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Accurate and high-resolution data reflecting different climate sce-
narios are vital for policy makers when deciding on the develop-
ment of future energy resources, electrical infrastructure, trans-
portation networks, agriculture, and many other societally impor-
tant systems. However, state-of-the-art long-term global climate
simulations are unable to resolve the spatiotemporal characteris-
tics necessary for resource assessment or operational planning. We
introduce an adversarial deep learning approach to super resolve
wind velocity and solar irradiance outputs from global climate
models to scales sufficient for renewable energy resource assess-
ment. Using adversarial training to improve the physical and per-
ceptual performance of our networks, we demonstrate up to a
50× resolution enhancement of wind and solar data. In validation
studies, the inferred fields are robust to input noise, possess the
correct small-scale properties of atmospheric turbulent flow and
solar irradiance, and retain consistency at large scales with coarse
data. An additional advantage of our fully convolutional architec-
ture is that it allows for training on small domains and evaluation
on arbitrarily-sized inputs, including global scale. We conclude with
a super-resolution study of renewable energy resources based on
climate scenario data from the Intergovernmental Panel on Climate
Change’s Fifth Assessment Report.

climate downscaling | deep learning | adversarial training

Many aspects of human life, such as energy, transportation,
and agriculture, rely on forecasting atmospheric and envi-

ronmental conditions over a wide range of spatial and temporal
scales. Short-term forecasts drive operational decision making,
medium-term weather forecasts guide scheduling and resource
allocations, and long-term climate forecasts inform infrastruc-
ture planning and policy making. Numerical models are tailored
for the relevant scale-specific physics, computational resources,
and time frames associated with each application; however,
simulating all relevant scales is generally intractable.

One particularly difficult scale mismatch arises in the context
of assessing energy resources in future climate scenarios. The
sensitivity of energy markets (1), renewable energy resources
(2, 3), and power systems operation (4) and planning (5) to
changes in climate have been the subject of many recent stud-
ies. These studies generally rely on a global climate model
(GCM) to produce wind and solar data. The typical GCM con-
figuration used in production runs has a resolution of around
1◦, or about 100 km close to the equator. Such a resolution
is insufficient to accurately assess renewable energy resources,
which typically require resolution finer than 10 km, preferably
2 km (6). Consequently, there is a great need for efficient
and physically accurate methods to enhance the resolution of
GCM output for studying the energy impact of different climate
scenarios.

In order to decrease the cost of generating high-resolution
(HR) data, various machine learning (ML) techniques have
been implemented as part of the GCMs. Since ML takes a
statistical approach to making predictions, it is not limited to
humans’ understanding of the problem nor does it require solv-

ing complex systems of equations. Random forests have been
used to solve GCM subgrid convection parameterizations (7),
and nearest-neighbor tree hybrid algorithms have approximated
long-wave radiation in the National Center of Atmospheric
Research (NCAR) Community Atmospheric Model (8). Deep
feed-forward neural networks have successfully learned how to
model subgrid processes in cloud-resolving models (9). These
models, among others (10–12), have demonstrated the advan-
tages of incorporating ML algorithms into weather forecasting by
dramatically decreasing the computational cost or improving res-
olution, leading to calls for hybrid data-driven and physics-based
approaches to earth system modeling (13).

In this paper, we present an alternative method of generat-
ing HR climate data by enhancing wind and solar GCM outputs
using a deep learning technique for a classical image processing
problem known as super-resolution (SR). The proposed method
produces high-quality output fields using adversarial training
that learns and preserves physically relevant characteristics. We
demonstrate that this technique can efficiently perform SR on
different datasets with variable resolution enhancements and for
fields on regional to global scales. The code for the network and
its trained weights have been made available (14).

Background
Single-image SR is the process of taking a low-resolution (LR)
image and producing an enhanced image that approximates the
true HR version of it (15). This framework is in contrast to video
SR or multiple-image SR where information overlap within mov-
ing pixels helps inform the image enhancement process. For
convenience, we refer to single-image SR simply as SR for the
remainder of this manuscript. Typical näıve approaches to image

Significance

Global climate simulations are typically unable to resolve wind
and solar data at a resolution sufficient for renewable energy
resource assessment in different climate scenarios. We intro-
duce an adversarial deep learning approach to super resolve
wind and solar outputs from global climate models by up to
50×. The inferred high-resolution fields are robust, physically
consistent with the properties of atmospheric turbulence and
solar irradiation, and can be adapted to domains from regional
to global scales. This resolution enhancement enables criti-
cal localized assessments of the potential long-term economic
viability of renewable energy resources.

Author contributions: A.G. and R.N.K. designed research; K.S. and A.G. performed
research; K.S., A.G., and D.H. analyzed data; and K.S., A.G., and R.N.K. wrote the paper.y

The authors declare no competing interest.y

This article is a PNAS Direct Submission. J.P. is a guest editor invited by the Editorial Board.y

Published under the PNAS license.y

Data deposition: Software for the trained networks as well as some example data are
available on GitHub at https://github.com/NREL/PhIRE.y
1 To whom correspondence may be addressed. Email: Ryan.King@nrel.gov.y

First published July 6, 2020.

www.pnas.org/cgi/doi/10.1073/pnas.1918964117 PNAS | July 21, 2020 | vol. 117 | no. 29 | 16805–16815

https://www.pnas.org/site/aboutpnas/licenses.xhtml
https://github.com/NREL/PhIRE
mailto:Ryan.King@nrel.gov
https://www.pnas.org/cgi/doi/10.1073/pnas.1918964117
http://crossmark.crossref.org/dialog/?doi=10.1073/pnas.1918964117&domain=pdf


SR include bilinear or bicubic interpolation of the LR pixels.
This has the advantage of not requiring any training data; how-
ever, interpolation tends to significantly smooth out the image and
miss small-scale textures and sharp edges. Classic SR algorithms
attempt to reconstruct these features by learning priors for edge
properties (16, 17), modeling distributions for large gradients (18,
19), and using higher-order statistics to inject textures (20, 21).
Other approaches leverage emerging ML tools to learn complex
mappings between example pairs of LR/HR images (22, 23).

Similar challenges arise in scientific research, where inade-
quately resolved data commonly result from insufficient com-
putational resources, physical limitations, or incomplete infor-
mation. The ability to enhance the resolution of these spatially
dependent data fields—often referred to as downscaling—has
long been an area of interest (24, 25). Downscaling can be per-
formed by refining coarse data from sparse measurements using
data assimilation techniques (26). For GCMs, dynamic down-
scaling is the preferred method for enhancing data resolution
where coarse climate data are used as boundary/initial condi-
tions for solving a refined model on a subregion of the original
domain (27). However, these techniques still struggle from issues
of smoothing out critical small-scale features or requiring high
computational costs.

Recently, deep convolutional neural networks (CNNs) have
emerged as a promising technique to performing image SR (28–
31)—naturally leading to interest in exploring how to apply these
techniques to scientific data. Deep learning-based SR has been
performed on various remote sensing datasets such as satellite
imagery (32) and sea surface temperature measurements (33).
Additionally, these techniques have been used to enhance sim-
ulation outputs such as data from models for heat prediction in
urban areas (34) and simulated turbulence data (35, 36). For cli-
matological data fields, deep CNNs have successfully increased
the resolution of short-term regional precipitation forecasts by
5× (37) and 8× (38). Both studies provide a solid foundation for
weather-based SR; however, the scales of the downscaled data are
still too coarse to capture features that are critical in informing
localized grid resiliency and resource assessment studies.

Data and Methodology
In this paper, we perform SR on GCM data produced by
NCAR Community Climate System Model (CCSM) (39, 40)
as part of a future climate scenario used in the Intergovern-
mental Panel on Climate Change’s Fifth Assessment Report.
We train a deep fully-convolutional neural network to super-
resolve wind velocity and solar irradiance fields. Our SR network
is first trained and validated on coarsened HR data obtained
from the National Renewable Energy Laboratory (NREL) Wind
Integration National Database (WIND) Toolkit (41–44) and the
National Solar Radiation Database (NSRDB) (45) before being
evaluated on CCSM data. The proposed methodology considers
three levels of data resolution—LR, medium resolution (MR),
and HR—and implements a two-step procedure that trains two
distinct SR networks to perform the LR→MR and MR→ HR
mappings. We explore the various data sources and resolutions,
network architectures, and the purpose behind the two-step
methodology in the remainder of this section. Ultimately, the SR
process is capable of downscaling coarse CCSM data to the res-
olution of the WIND Toolkit and NSRDB data—50× and 25×
jumps in resolution, respectively.

Testing and Training Data. The testing datasets for the two sce-
narios are constructed from the Coupled Model Intercompari-
son Project (CMIP) 5 multimodel ensemble r2i1p1 experiment
“1% per year CO2,” version 20130218, generated by NCAR
CCSM. The CCSM data contain daily averages of the vari-
ous meteorological quantities projected out to years 2020 to
2039 with a spatial resolution of 0.9◦ latitude× 1.25◦ longitude.

To minimize distortions near the poles, we only use data
from ±60◦ latitude and assume an approximate grid spacing
of ∼ 100 km. The wind velocity data contain easterly and
northerly wind components, denoted by u and v , respectively.
We use the lowest vertical slice of the CCSM dataset, which uses
a hybrid sigma-pressure vertical coordinate system. This slice
most closely matches the nature of the training data, discussed
later in this section. Solar data are composed of the direct nor-
mal irradiance (DNI) and diffuse horizontal irradiance (DHI) as
these values are the most useful for solar power prediction. DNI
and DHI are computed from the CCSM’s surface downwelling
shortwave radiation, which predicts global horizontal irradiance
(GHI). DNI is approximated from GHI using the Direction Inso-
lation Simulation Code model (46), and DHI is computed using
the standard formula

IDH = IGH− IDN cos(θ), [1]

where θ is the solar zenith angle and IDH, IGH, and IDN are
DHI, GHI, and DNI, respectively. To obtain average hourly
GHI values for this decomposition, we apply the time-dependent
autoregressive Gaussian model (47) to the average daily GHI
values obtained from the CCSM.

Training data in the WIND Toolkit contain HR wind velocity
fields used for wind farm power modeling over the continental
United States. We use 100-m height wind speed and direction,
which are converted to easterly and northerly wind velocities
to match the CCSM data. The data are sampled at a 4-hourly
temporal resolution for the years 2007 to 2013. The WIND
Toolkit has a spatial resolution of approximately 2 × 2 km. The
NSRDB offers HR (0.04◦ latitude× 0.04◦ longitude) data for
solar irradiance over the continental United States. This roughly
corresponds to a 4-km spatial resolution. Solar training data
are composed of DNI and DHI sampled hourly during daylight
hours (approximately 6 AM to 6 PM) for 2007 to 2013.

To downscale the coarse CCSM data, we first need to train
the network with corresponding pairs of lower- and higher-
resolution data. Recall that the proposed methodology uses a
two-step SR process of LR→ MR and MR→ HR transforma-
tions. The HR data in each case correspond to the full-resolution
data from the WIND Toolkit and the NSRDB. To generate the
training dataset for the wind velocity problem, WIND Toolkit
data are partitioned into 1,000 × 1,000-km patches (i.e., 500×
500 pixels of size 2 km). Each patch is coarsened down to its
corresponding MR (100× 100 10-km pixels) and LR (10× 10
100-km pixels) via an average pooling of each 5× 5 or 50× 50
patch of HR data, respectively. The NSRDB data are processed
in a similar manner with 2,000 × 2,000-km HR data patches
consisting of 500× 500 pixels of size 4 km. The correspond-
ing MR and LR patches consist of 100 × 100 20-km pixels
and 20 × 20 100-km pixels, respectively. This results in 42,355
training examples in the WIND Toolkit dataset and 50,075
training examples in the NSRDB dataset. Approximately 10%
of the training examples are held out for validation in each
case. These characteristics are summarized in Table 1.

Network Architecture and Training. For this work, we require
two SR networks for the LR → MR and MR → HR steps.
Each network has a similar architecture that is based off of
the state-of-the-art Super Resolution Generative Adversarial
Network (SRGAN) (48) with several modifications. Each net-
work is a deep fully convolutional (49) neural net with 16
residual blocks (50) with skip connections (30, 51). All convo-
lutional kernels are 3× 3 and are followed by rectified linear
unit activation functions. Experimentation on subsets of the
training data uncovered the need to remove batch normal-
ization layers from the Ledig et al. (48) architecture, which
were found to hinder the network’s ability to transfer to data
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Table 1. Data summary

Model CCSM4 WIND Toolkit NSRDB

Institute NCAR NREL NREL
Data Wind and solar Wind Solar
Spatial resolution 0.9◦ lat× 1.25◦ lon 2 km 0.04◦

Years 2020–2039 2007–2013 2007–2013
Training size NA 37,972 45,109
Testing size 7,300 4,383 4,966

NA, not applicable; lat, latitude; lon, longitude.

coming from different models. Other differences in the proposed
network include adapting the SR layers to accommodate the
larger-resolution jumps being performed and adjusting the net-
work input layers to consist of two data channels corresponding
to either (u, v) wind velocity components or (DNI , DHI ) solar
irradiance components. This is in contrast to the three RGB
channels typically used for image processing. Finally, we note
that since the networks are fully convolutional, they are agnos-
tic to the size of the input data—a property that enables training
on smaller patches of the data while running on larger fields in
deployment.

The two-step SR process is shown in Fig. 1. For the first SR
step, the network is trained on LR/MR data pairs to perform
10× and 5× SR for the wind and solar data, respectively. In the
second step, full-resolution data from the WIND Toolkit and
NSRDB are matched with the corresponding patches of gen-
erated MR data. The second network is trained to learn the
mapping from generated MR to HR data, resulting in total res-
olution enhancements of 50× and 25× for the wind and solar
data, respectively.

The proposed two-step process manages the complexity of per-
forming such large jumps in resolution better than a single net-
work. A 50× increase in spatial resolution for two-dimensional
data means that each pixel is replaced by 2,500 pixels contain-
ing all of the small-scale information lost in the coarse data.
We experimented with a single-network approach but found
that the network did not have the expressive capacity to learn
the complex relationships in the data sufficiently well enough
to perform the large SR jumps accurately. Network capacity is
typically increased by using deeper networks; however, building
and training such a complex network come with several diffi-

culties. Networks are trained using stochastic gradient descent
with gradients computed using backpropagation. Backpropaga-
tion is known to suffer from vanishing gradients in deep net-
works, where gradient values for each layer tend toward zero
and result in slow training. Additionally, deeper layers in the
network depend on the output from earlier layers, but all lay-
ers are updated simultaneously in the training process. In deep
networks, this can require more iterations for the network to
converge since deeper layers cannot be appropriately tuned until
the shallow layers are essentially fixed. Experiments with a much
deeper single-network approach exhibited this prohibitively slow
training, leading to the proposed two-step process. Further-
more, the two-step approach enables verification of intermediate
results to ensure the network is generating physically consistent
fields.

The networks are trained using the generative adversarial net-
work (GAN) approach (52). GANs employ two networks for
each resolution enhancement step: 1) a generator G and 2)
a discriminator D . GANs have been able to produce realistic
super-resolved images from lower-resolution input images (48,
53). Since the SR process is an inherently ill-posed problem
(i.e., a given lower-resolution input could plausibly be mapped
to many super-resolved outputs), GANs provide a method for
inserting physically realistic, small-scale details that could not
have been inferred directly from the coarse input images. The
generator network performs SR by mapping input patches of
coarse data to the space of the associated higher-resolution
patches, G :Xlower→Xhigher, where Xlower and Xhigher denote the
spaces of the lower- and higher-resolution data fields, respec-
tively. The discriminator attempts to classify proposed patches
as real (i.e., coming from the training set) or fake (i.e., coming
from the generator network). That is, D :Xhigher→ [0, 1] where
the output is the probability that a given field came from the
training data. The two networks are trained against each other
iteratively, and over time, the generator produces more realistic
fields, while the discriminator becomes better at distinguishing
between real and fake data. This training procedure is typically
expressed as a minmax optimization problem,

min
G

max
D

E [log (D(y))]+E [log (1−D(G(x)))], [2]

where y∈Xhigher is the true higher-resolution field and x∈Xlower
is the input lower-resolution field.

Fig. 1. The two-step SR process.
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Fig. 2. Schematic of GANs.

Eq. 2 defines the loss functions we wish to train the net-
works against. The loss function for the discriminator network is
given by

LD(x, y) = − log (D(y))− log (D(G(x))), [3]

adopting the convention in neural network training that we seek
to minimize the loss function. Based on Eq. 2, the loss network
for the generator should be defined by

L(x, y) = E [log (1−D(G(x)))]. [4]

However, in practice this loss function suffers from shallow gra-
dients early in the training procedure. We can reformulate this
loss function as

Ladversarial(x, y) = − log (D(G(x))), [5]

which has the same optimum as Eq. 4 and has better gradi-
ents for faster training. The loss function in Eq. 5 is subscripted
with “adversarial” because it only makes up one component of
the generator loss function. The full-generator loss function is
composed of content and adversarial terms,

LG(x, y) = Lcontent(x, y)+αLadversarial(x, y), [6]

where α∈R. The adversarial loss is from Eq. 5 and captures
the ability of the generator network to fool the discriminator
in accordance with the minmax problem defined in Eq. 2. The
content loss compares the difference between the generated and
true higher-resolution data, effectively conditioning the output
of the generator network on the coarse input data. For this work,
the content loss is defined by a mean-squared error (MSE) over
the data field (i.e., pixelwise),

Lcontent(x, y) = ||y−G(x)||22 . [7]

Fig. 2 contains an overview schematic of this GANs training pro-
cedure for SR. The networks are trained using the Adam opti-
mizer (54) with gradients of the various loss functions computed
by backpropagation.

The SRGAN model (48), which the proposed networks are
based on, has set the standard for natural image perceptual qual-
ity in SR. SRGAN’s success comes from its deep CNN generator
trained using a combination of adversarial losses and the use of
perceptual losses. Perceptual losses are a type of content loss
that compares output and target images through the lens of key
intermediate layers of an auxiliary network, rather than compar-
ing actual pixels themselves. Perceptual losses have been shown
to produce more realistic images than traditional MSE losses

Fig. 3. Comparison of various SR methods on WIND Toolkit data fields.
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Table 2. Relative MSE of SR techniques on WIND Toolkit test
data

Quantity Bicubic interpolation Pretraining Adversarial

u 0.205 0.135 0.157
v 0.265 0.168 0.193

(53, 55). In ref. 48, the VGG image classification network (56)
is used for computing perceptual losses. Simple MSE losses are
used here since the information captured by the VGG network is
not appropriate for characterizing the key features in the climate
data.

The generator network goes through two rounds of training.
First, the network is “pretrained” with α=0 from Eq. 6 (i.e., the
discriminator is removed from the training loop). This allows the
generator to roughly learn the mapping from the coarse data
to an enhanced resolution output. As we show in Results, the
learned mapping tends to smooth out the field in a manner that
minimizes the MSE content loss across the training data but
produces fields that are not realistic. The discriminator is not
trained during the pretraining process to give the generator an
appropriate head start. After pretraining, the discriminator is
brought into the loop with α=0.001.

Theoretically, the GANs training procedure works best when
the discriminator loss remains around 0.5 (i.e., it effectively
cannot distinguish between the real and generated data). If
the discriminator performs significantly below (or above) this
range, then the generator does not gain any meaningful informa-
tion from the adversarial training process. To maintain balance
between the generator and discriminator, we employ an adap-
tive training scheme. If the discriminator loss exceeds 0.6 (i.e.,
the generator starts fooling the discriminator too well), then
the discriminator is allowed to train for multiple iterations with-
out updating the generator. Alternatively, the generator is given
additional training if the discriminator loss drops below 0.45.
Alternative approaches to maintaining this balance between the
performance of the two networks (e.g., employing a fixed update
ratio or relative learning rate for each network) would likely work
as well.

The networks were trained using GPU-accelerated nodes on
NREL Eagle computing system. For LR → MR wind veloc-
ity data, we pretrained the generator network for 2,000 epochs
through the 37,972 training examples, which took approximately
10 h. After pretraining was completed, we performed 200 epochs
of GANs training over 55.5 h. The GANs training takes sig-
nificantly longer than the pretraining because each iteration
requires an update step for both the generator and discriminator
networks. The MR→ HR step included 200 epochs of pretrain-
ing and 20 epochs of GANs training, taking approximately 32
and 240 h, respectively. The MR→HR training process is much
slower than the LR → MR simply because of the difference in
the size of the data fields. Training requires us to compute gra-
dients with respect to the size of the enhance fields, which is
significantly larger in the second step. The solar data enhance-
ment networks were trained for a similar amount of time on
the 45,109 training examples. Despite the long training times,
the forward evaluation of the networks is very fast. The full
LR → MR → HR process executes in minutes after the net-
works are trained, even for large data fields (e.g., continental or
global scale).

Validation Methods. During the training process, the discrimina-
tor learns to identify physically relevant characteristics of the
training data, such as sharper gradients and specific small-scale
structures. The adversarial training pushes the generator to pro-
duce outputs that reflect these characteristics. This can lead to
increases in the content loss since insufficient information is

present in the LR data to know the precise shape or location of
these smaller features. This highlights the fact that the GANs are
drawing from the conditional distributions of the HR data given
an LR input. We examine the MSE of the test data in order to
observe this fact. However, we can better validate that the net-
work has learned the appropriate distribution for the climate
wind data SR problem by using well-studied turbulent statistics.

When examining the results of the wind SR data, we can
exploit known physical characteristics of turbulent flow to val-
idate the data. First, the turbulent kinetic energy spectrum
is used in turbulence theory to measure the distribution of
energy across the various wave numbers, k . For fully devel-
oped turbulent flows, energy is conserved in the inertial-range
energy and cascades from larger scales to smaller scales lead-
ing to an energy spectrum that is proportional to k−

5
3 (57–

59). Additionally, we examine the probability density function

Fig. 4. The kinetic energy spectra (Upper) and velocity gradient (Lower)
PDFs for the various data fields. The Kolmogorov k−5/3 scaling (Upper) and
a Gaussian PDF (Lower) are show with black dashed lines for reference.

Stengel et al. PNAS | July 21, 2020 | vol. 117 | no. 29 | 16809



Fig. 5. Corrupting the LR inputs with noise produces stable changes in the HR outputs at small scales in regions of high gradients.

(PDF) of the longitudinal velocity gradients. These distribu-
tions are characteristically non-Gaussian in turbulent flows
and are indicative of small-scale intermittency. Further, the
longitudinal velocity gradient is expected to have a skew-

ness of approximately −0.5 as is common for atmospheric
flows (60).

Validating the enhanced solar data is a more difficult endeavor
since these fields depend on cloud cover, pollution, and other

Fig. 6. The global super-resolved velocity magnitudes field for the CCSM data.
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Fig. 7. Comparison of various SR methods on an NSRDB test field. The data field contains DNI and DHI data from 3 August 2012 at 12 PM.

particulates in the air for which we do not have a theo-
retical framework to lean on. In this work, we examine the
MSE of the test data as well as a statistical analysis of the
spatial autocorrelation. We characterize this autocorrelation
using semivariograms, which are a popular tool for character-
izing the spatial dependence in geospatial data (61). Semivari-
ograms plot the lag function

γ(r) =
1

2 A

∫
(f (x + r)− f (x ))2dA [8]

for some spatially dependent field f (x ) where A is the total area
of the field. This is essentially the mean variance of f (x ) at some
radius r .

Results
SR of Wind Data. In this section, we explore the SR of wind veloc-
ity data from approximately 100- to 2-km resolution. The training
data from this problem are composed of data from the WIND
Toolkit coarsened to match the CCSM resolution. Fig. 3 con-
tains results from the 50× SR applied to unseen WIND Toolkit
data held out as a separate test case. The figure depicts LR and
HR wind velocities as well as three SR examples. The first SR
field is generated using the näıve bicubic interpolation, which
significantly smooths out the data. Next, the CNN SR example
is the result of the pretraining process described in Data and
Methodology. This SR data field is more physically realistic than
the bicubic interpolation field, exhibiting sharper gradients and
introducing some small structures similar to the corresponding
HR data. Lastly, the GANs SR result produces data with very
sharp gradients and significantly more refined small-scale fea-
tures. This SR qualitatively appears to be the most comparable
with the true HR data. Further, the small structures inserted by
the GANs exhibit similar patterns and flow directionality as those
found in the true data.

Table 2 compares the relative MSE of the easterly (u) and
northerly (v) wind velocities across the WIND Toolkit test
set for each of the SR methods. We note that both deep
learning methods significantly outperform the bicubic inter-
polation with respect to this metric. However, the pretrained
CNN actually results in a lower pixelwise error than the
GANs-based method. The CNN is trained specifically to opti-
mize this content-based loss, resulting in SR fields that are
safer—that is, overly smoothed—predictions of the ground truth.
The GANs approach changes the landscape of the loss func-

tion by adding in the adversarial term, which favors SR fields
that are more physically consistent with the training data. The
generator learns to make more aggressive predictions, insert-
ing significantly more small-scale features that better represent
the nature of the true wind velocity fields. However, these
features also cause the SR field to deviate from the ground
truth in an MSE sense since they cannot be inferred from
the LR input.

Given the degree of SR being performed and the significant
amount of information being injected into the LR data, it is
important to verify that the generated field contains physically
realistic turbulence. The kinetic energy spectra and PDFs of
normalized longitudinal velocity gradient Z = ∂u

∂x

/〈(
∂u
∂x

)
2
〉1/2

for the various data fields are given in Fig. 4. The coarse input
data only contain energy in the smallest wave numbers or largest
scales, while the bicubic interpolated SR deviates substantially
from the desired inertial-range behavior. The deep learning-
based SR techniques improve the agreement with the ground
truth in the inertial range, with the adversarial training step in the
GANs providing a visible benefit at the highest wave numbers.

The velocity gradient PDFs for turbulent flow fields theo-
retically should exhibit a heavy-tailed behavior with negative
skewness (60). Our results show that the bicubic interpolation
incorrectly preserves the Gaussian distribution of the coarse
data, while the deep learning approaches produce the desired
heavy-tailed shape and are in much better agreement with the
ground truth. Again, we see benefit from the final adversarial
training step in the GANs results, particularly in achieving the
negative skewness.

Robustness of the SR Process. Having validated that the GANs
approach is generating physically realistic turbulent flow, we
next turn to the question of robustness. The GANs methodol-
ogy produces realizations of SR data conditioned on the given
LR input.

To ensure the results are robust to input noise, we perform
SR on an ensemble of noise-corrupted LR fields from the WIND

Table 3. Relative MSE of SR techniques on NSRDB test data

Quantity Bicubic interpolation Pretraining Adversarial

DNI 0.155 0.078 0.086
DHI 0.135 0.073 0.085
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Toolkit. The results from the robustness study are given in Fig. 5.
We generate 1,000 fields corrupted by Gaussian noise with 5%
of the original data’s variance. Fig. 5 shows the SR output from
the GANs trained network for the noiseless LR data and one
with 5% noise corruption. We also show the mean and variance
of the deviation of the SR noisy data fields from the noiseless
case. These plots show that our method is stable in the pres-
ence of input noise and that most of the variation is in regions
where sharp gradients are inserted. Since these gradients are not
reflected in the LR data, it is reasonable that noise corruption
could influence the nature of these features.

Application to Climate Data. The final step in the SR process is
to apply the trained network to the CCSM test data for which
no ground truth HR data are available. Recall that the fully
convolutional architecture of the generator network means that
it can be trained on relatively small regions, such as those in
Fig. 3, but the generator can be evaluated on data fields of any
size. Fig. 6 shows SR field generated from CCSM data for the
entire globe in a single-network evaluation. The original pixel
size of the LR field is 128× 288 with a 100-km pixel resolu-
tion. The pixel size of the generated SR field is 6, 400× 14, 400
with a 2-km pixel resolution. The figure contains two callouts to
highlight the quality of the features generated by the network.
Although not shown here, the energy spectra and velocity gradi-
ent PDFs for the global SR field also show the correct turbulent
flow characteristics. The full LR → MR → HR process takes
about 4 min to evaluate for a global dataset such as this. Note
that the network is applied to each time step of data individually
so that the time resolution of the enhanced CCSM data remains
the same.

In the southern region of the SR global data, we observe a
repeated gridded pattern occurring. This pattern is caused by
a compression of the longitude/latitude-based mesh near the
poles. This causes features in this region to appear stretched
out compared with those near the equator. During the SR
process, the network views these regions as especially smooth
and repetitive, causing the network to inject similar small-
scale features multiple times. This issue also appears slightly
in the northern region; however, the depicted field has suffi-
cient small-scale features to avoid the expansive flat regions
that occur in the southern region. Thus, the gridded behavior
is expected given the current formulation of the network, and
exploring sensitivities to different projections is a future research
direction.

SR of Solar Data. In this section, we examine the performance
of this methodology in performing SR on solar irradiance data.
Recall that the training data are constructed from coarsened
NSRDB data fields for DNI and DHI. Since the spatial res-
olution of the NSRDB is approximately 4 km, the SR per-
formed in this case is a 25× enhancement. Fig. 7 shows LR,
HR, and several examples of SR DNI and DHI data fields
for a test sample from the NSRDB. In general, the results
and interpretations are similar to those for the WIND Toolkit
data. The deep learning approaches produce sharper gradi-
ents, more realistic structures, and a lower relative MSE than
bicubic interpolation as reported in Table 3. The adversarially
trained GANs SR network produces the most perceptually real-
istic data fields but incurs a slight penalty in the MSE relative
to the pretraining CNN. This explanation for this behavior is the
same as in Table 2.

We next examine the spatial autocorrelation of the solar irra-
diance data using semivariograms. Recall that a semivariogram
depicts the lag function from Eq. 8. Fig. 8 contains the mean
semivariograms for the LR, HR, and various SR fields over the
test NSRDB data normalized by the total variance in the data.
Note that we plot the semivariograms using a log–log plot for

Fig. 8. Semivariogram for the enhanced NSRDB DNI (Upper) and DHI
(Lower) data.

the lag distance to emphasize the r < 100-km region. Recall
that the coarse data have a resolution of 100 km per pixel,
and note that the semivariogram for the LR input data begins
with a lag distance of 100 km. Therefore, the r < 100-km region
is of primary interest as this is where the SR process is gen-
erating new data. The smallest lag distance for the HR and
SR data is r =4 km, corresponding to the resolution of these
data fields.

The semivariograms for the ground truth data show an ini-
tial jump in variance (referred to as the “nugget”) caused by
the discontinuities in the data due to cloud cover. The interpo-
lated SR and CCN SR are unable to capture the nugget. The
adversarially trained SR does better at reproducing this initial
jump by learning to replicate the types of small-scale textures
and discontinuities in the solar irradiance data. However, it still
undershoots the magnitude of the nugget as these structures are
very difficult to infer based on the coarse inputs. The error bars
on the plot show the SD across the test data. The small range in
the sub–100-km regime suggests that the GANs method consis-
tently outperforms the interpolated and the CNN SR at injecting
small-scale details. Beyond 100 km, all of the SR methods per-
form approximately equally well as the long-range details from
the input LR data dominate.
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Fig. 9. The global super-resolved DNI from the CCSM data for 15 March 2030 at 2 PM.

Lastly, we apply the full two-step SR process to the coarse
CCSM solar data. The results of this for DNI are shown in Fig. 9.
The shown field is for 15 March 2030 at 2 PM, and the LR field
size is 128× 288 with a 100-km-pixel resolution. The resulting
enhanced field is 3, 200× 7, 200 with a 4-km-pixel resolution. We
include two callouts to zoom in on specific areas of interest. In
these callouts, we see sharper boundaries forming that mimic the
impact of cloud cover. We also see smaller textures that are more
typical of the HR data from the NSRDB. The two-step 25× res-
olution enhancement process takes less than 1 min to run for a
given input field.

Discussion
These results demonstrate the power of GANs to perform
impressive levels of spatial SR of climatological wind (50×
enhancement) and solar (25× enhancement) data. The adver-
sarial training approach learns the physically relevant features
from the training data and ensures that the small-scale data
injected during the SR process preserve these features for both
wind and solar data. Because many HR fields can be con-
sistent with a given LR field, the appropriate mindset when
evaluating the SR output fields is not whether they match the
underlying true HR data exactly but rather, that they are one
of the possible valid HR fields corresponding to the given the

LR input. This idea is shown in Figs. 3 and 4. The former
shows that the GANs generate a wind velocity fields perceptu-
ally similar to, but not necessarily identical to, the corresponding
true HR data. The latter demonstrates that the GANs-
generated data match the expected turbulent fluid flow statis-
tics in the newly generated scales, satisfying the criteria for a
successful SR.

The HR data fields generated by this methodology immedi-
ately offer several key uses. GCMs are typically run for a variety
of meteorological and policy scenarios. Enhancing the data using
GANs is an inexpensive process after the network has been
sufficiently trained. This enables the consideration of various cli-
mate scenarios in long-term grid planning and renewable energy
resource assessments. Additionally, this technique can allow for
decreased storage and computation requirements around cli-
mate modeling and can potentially be used to spin up simulations
with nested computational grids.

Finally, these results demonstrate that GANs are useful for
scientific data rather than just natural images and provide a path-
way for physically consistent deep learning. The adversarial loss
generates overall more realistic and physically relevant predic-
tions than an approach that only focused on minimizing content
loss. The idea of whether a generated field is physically consis-
tent addresses a concept from image processing known as the

Stengel et al. PNAS | July 21, 2020 | vol. 117 | no. 29 | 16813



perception–distortion trade-off (62). This trade-off argues that,
while no distortion metric (e.g., MSE loss) is perfect, some are
better than others at preserving the perceptual quality of image.
This is the driving factor behind the use of the VGG16 network
for perceptual losses to improve SR of photographic images (48,
53). However, the VGG16 network is not intended to capture
features in turbulent flows or solar irradiance. The develop-
ment of scientifically motivated perceptual loss networks could
significantly enhance the performance of these deep learning
techniques.

Future Research Directions. This work offers a variety of research
questions to be explored. Recall that the proposed GANs
approach generates one plausible realization from the condi-
tional distribution of HR data fields given the coarse input data.
This naturally leads to questions related to the field of uncer-
tainty quantification, which seeks to characterize the range of
possible outcomes (63, 64). A thorough investigation of this
conditional distribution could enhance the use of these data in
localized resource assessment or in the generation of extreme
events. This technique has been applied to generating specific
handwritten digits (65), new images of objects and animals (66),
and artwork drawn in a given style (67). The extension of this
approach to data SR is nontrivial since the conditional values
in this case (i.e., the lower-resolution input images) are high
dimensional and continuous.

Another important research direction involves the question
of enhancing the temporal resolution of the data. Recent
work has made first steps toward addressing this issue by per-
forming spatial SR in a temporally coherent manner (36);
however, this work performed significantly smaller spatial SR
than we presented here (4× vs. 50× spatial SR). Addition-
ally, the timescales for the turbulence simulations from ref.
36 are O(seconds) so that consecutive frames are highly cor-
related. The climate data under consideration here contain
hourly/daily timescales, leading to significantly different data
fields at each time step. Temporal SR goes beyond simple
coherence by inserting entirely new snapshots of data (at the
also-enhanced spatial resolution) in between given time steps of
data. Such enhancements are important open questions in the
field of data enhancement and would be beneficial for resource
analysis.

Finally, we recall from Data and Methodology that the state-of-
the-art SR for photographic images leverages the power percep-
tual loss functions. These are content-based losses constructed
from a previously trained auxiliary network that identifies critical
features in image data to improve the perceptual quality of the
enhanced output. Currently, the VGG image classification net-
work (56) serves as the primary tool for constructing these loss
functions. This network was architected and trained specifically

for photographic data and is therefore incompatible with the cli-
mate data studied here. However, the development of analogous
domain-specific perceptual loss functions could improve the SR
results presented here and enhance the performance of other
data-driven methods.

Conclusion
In this work, we adapt adversarial deep learning techniques
developed for SR in image processing to enhance climatologi-
cal data. We present a deep fully convolutional neural network
that increases the resolution of coarse 100-km climate data by
50× for wind velocity and 25× for solar irradiance data. The
fully convolutional architecture of the network enables this tech-
nique to be applied to coarse data of any size. We train the wind
and solar SR networks on coarsened WIND Toolkit and NSRDB
data, respectively. We test the performance of these networks
with respect to unseen test data and show that the adversar-
ial training procedure ensures that the small-scale structures
introduced by the generator network are physically consistent
with those seen in the training data. In this way, the network is
able to enhance coarse climate data, when no higher-resolution
data exists, in a physically meaningful manner. Code for the
networks as well as trained weights have been made available
for use (14).

Data Availability. Software for the trained networks as well as
some example data are available on GitHub at https://github.
com/NREL/PhIRE. Training data for this work were obtained
through the NREL WIND Toolkit, which is available for down-
load from https://www.nrel.gov/grid/wind-toolkit.html, and the
NSRDB, which is available for download from https://nsrdb.
nrel.gov. Test data come from the NCAR CCSM, which is
available through https://esgf-node.llnl.gov/projects/esgf-llnl.
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