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a b s t r a c t 

Coronavirus genomic infection-2019 (COVID-19) has been announced as a serious health emergency aris- 

ing international awareness due to its spread to 201 countries at present. In the month of April of the 

year 2020, it has certainly taken the pandemic outbreak of approximately 11,16,643 infections confirmed 

leading to around 59,170 deaths have been recorded world-over. This article studies multiple countries- 

based pandemic spread for the development of the COVID-19 originated in the China. This paper focuses 

on forecasting via real-time responses data to inherit an idea about the increase and maximum num- 

ber of virus-infected cases for the various regions. In addition, it will help to understand the panic that 

surrounds this nCoV-19 for some intensely affecting states possessing different important demographic 

characteristics that would be affecting the disease characteristics. This study aims at developing soft- 

computing hybrid models for calculating the transmissibility of this genome viral. The analysis aids the 

study of the outbreak of this virus towards the other parts of the continent and the world. A hybrid 

of wavelet decomposed data into approximations and details then trained & tested through neuronal- 

fuzzification approach. Wavelet-based forecasting model predicts for shorter time span such as five to 

ten days advanced number of confirmed, death and recovered cases of China, India and USA. While data- 

based prediction through interpolation applied through moving average predicts for longer time spans 

such as 50–60 days ahead with lesser accuracy as compared to that of wavelet-based hybrids. Based 

on the simulations, the significance level (alpha) ranges from 0.10 to 0.67, MASE varying from 0.06 to 

5.76, sMAPE ranges from 0.15 to 1.97, MAE varies from 22.59 to 6024.76, RMSE shows a variation from 

3.18 to 8360.29 & R 2 varying through 0.0018 to 0.7149. MASE and sMAPE are relatively lesser applied 

and novel measures that aimed to achieve increase in accuracy. They eliminated skewness and made the 

model outlier-free. Estimates of the awaited outburst for regions in this study are India, China and the 

USA that will help in the improvement of apportionment of healthcare facilities as it can act as an early- 

warning system for government policy-makers. Thus, data-driven analysis will provide deep insights into 

the study of transmission of this viral genome estimation towards immensely affected countries. Also, the 

study with the help of transmission concern aims to eradicate the panic and stigma that has spread like 

wildfire and has become a significant part of this pandemic in these times. 

© 2020 Elsevier Ltd. All rights reserved. 
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. Introduction 

The World Health Organization (WHO) as on January 30, 2020

as announced 2019–2020 corona-genomic-virus a public health-

mergency of international concern that can be abbreviated as

HEIC. Situation further worsened worldwide which was declared

andemic on March 11, 2020. Till now, local transmission of this

pidemic is being recording and increasing the count in countries

ncluding the six WHO regions. 
∗ Corresponding author. 
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Basically, their structure observed so far can be described as

nveloped non-segmented positive-sense RNA-genomic viruses 

aving place in the clan of Corona viridae majorly circulated in

umans with other mammals. However, in most cases studied,

ndividual related coronavirus infections are mild having identified

wo Beta corona viruses : severe-acute-respiratory-syndrome-

oronavirus ( SARS-CoV ) & Middle-East-respiratory-syndrome-

oronavirus (MERS-CoV) ( Figs. 1 and 2 ). 

The outburst of nCOVID-19 studied in detail through data-based

odeling & forecast analysis [1] . Detailed explanation of math-

matical perspective to understand spread of infectious diseases

s provided [2] . Estimation of atmosphere pollutants through dy-

https://doi.org/10.1016/j.chaos.2020.110152
http://www.ScienceDirect.com
http://www.elsevier.com/locate/chaos
http://crossmark.crossref.org/dialog/?doi=10.1016/j.chaos.2020.110152&domain=pdf
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Fig. 1. Detailed diagram of COVID-19 affecting the host RNAs. 
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c  

r  
namic indicators, discussion of the meditating body complexity,

statistical simulations towards dynamics of HIV, IoT-based wireless

transmissions having malware spread were modelled and studied

in detail [3–6] . Coronavirus data analyzed for risk assessment and

forecasts [7] . Transmission data of the virus outbreak to atudy gov

interventions [8] . Towards tracking the rate of transmission of epi-

demic based on the data driven study of the situation was carried

out [9] . Study of a mathematical model towards dynamics of trans-

mission and its control provided [10] . Spatial spread relationships
Fig. 2. COVID-19 symptoms & transmission 
uring Coronavirus pandemic spread into the world via self- or-

anizing maps analyzed [11] . WHO report on novel coronavirus in

apan and MERS-CoV update has been surveyed [12,13] . WHO re-

ort on Coronavirus updated on January 19, 2020 [14] . The rate of

pread of the epidemic in the scale-free networks [15] . As per the

utcomes of this pandemic, efficiency of control strategies towards

eduction of social mixing in China is modelled [16] . The complex-

ty in the forecast accuracy of nCOVID-19 pandemic is dealt with

17] . Futuristic estimations computed via supervised learning of

OVID [18] . Time series forecasting of the genomic virus spread in

ndia applying genetic programming [19] . This pandemic outbreak

s studied on the basis of training testing of Multimodal data [20] .

he molecules that may perhaps enter into host cell and cause

cute respiratory syndrome targeting towards coronavirus studied

21] . Study forecasted impending COVID-19 spread cases for China

lus some other regions using mathematical & traditional time-

eries prediction models [22] . Mathematical model-based predic-

ion at an early stage achieved for the outburst of this particular

irus in China [23] . Extensive exploration of pneumonia outbreak

ia corona-genome originating from bat species [24] . 

None of the authors have studied the wavelet based neuronal

uzzification hybrid model for the data of country-wise spread

f COVID-19 genome. In this article, forecasts of the country-

ased day to day basis data of confirmed, deaths and recovered

ases. Analysis has been carried out through the machine-learned

NF hybridization predicting for shorter time span and fore-

asts through interpolation alongwith moving averages method for

onger time spans and performance measures through MASE and

MAPE which have not been applied in any of the studies yet. 

. Dataset assessment 

Single variable involving time successions’ datasets have to be

ollected for real-time response variables’ estimation for nCOVID-19

ecords in India, China and the USA. Now, such cases from three
as directed by CDCP/USA Today/WHO. 
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Table 1 

Data sets for simulation for prediction models. 

Data Recorded Cases Time span under consideration 

From Up to 

Data type-1: China Confirmed cases December 31, 2019 May 17, 2020 

Deaths cases December 31, 2019 May 17, 2020 

Recovered cases December 31, 2019 May 17, 2020 

Data type-2: India Confirmed cases January 31, 2020 May 17, 2020 

Deaths cases February 22, 2020 May 17, 2020 

Recovered cases February 26, 2020 May 17, 2020 

Data type-3: USA Confirmed cases January 20, 2020 May 17, 2020 

Deaths cases February 22, 2020 May 17, 2020 

Recovered cases March 9, 2020 May 17, 2020 
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l  
iverse countries having totally different history about their past

ases have been simulated. Further, in case of India & USA, we have

onsidered the daily laboratory-confirmed records starting approx-

mately from mid of January through May 17, 2020 with variations

n time-periods according to different datasets for model compu-

ations. Daily COVID-19 confirmed, deaths and recovered cases data

or China are taken for the time period December 31, 2019 through

ay 17, 2020; daily corona spread in India having confirmed cases

rom January 31, 2020 through May 17, 2020, deaths cases February

2, 2020, through May 17, 2020, respectively. The dataset for India

ontains a total of 108 observations, 119 observations for USA, 139

bservations for China. For these countries the outbreaks of nCoV-

9 started at absolutely different timeline and the epidemic curves

or India & USA majorly not showing any kind of diminishing curve

r trajectory as per the response variables, alike China. A pragmatic

pproach assumes that the trend will continue indeterminately in

he future which is very different from various deterministic mod-

ling methods that would perhaps tend towards convergence at

arther future. 

During exploration, daily data sets of China from December 31,

019 to May 17, 2020 (a total of 139 days); for India from Jan-

ary 31, 2020 to May 17, 2020 (a total of 108 days) and for USA

rom is taken from January 20, 2020 to May 17, 2020 (a total of

19 days) trusted data sources provided by designated authorities.

hese three datatypes have been further divided into three data

ets: Confirmed cases, Deaths cases and Recovered cases respec-

ively as mentioned in Table 1 . From the sample of each data set

aken separately for the prediction simulation, first 4 used as input

alues and rest is used to train and test the forecast model. As in

rom the sample of 139 days data, first four used as input values

nd rest 115 used to train the model and 20 data values to test the

ybrid prototype. Similarly, from the sample of 108 days data, first

our used as input values and rest 84 used to train the model and
Fig. 3. Detailed structure of anal
0 data values to test the hybrid prototype and from the sample

f 119 days data, first four used as input values and rest 95 used

o train the model and 20 data values to test the hybrid prototype.

imilarly, for various time spans the data has been divided on the

foresaid format. 

. Soft-Computing techniques 

.1. Wavelet decomposition 

Conversion function is a function that converts a waveform into

arious rate of recurrence constituents. If conversion function is

sed in agreement with the scale then it is called wavelet trans-

orm , which converts the function alongwith the interval realm into

he rate of recurrence realm. Wavelet decomposition is carried out

or records handling as with the help of wavelet demonstration,

he non-stationarity of the economic and financial time series can

e explained ( Figs. 3 and 4 ). 

Theorem: Wavelet is a blend of sine-cosine waves containing char-

cteristics that would vary around zero plus remains restricted into

nterval domain. Wavelet-function is classified as: the father wavelet

 φ) - mother wavelet ( ψ) possessing following characteristics: 
 ∞ 

−∞ 

φ(x ) dx = 1 and 

∫ ∞ 

−∞ 

ψ(x ) dx = 0 

Remark: Integration of amplified dyadic alongwith integral trans-

ormations, mother-father wavelets are changed into the wavelet

lan: 

j,k (x ) = 2 

j/ 2 φ( 2 

j x − k ) and ψ j,k (x ) = 2 

j/ 2 ψ( 2 

j x − k ) 

.2. Neuronal-Fuzzification procedural aspect 

Neuronal-Fuzzification procedures have been premeditated to 

omprehend the fuzzy reasoning procedure and the weights con-

ecting in the network which need to be allied with fuzzy rea-

oning constraints involving the backpropagation knowledge. This

dentifies fuzzy measures, learn the connexion function for fuzzy

easoning. The neuronal-fuzzy model initiated with decoding the

embership assessment of each with the aid of Fuzzy C-Means,

railed through fuzzified inference steps ( Fig. 5 ). 

. Performance errors in forecasting 

.1. Mean absolute error (MAE) 

Theorem: Absolute value for altercations in between original calcu-

ations and estimated values through the simulation of mean of these
ysis and synthesis of DWT. 
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Fig. 4. Flowchart of DWT procedure. 
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sums of absolute errors. Also, here we consider that each of the indi-

vidual errors attain equivalent weights referred to as Mean Absolute

error. 

Remark: This mean absolute error is denoted as: 

MAE = 

1 

N 

( 

N ∑ 

i =1 

| d i − y i | 
) 

, 

d denoted the actual quantity; y denotes the anticipated assess-

ment; N- no. of days in prediction. 

Algorithm to find value of Mean Absolute Error: 

1 Compute regressive line as: y = axe + b, a & b :- real constants. 

2 Introduce X values in the linear regression equality determining

the new values, Y’. 

3 Measure difference of new predicted value from actual mea-

surement to catch the error. 

4 Take absolute value of the errors. 

5 Add up the calculated values obtained in Step 4. 

6 Finding mean. 

4.2. Root mean squared error (RMSE) 

Theorem: The root mean squared error is square root for Mean

Squared Errors calculated via actual outcomes and the expected quan-

tities. 

Remark: RMSE = 

√ 

n ∑ 

i =1 

( y i − ˆ y i ) 
2 

n ;y i denotes actual quantity; ̂  y i denotes

predicted outcomes; n is no. of days of estimation. 

Algorithm to find the value of Root Mean Squared Error: 

1. Find the regression line: y = axe + b, a and b are real constants. 

2. Introduce X assessments in the linear lapse equality for computing new 

assessments, Y’. 

3. Measure subtraction of new Y assessment from the original to calculate 

the inaccuracies. 

4. Squaring inaccuracies. 

5. Summation of inaccuracies. 

6. Discovering the mean. 

7. Take the square root of mean. 

4.3. Goodness of fit (R 2 ) 

Theorem: calculates the proportion in the dependent variable that

is simulated by linear lapse and the predictor variable which is the

independent variable. It defines the degree of evaluation ability of a

model to envisage or explain an outcome for linear lapse model. 

Algorithm to determine the goodness of fit: 
N
1. Find regressive line (curve): y = axe + b, a and b are real constants. 

2. Compute sum of squared errors for regression setup, SSE = 

n ∑ 

i =1 

( y i − ˆ y i ) 
2 

3. Also, compute sum of squared errors of the baseform setup, 

SST = 

n ∑ 

i =1 

( y i − ȳ i ) 
2 

4. Calculate the ratio: SSE/SST. 

5. Subtract the ratio from 1. i.e. R 2 = 1 − SSE 
SST 

.4. Symmetric mean absolute percentage error (sMAPE) 

Theorem: A percentage-based error to accurately measure the rel-

tive errors on percentage basis. This performance measure proposes

 lower and upper bound to the errors in the range 0% to 100%. 

Remark: It is purely based on differences of actual responses and

redicted responses recorded by the forecasters. Simulated through the

ormulae: 

MAP E = 

100% 
N 

N ∑ 

p=1 

| ̂ Y p −Y p | 
| Y p | + | ̂ Y p | 

here 
ˆ 
 p − Estimated simulated values 
 p − Original simulated values 

p − fitting point 
 − number of fitting points 

Outcome of this computation can be seen as at every fitting

oint, p divided again by number of fitting points, N . It was first

roposed by Armstrong and later modified applied by Flores. This

bsolute error analyses statistical performance of the model via

ignificant symmetry and unbiases. Applying these measures into

he forecasters resembles directly to geometric mean. 

.5. Mean absolute scaled error (MASE) 

Theorem: Based on Mean Absolute Error performances of the

odel constructed, MASE stands independent of the scale of the data

hich means it could be applied towards comparing forecasts in var-

ous datasets irrespective of their scales. 

Remark: Simply, it can be understood as the MAE of the actual

orecast divided by the MAE of the naïve forecast which is simu-

ated on the in-sample data. For a non-seasonal timeseries, repre-

ented through the formula: 

ASE = 

1 
N 

∑ 

i | e i | 
1 

P−1 

∑ P 
p=2 | Y p −Y p−1 | = 

MA E actual 

MA E nai v e in −sample 

here 

 e i | = | ̂  Y i − Y i | 
ˆ 
 p − Anticipatedassessment values 
 p − Actual simulated values 

p = 1 ..., P 
 − number of forecasts 
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Fig. 5. Flowchart of application of Wavelet decomposed data into Neuronal-Fuzzification . 
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First proposed by Hyndman and Koehler, it is scale-

ndependent, symmetrical, outliers resistant and an applicable

easure to maintain predictability accuracy. It determines the

omparative forecasting accuracy. 

. Generation of hybrid WNF prototype 

.1. Application and results 

Neuronal setup gets trained and tested through fuzzification

aving hybrid method for simulation of training and testing.

ugeno inference-rules on loop for 500 epochs having strictly zero

rror-tolerance levels. Estimating technique includes noise filtered

s per Wavelet decomposition that extracts characteristics trained

 tested to forecast the predictor variables ( Fig. 6 ). WNF designed

or Country based data of Corona positive cases for the time pe-

iod spanning approximately from December 31, 2019 uptil May 17,

020 on a daily basis is considered. The large amount of data be-

ng recorded everyday gets trained, tested and modeled through

avelet-Neuronal fuzzified prototype. This computation studied
he scenario of countries such as China, India and USA for three

ajor divisions that are Daily Confirmed cases, Daily deaths cases

nd Daily recovered cases as per the data statistics. Table 2 tabu-

ates the simulization errors in prediction of Country-wise Covid-

9 daily cases’ data. The significance levels of China for confirmed,

eath and recovered cases are 0.25, 0.10, 0.5 respectively; for India

aving confirmed, death and recovered cases as 0.10, 0.67, 0.00 &

or America having confirmed, death and recovered cases as 0.17,

.50, 0.13 respectively. Further, Mean Absolute Scaled Error (MASE)

alues of China for confirmed, death and recovered cases are 0.06,

.99, 0.15 respectively; for India having confirmed, deaths’ plus re-

overed cases as 5.76, 5.52, 3.11 & for America having confirmed,

eaths’ plus recovered cases as 3.39, 1.34, 5.57 respectively. Sym-

etric Mean Absolute percentage error (sMAPE) values of China

or confirmed, deaths plus recovered cases are 1.73, 1.97, 0.60; for

ndia having confirmed, death and recovered cases as 0.15, 0.23,

.96 & for America having confirmed, death and recovered cases

s 0.16, 0.26, 0.74 respectively. Similarly, MAE values for China are

2.59, 33.68, 31.88; India are 486.58, 28.08, 591.98; America hav-

ng 4411.03, 424.68, 6024.76. RMSE values for China are 24.85, 3.18,
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Fig. 6. Flowchart of Hybrid WNF Prototype for COVID-19 data. 
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42.16, 622.55, 39.20, 923.56, 6350.69, 506.56 and goodness of fit

measure R2 values for China are 0.0801, 0.0018, 0.0155; India are

0.7048, 0.1672, 0.1012; America are 0.7149, 0.5391, 0.266. Table 3

compares various studies using different Intelligent models for the

widespread COVID-19 genome pandemic to the present study of
he hybrid model. Clearly, MASE and sMAPE prove to be better

erformance measures as they accurately predicted the errors and

ave symmetries which eliminated the skewness and made the

odel outlier resistant. Improved scalability of the data. This im-

rovised the applicability of the model on the virus data. 
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Table 2 

Simulation errors in prediction of Country-wise Corona daily cases data. 

Statistical error measures 

Countries Types of Cases 

Significance 

level(Alpha) MASE sMAPE (%) MAE RMSE R 2 

China Confirmed 0.25 0.06 1.73 22.59 24.85 0.0801 

Deaths 0.10 0.99 1.97 33.68 3.18 0.0018 

Recovered 0.5 0.15 0.60 31.88 42.16 0.0155 

India Confirmed 0.10 5.76 0.15 486.58 622.55 0.7048 

Deaths 0.67 5.52 0.23 28.08 39.20 0.1672 

Recovered 0.00 3.11 0.96 591.98 923.56 0.1012 

USA Confirmed 0.17 3.39 0.16 4411.03 6350.69 0.7149 

Deaths 0.50 1.34 0.26 424.68 506.56 0.5391 

Recovered 0.13 5.57 0.74 6024.76 8360.29 0.266 

Table 3 

Various studies using different Intelligent models for the widespread COVID-19 genome pandemic. 

Year Author Description Parameters Results 

March 2020 Fang Y. et al. Data-driven analysis of Transmission 

dynamics of the COVID-19 outbreak 

SEIR model, Data fitting, 

MAE, MSE, R 2 
MAE = 2627.855; MSE = 8,800,640.291; 

R 2 = 0.980963 

April 2020 Chakraborty, T; Ghosh, I. Data-driven analysis of real time 

forecasts & risk assessment of COVID-19 

Arima-WBF; RMSE, MAE, 

Fitted tree-R 2 
55.25 ≤ RMSE ≤ 631.91; 

40.05 ≤ MAE ≤ 306.78; R 2 = 0.896 

May 2020 Salgotra, R. et al Time-Series Analysis and Forecast of the 

COVID-19 in India 

Genetic Programming; 

RMSE, R 2 
5.55 ≤ RMSE ≤ 284.9057; 

0.9881 ≤ R 2 ≤ 0.9999 

June 2020 Rustam, F. et al COVID-19 Forecasting via Supervised 

Machine Learning 

RMSE; MSE; MAE; R 2 2443.48 ≤ RMSE ≤ ,114,547.58; 

1827.85 ≤ MAE ≤ ,106,739.82; 

0.02 ≤ R 2 ≤ 0.99; 

2020 Present study Bhardwaj; Bangia Wavelet-based neuronal- fuzzification 

hybrid model for the data of China, 

India, USA for spread of COVID-19 

genome 

MSE, MASE, sMAPE, MAE, 

RMSE, R 2 Significance level 

(alpha) 

0.10 ≤ alpha ≤ 0.67; 0.06 ≤ MASE ≤
5.76; 0.15% ≤ sMAPE ≤ 1.97%; 22.59 ≤
MAE ≤ 6024.76, 3.18 ≤ RMSE ≤ 8360.29 

& 0.0018 ≤ R 2 ≤ 0.7149 
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For the country of China, the data has been analyzed under

hree main distinctions that are: Confirmed cases, Deaths’ cases

nd Recovery cases that are being recorded every day and pro-
a

Fig. 7. Wavelet decomposition of da
ided through public bulletin from designated authorities as de-

icted through Fig. 7–21 . 

Case-1: Confirmed Cases in China Daywise ( Figs. 7, 8, 9, 10

nd 11 ). 
ily confirmed cases in China. 
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Fig. 8. Trained vs actual data values . 

Fig. 9. Tested vs actual data values. 

Fig. 10. Predicted vs actual data values with linear fit. 

 

Fig. 12. Wavelet decomposition of daily deaths cases in China. 

Fig. 13. Trained vs actual data values. 
Fig. 11. Forecasting longer time period with the past responses. 

Case-2: Deaths’ Cases in China ( Figs. 12, 13, 14, 15 and 16 ).
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Fig. 14. Tested vs actual data values. 

Fig. 15. Predicted vs actual data values with linear fit. 

Fig. 16. Forecasting longer time period with the past responses. 

Fig. 17. Wavelet Decomposition of daily recovered cases in China. 

Fig. 18. Trained vs actual data values. 

Fig. 19. Tested vs actual data values. 
Case-3: Recovered Cases in China ( Figs. 17, 18, 19, 20 and 21 ). 
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Fig. 20. Predicted vs actual data values with linear fit. 

Fig. 21. Forecasting longer time period with the past responses. 

For the country of India, the data has been analyzed under 

 

 

 

 

Fig. 23. Trained vs actual data values. 

Fig. 24. Tested vs actual data values. 
three main distinctions that are: Confirmed cases, Deaths’ cases

and Recovery cases that are being recorded every day and pro-

vided through public bulletin from designated authorities as de-

picted through Fig. 22 –36 . 

Case-1: Confirmed Cases in India Daywise ( Figs. 22, 23, 24, 25

and 26 ). 
Fig. 22. Wavelet decomposition of daily confirmed cases in India. 

Fig. 25. Predicted vs actual data values with linear fit. 
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Fig. 26. Forecasting longer time period with the past responses. 

 

3
Fig. 29. Tested vs actual data values. 
Case-2: Deaths’ cases in India Daywise ( Figs. 27, 28, 29, 30 and

1 ). 
Fig. 27. Wavelet decomposition of daily deaths cases in India. 

Fig. 28. Trained vs actual data values. 

Fig. 30. Predicted vs actual data values with linear fit. 

Fig. 31. Forecasting longer time period with the past responses. 
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Case-3: Recovered cases in India Daywise ( Figs. 32, 33, 34, 35

and 36 ). 
Fig. 32. Wavelet decomposition of daily recovered cases in India. 

Fig. 33. Trained vs actual data values. 

Fig. 34. Tested vs actual data values. 

Fig. 35. Predicted vs actual data values with linear fit. 

Fig. 36. Forecasting longer time period with the past responses. 
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a

For the country of United States of America, the data has been

nalyzed under three main distinctions that are: Confirmed cases,

eaths’ cases and Recovery cases that are being recorded every day

nd provided through public bulletin from designated authorities

s depicted through Fig. 37–51 . 

Case-1: Confirmed Cases in USA Daywise ( Figs. 37, 38, 39, 40

nd 41 ). 
Fig. 37. Wavelet decomposition of daily confirmed cases in USA. 
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Fig. 38. Trained vs actual data values. 

Fig. 39. Tested vs actual data values. 

Fig. 40. Predicted vs actual data values with linear fit. 

Fig. 41. Forecasting longer time period with the past responses. 

 

4

Fig. 42. Wavelet decomposition of daily deaths cases in USA. 

Fig. 43. Trained vs actual data values. 
Case-2: Deaths’ cases in USA daywise ( Figs. 42, 43, 44, 45 and

6 ). 
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Fig. 44. Tested vs actual data values. 

Fig. 45. Predicted vs actual data values with linear fit. 

Fig. 46. Forecasting longer time period with the past responses. 

 

a

Fig. 47. Wavelet decomposition of daily recovered cases in USA. 

Fig. 48. Trained vs actual data values. 

Fig. 49. Tested vs actual data values. 
Case-3: Recovered cases in USA Daywise ( Figs. 47, 4 8, 4 9, 50

nd 51 ). 



R. Bhardwaj and A. Bangia / Chaos, Solitons and Fractals 140 (2020) 110152 15 

Fig. 50. Predicted vs actual data values with linear fit. 

Fig. 51. Forecasting longer time period with the past responses. 
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onclusions 

It is the need of the hour to model the factors of COVID-19

ransmission to minimize its spread and the extent to which it

an be harmful. Since, China is the first country to record and re-

ort such cases so it is in a way the breeding place of this epi-

emic. Thus, it is necessary to understand the scenario. Preven-

ion measures should be followed at its best so that the virus does

ot communicate to more people and to stop its breeding further.

he wavelet decomposition depicts the data filtered through high

nd low pass filters filtering the noise in the sense normalizing for

urther computations. The trained responses are plotted with the

ctual data values to compare the scenario of confirmed, deaths

nd recovered cases respectively. Simulations through time pro-

ression will aid in detailed study of virus structure dynamic evo-

ution and perhaps indicate the emergence of randomness of the

ystem. Then the regression fit for the predicted data depicts the

oodness of fit of predicted data upon the actual data. Based on

he simulations, the significance level (alpha) ranges from 0.10 to

.67, MASE varying from 0.06 to 5.76, sMAPE ranges from 0.15%

o 1.97%, MAE varies from 22.59 to 6024.76, RMSE shows a varia-

ion from 3.18 to 8360.29 & R 

2 varying through 0.0018 to 0.7149.

learly, in this study sMAPE and MASE have lower performance

rrors and therefore effective in forecast. Contribute towards bet-

er understanding of the scenario. Thus, the daily datasets pertain-

ng to those of USA have a great variability as compared to China

nd India. Although, the spread has different timelines where In-

ia & America with the short time span have the greatest number

f confirmed cases increasing uncontrollably at present. The fore-
ast of 50–60 days ahead varying in every case helps to understand

he clear picture of the pandemic spread and the manner in which

he transmission rate may change in the following time periods in

hese three countries India, China and America. 

The outcomes of this study can provide an efficient learning

nd understanding of the future spread estimation and to eradicate

he panic and stigmas of the people worldwide towards COVID-

9. Also, it may aid to improve clinical strategies against this pan-

emic. The best alternative left for the mankind at this moment is

o follow preventive measures such as no direct human interaction,

elf-quarantine, keeping the living area hygienic and maintaining

ocial distance. 
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