COVID-19. Based on two different sce-

narios, Jung et al. [13] concluded that the risk of death is 5.1%

and 8.4%. Al-qaness et al. [14] proposed an optimization method,

named FPASSA-ANFIS, to model the number of confirmed cases of

COVID-19 and to predict its future values using previous recorded

dataset in China. They introduced a technique that was a combina-

tion of neuro-fuzzy system, flower pollination algorithm, and salp

swarm technique. Generally, the salp swarm technique was applied

to develop flower pollination algorithm to prevent its disadvan-

tages such as returning trapped at the local optimum. The theory

of FPASSA-ANFIS model is based on the improvement in the abil-

ity and accuracy of neuro-fuzzy system by considering the param-

eters of adaptive neuro-fuzzy inference system using salp swarm

and flower pollination algorithms. The ability and applicability of

FPASSA-ANFIS technique were studied using the real dataset in-

cluding the outbreak of the COVID-19 given by WHO. Moreover,

FPASSA-ANFIS technique was applied to forecast the confirmed

cases in future days. 

The modeling, forecasting, predicting and estimating the char-

acteristics of the epidemiological problems were considered in

some previous researches. For example, the forecasting of the cases

and transmission risk of West Nile virus (WNV) [15] , the forecast-

ing of the infection of hepatitis A virus [16] , the forecasting of the

seasonal outbreaks of influenza [ 17 , 18 ], the forecasting of the out-

breaks of Ebola [19] , the estimating of the infection’s rate of the

SARS [20] , the modeling of the influenza A (H1N1–2009) [21] , pre-

dicting the outbreaks of the MERS [22] . 

Time series models are useful to models data that gathered

and indexed by time. Time series analysis has been used effec-

tively to model, estimate, forecast and predict real practical prob-

lems, see refs. [23-32] . Symmetry of error’s distribution is an es-

sential condition. But there exist many cases in the real world

that assumption of symmetrically distribution of the error terms

is not satisfactory (see e.g., refs. [25-32] ), so in our methodology

we consider the time series models based on the two-piece distri-

butions, especially two-piece scale mixture normal ( TP –SMN ) dis-

tributions which had introduced by refs. [32-38] . The proposed

time series models includes the symmetric Gaussian and symmet-

ric/asymmetric lightly/heavy-tailed non-Gaussian time series mod-

els, and were fitted initially to the historical COVID-19 datasets.

Then, the time series that has the best fit to each of the dataset is

selected. Finally, the selected models are used to predict the num-

ber of confirmed cases and death rate of COVID-19 in the world. In

this study, 

1 An improved time series model is introduced applying TP –SMN

distributions. 

2 The new efficient predictive model is applied to predict and es-

timate the confirmed cases and death rate of COVID-19 in the
world, using past and current datasets. {  
. Preliminaries 

The autoregressive moving-average ( ARMA ) processes are a use-

ul and accurate class of time series for modeling and forecasting

f real datasets. The ARMA model presents a time series based on

wo linear functions; one contains the linear combinations of past

alues of time series, called the autoregressive ( AR ), and the other

ontains the linear combinations of a set of uncorrelated errors,

alled the moving average ( MA ). This model was firstly introduced

y Peter Whittle, ref. [39] , and then used by refs. [ 40 , 41 ]. 

efinition 2.1. The process { X t } is a ARMA process with orders of

 p, q ), { X t } ~ ARMA ( p, q ), if 

X t − α1 X t−1 − . . . − αp X t−p = Z t + η1 Z t−1 + . . . + ηq Z t−1 ; , 

t = 0 , ±1 , ±2 , . . . , { Z t } ∼ W N 

(
0 , σ 2 

)
, (1)

here WN (0, σ 2 ) refers to a set of uncorrelated and identically dis-

ributed zero-mean random variables with variance σ 2 . 

It should be noted that the cases q = 0 , and p = 0 , are called

he AR ( p ) and the MA ( q ) models, respectively. 

Following general two-piece distributions from ref. [33] based

n the scale mixtures of normal ( SMN ) family, the probability den-

ity function (pdf) of the TP –SMN family for y ∈ R , that is presented

y Y ~ TP –SMN ( μ, σ , ν, γ ), is represented by 

 ( y | μ, σ, γ , ν) = 

{
2 ( 1 − γ ) f SMN ( y | μ, σ ( 1 − γ ) , ν) , y ≤ μ, 

2 γ f SMN ( y | μ, σγ , ν) , y > μ
, 

(2)

uch that 0 < γ < 1 is the slant coefficient and f SMN ( · | μ, σ , ν) is

df of the SMN family. 

emma 2.1. Let Y ~ TP–SMN ( μ, σ , γ , ν) , then Y has a stochastic

epresentation given by 

 = S 1 Y 
− + S 2 Y 

+ , (3)

here Y − ∼ SMN( μ, σ1 , ν) I A (y ) and Y + ∼ SMN( μ, σ2 , ν) I A c (y ) , for

hich σ1 = σ ( 1 − γ ) , σ2 = σγ , A = ( −∞ , μ) and SMN ( · ) I A ( · ) is

he truncated SMN –distribution on A , and S = ( S 1 , S 2 ) 
T such that

 1 + S 2 = 1 has following probability mass function (pmf): 

 ( S = s ) = 

(
σ1 

σ1 + σ2 

)s 1 ( σ2 

σ1 + σ2 

)s 2 

; s 1 , s 2 = 0 , 1 , s 1 + s 2 = 1 . 

(4)

emma 2.2. Let Y ~ TP–SMN ( μ, σ , γ , ν) , 

a) E(Y ) = μ − b�;
b) Var (Y ) = σ 2 [ c 2 k 2 (ν) − b 2 c 2 1 ] , 

here � = σ ( 1 − 2 γ ) , b = 

√ 

2 /πk 1 (ν) , c r = γ r+1 +
( −1 ) r ( 1 − γ ) r+1 and k r (ν) = E( U 

−r/ 2 ) , for which U is the scale

ixing variable (details are given in [32-38] ). 

. ARMA process based on the two-piece distributions 

.1. The TP–SMN–ARMA process 

Consider the ARMA ( p, q ) model (1) with independent and iden-

ically distributed (i.i.d.) noises from TP –SMN, 

 

Z t } ∼ T P − −SMN ( b�, σ, ν, γ ) , t = 0 , ±1 , ±2 , . . . , (5)

And assume α = ( α1 , . . . , αp ) T and η = ( η1 , . . . , ηq ) T are

R and MA coefficients of the TP –SMN –ARMA model, re-

pectively. In this work, we will represent this model by

 X t } ∼ T P − −SMN − −ARMA ( p, q ) with the model parameter
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= ( α, η, μ, σ1 , σ2 , ν) T (based on the TP –SMN representation from

emma 2.1 .). 

emark 3.1. Let { X t } ∼ T P − −SMN − −ARMA ( p, q ) . The process

 X t } can be represented by a one-sided MA ( ∞ ) process, X t =∞ ∑ 

j=0 

ψ j Z t− j . If the condition 

∞ ∑ 

j=0 

| ψ j | < ∞ is satisfied, then X t con-

erges in the mean, and this process is strictly stationary with the

ollowing mean and covariance functions: 

μX ( t ) = E ( X t ) = μz 
1 + η1 + . . . + ηq 

1 − α1 − . . . − αp 
;

γX ( h ) = Cov ( X t , X t+ h ) = σ 2 
z ξ ( h ) , (6) 

here μz = E( Z t ) , σ 2 
z = Var ( Z t ) (given by Lemma 2.2 .), and ξ (h ) =

∞ ∑ 

j=0 

ψ j+ | h | ψ j . Also γ X ( h ) → 0, as h → ∞ , (see, ref. [42] ). 

.2. Maximum-Likelihood estimates 

Let X = ( X 1 , . . . , X n ) T and x t−1 = ( X t−1 , . . . , X t−p ) 
T are sam-

le and sub-samples of X , respectively. Also, assume that z t−1 =
( Z t−1 , . . . , Z t−q ) 

T for t = 1 , . . . , n are conditionally errors on initial

alues X 0 = ( X 0 , . . . , X −p+1 ) 
T and Z 0 = ( Z 0 , . . . , Z −q +1 ) 

T . Since the

RMA ( p, q ) model follows the Markovian property, then 

 ( �) = f X ( X | X 0 , Z 0 , �) = 

n ∏ 

t=1 

g ( Z t | X 0 , Z 0 , �) , 

here L ( �) is the conditional likelihood function on initial values,

See more details about choosing the initial values and construc-

ion of the conditional likelihood function, in ref. [40] ). So the log–

onditional likelihood function is derived by 

 ( �) = 

n ∑ 

t=1 

l t ( �) = 

n ∑ 

t=1 

log g 
(
X t − αT x t−1 − ηT z t−1 

)
(7) 

uch that g( · ) refers to TP –SMN pdf given in (2). 

The SMN –densities in the pdf (2) are complex, and then the ex-

loring the Maximum –Likelihood ( ML ) estimates for the parameters

f model (7) will tractable. But, using the Lemma 2.1 ., concludes a

uitable hierarchically form of the TP –SMN family besides the pro-

osed ARMA model, to employ an EM –type algorithm to estimate

he parameters. 

Considering the Lemma 2.1 ., and stochastic representation of

MN family (ref. [43] ), let D = ( X, U , S ) T as the complete data for

he observations X , and U = ( U 1 , . . . , U n ) 
T and S = ( S t1 , S t2 ) 

T ; t =
 , . . . , n are the missing (latent) data. It is noticed that the TP –

MN –ARMA model via (1) and (5) has the following hierarchically

epresentation: 

 t | x t−1 , z t−1 , U t = u t , S ti = 1 ∼ N 

(
αT x t−1 + ηT x t−1 + μ, u 

−1 
t σ 2 

i 

)
I

 t | S ti = 1 ∼ H ( u t | ν) , 

 t ∼ Multinomial ( 1 , σ1 / ( σ1 + σ2 ) , σ2 / ( σ1 + σ2 ) ) , 

for t = 1 , . . . , n and i = 1 , 2 , where A t =
( −∞ , αT x t−1 + ηT z t−1 + μ) and N ( · ) I A ( · ) is the truncated

ormal distribution on A . 

The hierarchical form of the TP –SMN –ARMA process given in

11) and ECME algorithm, that is a generalization of the EM al-

orithm [44] , are applied to find the ML estimates. So consider-

ng the proposed the T P − −SMN − −ARMA ( p, q ) and (11), ignoring

onstants, the conditional log–likelihood function is 

cl ( �) = −n log ( σ1 + σ2 ) 
) 
2 −i I A c t ( x t ) 

i −1 

(11) 

−1 

2 

n ∑ 

t=1 

2 ∑ 

i =1 

S ti U t 

(
X t − αT x t−1 − ηT z t−1 − μ

σi 

)2 

+ 

n ∑ 

t=1 

2 ∑ 

i =1 

S ti log h ( U t | ν) , (12) 

here � = ( ϕ, θ, μ, σ1 , σ2 , ν) T . 

emark 3.1. The conditional expectations ˆ s t1 = E[ S ti | ̂  �, X ] =
 ( −∞ , ̂ αT x t−1 + ̂ ηT z t−1 + ̂ μ] ( x t ) and ˆ s t2 = 1 − ˆ s t1 , ˆ w ti = E[ U t S ti | ̂  �, X ] =
ˆ ti ̂  s ti for ˆ κti = E[ U t | ̂  �, X, S ti = 1 ] , t = 1 , . . . , n, i = 1 , 2 for the

P –SMN –ARMA members are as follows: 

2 • TP–N–ARMA model: ˆ κti = 1 , 

2 • TP–T–ARMA model: ˆ κti = 

ˆ ν+1 
ˆ ν+ d ti 

, 

2 • TP–SL–ARMA model: ˆ κti = 

2 ̂ ν+1 
d ti 

P 1 ( ̂ ν+3 / 2 , d ti / 2 ) 

P 1 ( ̂ ν+1 / 2 , d ti / 2 ) 
, 

2 • TP–CN–ARMA model: ˆ κti = 

ˆ τ2 ˆ νe − ˆ τd ti / 2 +( 1 − ˆ ν) e −d ti / 2 

ˆ τ ˆ νe − ˆ τd ti / 2 +( 1 − ˆ ν) e −d ti / 2 
, 

where d ti = ( x t − ˆ αT x t−1 − ˆ ηT z t−1 − ˆ μ) 2 / ̂  σ 2 
i 

, and P x ( a, b ) is the

umulative distribution function of the Gamma( a, b ) distribution

t x . 

The function Q( �| ̂  �(k ) ) = E θ[ cl l (�) | ̂  �(k ) , X ] must be maxi-

ized. For the ( k + 1 ) th , the E–Step of the ECME algorithm is as

ollowing: 

Q 

(
�| ̂  �( k ) 

)
= −n log ( σ1 + σ2 ) 

−1 

2 

n ∑ 

t=1 

2 ∑ 

i =1 

ˆ w 

( k ) 
ti 

(
X t − αT x t−1 − ηT z t−1 − μ

σi 

)2 

+ 

n ∑ 

i =1 

2 ∑ 

j=1 

E 

[ 
S ti log h ( U t | ν) | ̂  �( k ) , X 

] 
, 

here ˆ w 

(k ) 
ti 

= ˆ κ(k ) 
ti 

ˆ s (k ) 
ti 

has obtained by Remark 3.1 . 

The CM–Steps of the ECME algorithm is also as following: 

ˆ ( k +1 ) = 

( 

n ∑ 

t=1 

ˆ ζ ( k ) 
t x t−1 x 

T 
t−1 

) −1 
n ∑ 

t=1 

ˆ ζ ( k ) 
t 

(
X t − ˆ ηT ( k ) z t−1 − ˆ μ( k ) 

)
x t−1 , 

ˆ ( k +1 ) = 

( 

n ∑ 

t=1 

ˆ ζ ( k ) 
t z t−1 z 

T 
t−1 

) −1 
n ∑ 

t=1 

ˆ ζ ( k ) 
t 

(
X t − ˆ αT ( k +1 ) x t−1 − ˆ μ( k ) 

)
z t−1

ˆ ( k +1 ) = 

∑ n 
t=1 

ˆ ζ ( k ) 
t 

(
X t − ˆ αT ( k +1 ) x t−1 − ˆ ηT ( k +1 ) z t−1 

)
∑ n 

t=1 
ˆ ζ ( k ) 
t 

, 

here ˆ ζ (k ) 
t = 

2 ∑ 

i =1 

ˆ w 

(k ) 
ti 

/σ 2(k ) 
i 

. 

At the follows of CM–Steps, solving the stressed cubic equations
3 
i 

+ p σi + q = 0 ; i = 1 , 2 , concluding the updates ˆ σ ( k +1 ) 
i 

; i = 1 , 2 ,

here p = − 1 
n 

n ∑ 

t=1 

ˆ w 

(k ) 
ti 

( X t − ˆ αT( k +1 ) x t−1 − ˆ ηT( k +1 ) z t−1 − ˆ μ( k +1 ) ) 2 , 

or which q = pσ
2 

I ( i =1 ) + pσ
1 

I ( i =2 ) . Since p < 0 and q < 0, hence

his equation has unique just root in ( 0 , + ∞ ) . 

Finally, the CML –step of the ECME algorithm is as following: 

( k +1 ) = argma x νl 

(
ˆ αT ( k +1 ) , ̂  ηT ( k +1 ) , ˆ μ( k +1 ) , ˆ σ ( k +1 ) 

1 
, ˆ σ ( k +1 ) 

2 
, ν

)
. 
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Fig. 1. Time series plot of the total confirmed cases of COVID-19 in the world from 22-Jan up to 08-Apr of 2020. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

6 X t−5

= 0 . 5

Table 1 

The real values of the COVID-19 in the world data from 2020-Mar-30 up 

to 2020-Apr-08 with predictions and 98% confidence interval. 

Date Real value Prediction Lower Upper 

2020-Mar-30 785,828 783,114 776,624 789,937 

2020-Mar-31 859,620 852,651 845,272 859,197 

2020-Apr-01 936,637 937,797 930,885 944,428 

2020-Apr-02 1,016,734 1,016,045 1,008,173 1,022,633 

2020-Apr-03 1,118,414 1,101,645 1,093,850 1,108,143 

2020-Apr-04 1,203,235 1,223,923 1,215,528 1,230,375 

2020-Apr-05 1,274,653 1,286,735 1,277,745 1,295,487 

2020-Apr-06 1,348,564 1,348,163 1,338,874 1,357,682 

2020-Apr-07 1,430,981 1,426,889 1,417,614 1,435,226 

2020-Apr-08 1,518,023 1,520,874 1,511,512 1,529,308 
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The proposed algorithm will be continued until a convergence

condition is verified, i.e., | l( ̂  �( k +1 ) ) /l( ̂  �(k ) ) − 1 | ≤ ε, where ɛ is a

known and fixed tolerance. 

4. Modeling the confirmed cases and death rate of coronavirus 

4.1. Confirmed cases COVID-19 data in the world 

The coronavirus (COVID-19) is spreading in about 203 countries

of the world. The daily data related the COVID-19 in the world,

are reporting by the China National Health Commission (NHC) and

World Health Organization (WHO). In this part we fit the main-

tained time series models to the total confirmed cases in the world

include and exclude China from 22-Jan-2020 up to 08-Apr-2020. 

Time series plots of the total and daily cases in the world from

22-Jan up to 08-Apr of 2020 which are confirmed, and its station-

ary differenced with order 3 (i.e. ∇ 

3 X t = X t − 3 X t−1 + 3 X t−2 + X t−3 )

are given in Figs. 1 and 2 , respectively. Using the Dickey–Fuller test

leads to p–value = 0.01 with alternative hypothesis: stationary. 

Obviously number of cases (total and daily) in any days depend

the number on them in the previous day(s), so the ARMA model

can be suitable model for the COVID-19 cases data. 

Two famous model selection criteria are Akaike information cri-

teria ( AIC = 2 k − 2 l( ̂  �) ; ref. [45] ) and Bayesian information crite-

ria ( BIC = k log n − 2 l( ̂  �) ; ref. [46] ), k is the number of parameters

that are estimated in fitted model. The proposed criteria have used

to choose the best TP –SMN –ARMA model with the best fitted or-

ders. These criteria and partial auto-correlation function ( PACF ) in

Fig. 3 , demonstrate the following T P − −T − −ARMA ( 7 , 0 ) is the

best model 

X t + 0 . 8994 X t−1 + 0 . 9817 X t−2 + 0 . 9336 X t−3 + 0 . 7858 X t−4 + 0 . 650

where 

{ Z t } ∼ < italic > TP-T < /italic > ( μ = 8 . 847374 , σ = 2766 . 178 , γ
 

+ 0 . 4597 X t−6 + 0 . 2662 X t−7 = Z t , 

362869 , ν = 2 . 10 0 046 ) . 

The histogram of the estimated errors (residuals) based on the

stimated TP–T density (near symmetry but heavy-tailed) is super-

mposed on it shows the suitable performance of the estimated

odel to COVID-19 data ( Fig. 4 ). To further demonstrate the good

t of the model, we eliminated the last 10 data (2020-Mar-30 up

o 2020-Apr-08), then fitted the TP–SMN–ARMA model and forecast

hese data. Figs. 5 and 6 and Table 1 , show the forecasted real val-

es of the COVID-19 in the world data are close. Table 1 contains

he predictions and 98% confidence intervals for them. 

The mean relative percentage error ( MAPE ) index given by 

AP E = 

1 

n 

n ∑ 

i =1 

∣∣∣∣ ˆ X i − X i 

X i 

∣∣∣∣, 
here ˆ X n +1 = E( X n +1 X n , . . . , X 1 ) , is then used to evaluate the ac-

uracy of the suggested data prediction, which for the proposed
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Fig. 2. Stationary time series plot of the COVID-19 in the world (differenced with order three). 

Fig. 3. PACF of the stationary transformed total COVID-19 data in the world. 
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redictions is 0.60% which shows the suitability of the proposed

odel for predicting. Note that, this criterion for the modeling via

he ordinary Gaussian –ARMA model (also, the simplest TP–SMN–

RMA member) is 0.89%. Also the AIC and BIC criteria for the best

tted TP–SMN–ARMA are 1290.49 and 1298.02, and for the best fit-

ed Gaussian –ARMA model are 1524.14 and 1544.12, respectively. 
Finally, the p–value = 0.972 from the Box–Pierce and p–

alue = 0.931 from the Ljung–Box tests indicate the independency

f residuals. Also the auto–correlation function ( ACF ) plot of the

esiduals presented in Fig. 7 shows the suitability of the T P − −T −
ARMA ( 7 , 0 ) model to the total confirmed cased of the COVID-19 

ataset. 
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Fig. 4. Histogram of the residuals of the fitted time series model on COVID-19 data in the world with superimposed estimated TP –T density. 
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Table 2 

The real values of the death rate of COVID-19 in the world data 

from 2020-Mar-30 up to 2020-Apr-08 with predictions and 98% 

confidence interval. 

Date Real value Prediction Lower Upper 

2020-Mar-30 18.59 19.00 18.55 19.39 

2020-Mar-31 19.19 18.75 18.29 19.17 

2020-Apr-01 19.55 19.45 18.98 19.89 

2020-Apr-02 20.03 19.87 19.41 20.31 

2020-Apr-03 20.48 20.32 19.86 20.76 

2020-Apr-04 20.79 20.97 20.51 21.41 

2020-Apr-05 20.86 21.16 20.70 21.60 

2020-Apr-06 21.13 20.86 20.41 21.31 

2020-Apr-07 21.35 21.12 20.68 21.59 

2020-Apr-08 21.12 21.51 21.09 22.00 

 

u  

T  

f

 

s  

t

4.2. Death rate of COVID-19 data 

In this section we consider and model the death rate of COVID-

19 in the world from 02-Feb-2020 up to 08-Apr-2020, which this

daily data also has reported by the China National Health Commis-

sion (NHC) and World Health Organization (WHO). 

Time series plots of the death rate of coronavirus in the world

from 02-Feb-2020 up to 08-Apr-2020, and its stationary differ-

enced with order 3 (i.e. ∇ 

3 X t = X t − 3 X t−1 + 3 X t−2 + X t−3 ) are given

in Figs. 8 and 9 , respectively. Using the Dickey–Fuller test leads

to p–value = 0.01 which demonstrate the stationarity of differenced

data. 

Using the model selection criteria and methodology in the pre-

vious data, demonstrate that best TP –SMN –ARMA model with the

best fitted orders is T P − −T − −ARMA ( 7 , 1 ) . The PACF given in

Fig. 10 also satisfies it. Therefore the following TP –SMN –ARMA is

the best model 

X t + 1 . 3760 X t−1 + 1 . 4183 X t−2 + 1 . 1401 X t−3 + 0 . 9269 X t−4 + 0 . 6482

where 

{ Z t } ∼ < italic > TP-T < /italic > ( μ = 0 . 056836 , σ = 0 . 2664454 , γ

The histogram of the estimated errors (residuals) based on the

estimated TP–T density (heavy-tailed and asymmetry) is super-

imposed on it shows the suitable performance of the estimated

model to death rate of COVID-19 in the world ( Fig. 11 ). Same as

previous data, we eliminated the last 10 data (2020-Mar-30 up

to 2020-Apr-08, then fitted the TP–SMN–ARMA model and forecast
these data. 
 

+ 0 . 3181 X t−6 + 0 . 1752 X t−7 = Z t − . 0628 Z t−1 , 

 . 297544 , ν = 2 . 826561 ) . 

Figs. 12 , and 13 and Table 2 , show the forecasted real val-

es of the death rate of COVID-19 in the world data are close.

able 2 contains the predictions and also 98% confidence intervals

or them. 

The MAPE for the second proposed predictions is 1.30% demon-

trating the suitability of the proposed model for prediction. Note

hat, this criterion for the modeling via the ordinary Gaussian –
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Fig. 5. Time series plot of real values and predicted COVID-19 data from 2020-Mar-30 up to 2020-Apr-08 with 98%. 

Fig. 6. Time series plot of COVID-19 data and predicted data from 2020-Mar-30 up to 08-Apr of 2020. 
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Fig. 7. ACF of the residuals of fitted time series model to total COVID-19 in the world data. 

Fig. 8. Time series plot of the death rate of COVID-19 in the world from 2020-Mar-30 up to 08-Apr of 2020. 
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Fig. 9. Stationary time series plot of the death rate of COVID-19 in the world (differenced with order three). 

Fig. 10. PACF of the stationary transformed death rate of COVID-19 data in the world. 
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7

v  

o  

d  
RMA model (also, the simplest TP–SMN–ARMA member) is 1.70%.

lso the AIC and BIC criteria for the best fitted TP–SMN–ARMA are

4.42 and 18.05, and for the best fitted Gaussian –ARMA model are

6.68 and 95.07, respectively. 
t

Finally, the p–value = 0.974 from the Box–Pierce and p–

alue = 0.873 from the Ljung–Box tests indicate the independence

f residuals. Also, the ACF plot of the residuals presented in Fig. 14

emonstrates the suitability of the T P − T − ARMA ( 7 , 1 ) model to

he death rate of COVID-19 in the world dataset. 
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Fig. 11. Histogram of the residuals of the fitted time series model on the death rate of COVID-19 in the world data with superimposed estimated TP–T density. 

Fig. 12. Time series plot of real values and predicted death rate of COVID-19 in the world data from 2020-Mar-30 up to 2020-Apr-28 with 98% confidence interval. 
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Fig. 13. Time series plot of death rate of COVID-19 in the world data and predicted data from 2020-Mar-30 up to 2020-Mar-08. 

Fig. 14. ACF of the residuals of the fitted time series model to the death rate of COVID-19 in the world data. 
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o  
. Conclusion 

Coronaviruses are a huge family of viruses that affect neurologi-

al, gastrointestinal, hepatic, and respiratory systems. The numbers

f confirmed cases are increased daily in different countries, es-

ecially in China, Iran, South Korea, Italy and others. The spread
f the COVID-19 has many dangers and needs strict special plans

nd policies. Therefore, to consider the plans and policies, the pre-

icting and forecasting the future confirmed cases are critical. The

ime series models are useful to model data that gathered and

ndexed by time. Classical time series is based on the symmetry

f error’s distribution. But there exist many situations in the real
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[  

 

world that the assumption of symmetric distribution of the error

terms is not satisfactory. In our methodology, we considered the

time series models based on the two-piece scale mixture normal

( TP–SMN ) distributions. The proposed time series models were fit-

ted initially to the historical COVID-19 datasets. Then, the time se-

ries that had the best fit to a dataset was selected. Finally, the se-

lected models were applied to forecast the number of confirmed

COVID-19 cases. The results indicate that the introduced approach

acts well in forecasting the future confirmed COVID-19 cases. Also

all of criteria demonstrate that the proposed models are more rea-

sonable that the ordinary Gaussian time series model (, which also

is the simplest members of our proposed model). Note that a sam-

ple copy of the code is available from the authors upon request. 
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