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A central task in developmental biology is to learn the sequence of
fate decisions that leads to each mature cell type in a tissue or
organism. Recently, clonal labeling of cells using DNA barcodes has
emerged as a powerful approach for identifying cells that share a
common ancestry of fate decisions. Here we explore the idea that
stochasticity of cell fate choice during tissue development could be
harnessed to read out lineage relationships after a single step of
clonal barcoding. By considering a generalized multitype branch-
ing process, we determine the conditions under which the final
distribution of barcodes over observed cell types encodes their
bona fide lineage relationships. We then propose a method for
inferring the order of fate decisions. Our theory predicts a set of
symmetries of barcode covariance that serves as a consistency
check for the validity of the method. We show that broken
symmetries may be used to detect multiple paths of differentia-
tion to the same cell types. We provide computational tools for
general use. When applied to barcoding data in hematopoiesis,
these tools reconstruct the classical hematopoietic hierarchy and
detect couplings between monocytes and dendritic cells and
between erythrocytes and basophils that suggest multiple path-
ways of differentiation for these lineages.
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During development and adult tissue turnover, cells differ-
entiate into diverse cell types through a hierarchical se-

quence of fate choices. The hierarchy can be mapped using
lineage tracing, where a tracer molecule or DNA modification is
introduced in a group of early cells and then followed over time,
allowing identification of the cells’ progeny (1). Recently, ad-
vances in DNA sequencing have made it possible to parallelize
thousands of lineage tracing assays in a single experiment by
labeling cells with unique DNA barcodes (2–4).

Lineage tracing is carried out through two experimental strategies.
“Prospective” lineage tracing seeks to establish the fate of a set of
cells that are labeled at an early time point by tracking them to a
later time point. “Retrospective” lineage tracing seeks to reconstruct
the lineage relationships between cells at a single time point as a way
of inferring the history of differentiation branching events that they
underwent (5). The usual premise for retrospective lineage re-
construction from barcodes is that two given cell types, “A” and “B,”
are more closely related than a third cell type, “C,” when they share
barcodes with each other that are not shared with “C” (Fig. 1A) (6).
This approach has roots in the tradition of inferring phylogenetic
relationships between species based on their common and unique
characteristics, such as shared anatomical features or gene sequence
alleles that are absent in an outgroup (7).

This phylogenetic approach, however, is limited by the need to
accumulate differences in barcodes over a broad developmental
window. It is blind to fate choices that occur after barcode di-
versification has ended. Several experimental methods have now
been proposed to continuously barcode cells (8, 9); however, these
methods still require optimization to allow uniform rates of long-
term barcoding and to analyze tissues with variable rates of division
(10). Since most existing methods only label cells within a narrow
time window (2, 11–14), it would be useful to develop frameworks
for lineage reconstruction beyond the point when barcoding has
ended. In a limiting case, one might ask if it is possible to establish
retrospective lineage relationships when clonal barcoding occurs just
once in a uniform cell population.

Here we explore the idea that stochasticity of cell fate choice in
development could be harnessed to infer lineage relationships after
barcoding at a single moment in time (Fig. 1B). The intuition is that
natural fluctuations between clones in cells entering different line-
ages would generate statistical signals in the distribution of barcodes
over mature cell types and that these statistics alone could report on
the lineage hierarchy. Although this phenomenon has not, to our
knowledge, been formally described, it may be furnishing some of
the signal in existing studies of lineage relationships. Statistical
coupling of barcode counts between lineages has been reported us-
ing correlation (4, 11, 15), observed/expected ratio (14), Z-score
enrichment (16), correlation of Z-score enrichment (13), and other
measures. The existence of these couplings is usually attributed to
cells being labeled across multiple stages of fate commitment—the
phylogenetic approach—but may also arise from stochasticity in cell
fate choice.

To explore whether a single step of clonal barcoding could be used
to infer lineage hierarchy, it is necessary to model how barcodes
partition over time (forward problem) and whether their final sta-
tistics encode the tree structure (reverse problem). In the following
sections, we define a tree-structured branching process to model the
dynamics of clonal expansion and differentiation along a de-
velopmental hierarchy. We calculate closed-form expressions for the
first- and second-order moments of the clone distributions and re-
port a simple neighbor-joining algorithm that provably reconstructs
the hierarchy from a combination of these moments called the
normalized covariance. The proof holds under plausible assumptions
about the differentiation process. Since the normalized covariance
can be easily estimated from barcoding data, this constitutes a
practical inference approach.

We also search for self-consistency tests that would fail if our
conditions are violated. One of the predictions of our model is that
the normalized covariance should obey a set of equalities known as
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conformal symmetries (17), which can only be broken when one or
more of the model assumptions are violated. We investigate one of
these violations in detail: the existence of cross-tree transitions
where cells differentiate to a final cell type by two alternative paths.
There are several notable instances of cross-tree transitions in de-
velopment, such as neural crest differentiation into mesoderm
lineages (18). We formally analyze the types of symmetry violations
induced by cross-tree transitions and propose an approach for
detecting them in barcoding data.

These results specify a recipe for inferring both cell-type hierarchy
and cross-tree transitions that we have implemented as a method
called CLiNC (Cell Lineage from Normalized Covariance) available
as open source packages in Python and R. We apply CLiNC to a
dataset of lineage barcoding in adult mouse hematopoiesis (14) and
find that the resulting tree agrees with traditional models of the
hematopoietic hierarchy. We also discover a pair of cross-tree
transitions that are consistent with recent evidence suggesting mul-
tiple pathways of differentiation in the dendritic (19) and myeloid
(16, 20–23) lineages. The approaches developed here should provide
a mathematical grounding for the interpretation of clonal couplings
in other systems.

Results
Generative Model of Differentiation. We model differentiation as a
branching process on a tree. The tree is defined by a set of nodes
T = {0, . . . ,m} and a parent function p :T→T that maps nodes to
their parents. We will write p(i)  =   j when j is the parent of i and use
p−1(j) to denote the children of j. In the following, “0” will always
refer to the root of the tree and L(T) to its leaves. Cells at each node
pass daughters to their immediate child nodes. The outcome of the
differentiation process can be represented as a set of counts Xi re-
cording the number of cells at each node i. Our only further as-
sumption is that the process of cell division and differentiation to
daughter states is independent and identically distributed for each
parental cell. This does not exclude the possibility of cell–cell in-
teractions if these interactions approximate to a mean field. Multiple
lineage-tracing studies from developing and adult tissues support the
notion that clonal statistics can be well modeled by stochastic pro-
cesses, even when fate choices are under strong control (24, 25).
Under these assumptions, the whole process is governed by the joint
distributions Di = P(Xj,     j∈ p−1(i) 

⃒⃒
  Xi = 1) that describe how single

cells at each parent node pass daughter cells to the immediate child
nodes. The joint distributions, D, could encode a wide range of be-
haviors, including stereotyped or stochastic cell division; strict
asymmetric, symmetric, or stochastic daughter fates; fate-dependent
division rates; and so on.

Each barcode inserted at the root of T instantiates an independent
run of the differentiation process, and the number of cells con-
taining a specific barcode at the leaves of T can be thought of as
a sample from the joint distribution P(Xi,     i∈L(T)  |  X0 = 1).
Here, we provide general closed-form expressions for the first-
and second-order moments of this distribution and then identify
a set of conditions that allows reconstructing the tree from these
moments. Complete derivations are available in SI Appendix.
Some readers may wish to skip directly to Tree Reconstruction to
see how the following mathematical results are put to use.

Calculation of Moments with Probability-Generating Functions. Di-
rectly calculating moments of the barcode distribution is challenging
because of the interaction between the division and differentiation
distributions at each branch point. These interactions are greatly
simplified when the calculation is performed in the domain of
probability-generating functions (PGFs). Two properties of PGFs
play a key role: (Property 1) nesting of probability distributions in
a branching process is represented by function composition in the
PGF domain; (Property 2) moments can be calculated as deriva-
tives in the PGF domain. The derivatives of function compositions
have a well-understood structure encoded by the chain rule, and
this structure scaffolds the moment calculations in our generative
model.

The PGF for joint random variables X1, . . . ,Xm is defined as
GX (z1, . . . , zm) = E(zX1

1 . . .   zXm
m ). Let ψ i denote the PGF of Di and let

Ψi be the PGF over leaf nodes for the complete subtree rooted at i.
Our goal is to calculate Ψ0 where 0 is the root of T. This is enabled by
the following recursion (Property 1), which holds generally for PGFs
of nested probability distributions (26):

Ψi = ψ i(Ψj1, . . . . ,Ψjk)    for    j1, . . . , jk     the  children  of   i.
From the PGF, one can calculate moments using the following
derivatives (Property 2):

E(Xi) =  
∂GX

∂zi
  |1         and      E(XiXj) =  

∂2GX

∂zi∂zj
  |1,

where 1 = (1, . . . , 1). To find the moments of the full branching
process, we differentiate Ψ0, which requires applying the chain
rule to the hierarchically structured composition tree given
specified by Property 1. An implication is that the means
and covariances of the full branching process depend only
on the means and covariances of the local distributions Di.
To state this relationship, it helps to introduce notation for
the moments of Di:

Ei =   E(Xi  
⃒⃒
  Xp(i) = 1)

Vi =  Var(Xi  
⃒⃒
  Xp(i) = 1)

Ci,j =  Cov(Xi,Xj  
⃒⃒
  Xp(i) = 1),

where Ci,j is defined for pairs i, j with p(i) = p(j).
First-Order Moments. The first-order moments, E(Xi   |  X0 = 1), can
be obtained by applying the chain rule as follows:

Continual barcodingA One-time barcodingB

Cell Barcode

Barcode
insertion

Barcode
insertion

Barcode
insertion

A     B     CA     B     C

Fig. 1. Two principles for inferring developmental hierarchy from lineage
tracing barcodes. (A) Barcodes are deposited over time. Multiple insertions
in the same lineage of cells create a nested hierarchy of barcoded clones that
encode the lineage hierarchy. For example, the blue barcode that is in cell
types A and B, but not C, suggests a common progenitor for A and B. (B)
Barcodes are deposited all at once. Lineage hierarchy can no longer be
inferred from the nesting of barcoded clones but may be encoded in the
shared fluctuations of barcode abundance in terminal states. For example,
an initial imbalance in the abundance of cells with the red versus blue
barcode in the progenitors of A, B, and C manifests eventually in the shared
enrichment of red-barcoded cells in A and B.
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E(Xi   |  X0 = 1) =  
∂Ψ0

zi
  |1 = (∂ψp(i)

∂zi
  |1)(∂ψp2(i)

∂zp(i)
  |1) . . . ( ∂ψ0

∂zpN−1(i)
  |1)

= ∏N−1

k=0
Epk(i),

where N is the number of steps from node i to the root. This
calculation shows that the mean number of cells at node i is
simply the product of the expected cell growth at each step on
the path from the root to i.

Second-Order Moments. The second-order moments, Cov(Xi,   Xj  
⃒⃒
  X0 = 1),

can be calculated by a similar principle, applying the chain rule to
the second derivatives of Ψ0 (SI Appendix). The key result (Theorem 2)
is stated here. For any pair of leaves i, j, if M is the distance to their
most recent common ancestor [i.e., M is the minimal integer satisfying
pM(i) = pM(j)], then

Cov(Xi,   Xj)
E(Xi)E(Xj) = ∑N−1

m=M

1
E(Xpm+1(i)) (

Vpm(i)
E2

pm(i)
)

+ 1
E(XpM (i)) (

CpM−1(i),pM−1(j)
EpM−1(i)EpM−1(j)

).
This equation expresses the covariation in barcode counts
between nodes i and j in terms of their normalized covariance
(left-hand side). The two terms on the right-hand side de-
scribe different sources of covariation. First, fluctuations in
the number of cells upstream of i and j’s common ancestor
(first term) tend to increase the covariance, since both nodes
stand to gain cells when they are plentiful at the common
ancestor or lose cells when they are few. Second, the covari-
ance between i and j depends partly on the covariance at
the common ancestor itself (second term). All phenomena
that occur downstream of the common ancestor have no im-
pact on normalized covariance, which is reflected by the
absence of terms that depend on Dpm(i) and Dpm(j) where
m<M. Throughout the following text we denote normalized
covariance as

~Cij = Cov(Xi,   Xj)
E(Xi)E(Xj) .

Tree Reconstruction. From the forward problem—calculating mo-
ments from knowledge of the three—we now turn to the reverse
problem: reconstructing the tree from knowledge of the moments.
A possible starting point is the intuition that closely related line-
ages should appear more coupled than distant ones. Following
this idea, it may be possible to reconstruct the entire topology
of the tree by iteratively joining leaves with the highest normal-
ized covariance, similar to the “neighbor-joining” algorithm in
phylogentics (27).

A simple simulation shows that this idea can work in practice
(Fig. 2 A–C). It turns out, however, that neighbor joining can fail
when sister cells make correlated differentiation choices after di-
vision. This would occur when cells in putatively multipotent states
are already committed or primed toward a particular downstream
lineage. For example, suppose that in the simulated tree (Fig. 2A),
cells at node “1” always send their daughters to “2” or “3” but never
both simultaneously. This would destroy the correlation of barcode
counts between “2” and “3” and indeed would render the topology of
the tree meaningless, since node “1” would simply be hosting cells
that were already committed to one of the downstream fates. An
alternative simulation (Fig. 2 D–F) shows that this pathology can
occur even when cells are not fully committed but sufficiently biased
toward a particular downstream lineage.

Conditions That Guarantee Validity of Neighbor Joining. For neighbor
joining to correctly construct lineage relationships, we might require
that sister cells choose their differentiation fate independently.
Formally, an equivalent statement is that the Di can be parametrized
as multinomial distributions with a random number of trials. We
prove that this assumption guarantees the correctness of neighbor
joining (SI Appendix, Theorem 4). In particular, it implies that for any
leaf nodes (i, j, k), i and j are more closely related in the tree than j
and k if and only if ~Cij > ~Cik.

Conformal Symmetry. Neighbor joining will always produce some
tree, but how can we know if it is correct? It turns out that the model
strongly constrains the normalized covariances in the form of con-
formal symmetry (17). This symmetry principle means that when
nodes i and j are more closely related to each other than they are to a
third node k, they must each have the same normalized covariance
with k (i.e., ~Cik = ~Cjk; see SI Appendix, Theorem 5). This principle
can only be violated if there is noise in the estimates of normalized
covariance or if the process being studied does not comply with the
model assumptions. There are a number of ways to deviate from the
model: barcoding could have happened at multiple stages instead of
at a single moment in time, the developmental process could be
asynchronous with a mixture of differentiation and self-renewal, or
there might be multiple paths to the same end state, meaning de-
velopment cannot be formally described as a tree. Each of these
deviations could affect the results stated so far and highlights op-
portunities to extend the modeling framework. We will take one of

0

1

2 3 4

2 3 4

Branching process Normalized covariance Tree reconstructed 
by neighbor joining

D E F
2       3      4

2

3

4

-0.08 -0.04 0

0

1

2 3 4

2 3 4

Branching process Normalized covariance Tree reconstructed 
by neighbor joining

A B C
2       3      4

2

3

4

-0.1 0 0.1

Fig. 2. Success and failure cases for neighbor joining. (A–C) Successful re-
construction with neighbor joining. (A) Single cells at node 0 expand to 10
that partition binomially between 1 and 4. Each cell arriving at node 1 ex-
pands to five that partition binomially between 2 and 3. (B) Normalized
covariance of barcode counts reflects the tree structure: the branching at
node 1 causes a strong covariance between nodes 2 and 3. (C) Neighbor
joining correctly reconstructs the original tree. (D–F) Failure case for
neighbor joining. (D) The same tree structure as in A, but with different
dynamics of cell division and differentiation. A cell starting at node 0 ex-
pands to 10 cells and then sends either four cells to node 1 and six cells to
node 4 or six cells to node 1 and four cells to node 4 with equal probability.
Each cell arriving at node 1 then sends (1, 9) or (9, 1) cells to nodes 2 and 3
again with equal probability. (B) Although nodes 2 and 3 are closer to each
other in the tree than they are to node 4, they nonetheless have a lower
normalized covariance with each other than each has with node 4, leading
to an incorrect tree (C).
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those opportunities here and investigate the effect of multiple paths
to the same end state.

Multiple Paths in Development. There are several well-documented
cases where cells violate a strict tree-like developmental hierarchy
(18, 28, 29). We cannot yet provide a general account of how barcode
statistics are determined for arbitrary differentiation topologies, but
motivated by the observation that cross-tree transitions are usually
sparsely superimposed on otherwise tree-like processes we can ask
how a single cross-tree transition would affect conformal symmetries
on the tree. Suppose that there exists a pair of cell types i’ and j’ that
have branched apart, yet a subset of cells differentiates directly from j’
to i’ in violation of the tree structure (Fig. 3A). The resulting
normalized covariances would violate conformal symmetry. Can
the precise pattern of violations pinpoint the source and target of
the cross-tree transition?

One can show that, for any triplet of nodes i, j, k that would nor-
mally satisfy conformal symmetry (with i, j closer to each other than
to k), a set of violations can be predicted based on the tree positions
of i, j, k with respect to the source and target of the transitioning cells
(j’ and i’ respectively; see SI Appendix, Theorem 6 for the precise
result and detailed proof). All remaining symmetries are preserved.
The set of violated symmetries (Fig. 3B) can be understood as fol-
lows. First, if neither i, j, nor k is downstream of i’, then all three
nodes will be insulated from the transition and their normalized
covariances will continue to satisfy conformal symmetry. Further, if
both i and j are both downstream of i’, then their normalized co-
variances with k will be equally affected by the transition, so again
symmetry is maintained. We are left to consider cases where either i
or j, but not both, is downstream of i’ (Fig. 3B; cases 1 and 2), or
where k is downstream of i’ (case 3). In the former situation, sym-
metry will be broken if k is closer to i’ than to j’ (case 1), or closer j’
than to i’ (case 2), but not if they are equally close. When k is
downstream of i’ (case 3), symmetry will only be broken if j is closer
than i to j’, or i is closer than j to j’.

Conformal symmetry violation must occur in all (i, j, k) triplets
falling into cases 1 through 3 above, and only in such triplets. For any
particular transition, these triplets typically cover only a minority of
the symmetries that would normally exist (e.g., 9 ± 7% for simulated
trees with 10 leaf nodes), so each cross-tree transition leaves a
specific fingerprint in the form of broken symmetries. Thus, when
symmetry breaking is observed in the data, one can compare the
observed pattern of broken symmetries to that predicted for each
possible cross-tree edge. Close matches could highlight instances
where two differentiation paths contribute to the same end state,
although alternative causes such as sampling noise or asynchronous
barcode integrations should not be ruled out.

Recipe for Data Analysis. Summarizing the theoretical results, we
have shown that neighbor joining based on normalized covariance
can accurately reconstruct developmental hierarchies from barcod-
ing data when sister cell fates are independent (Theorem 4), that the
normalized covariances should be conformally symmetric with re-
spect to the resulting tree (Theorem 5), and that tree violations in the
form of multiple paths to the same end state leave a specific fin-
gerprint in the form of broken symmetries (Theorem 6) that might

indicate which alternative paths are present. We now describe a
step-by-step approach for applying these results to data. The method
is applicable to an experiment where cells are barcoded and allowed
to differentiate and the number of cells with each barcode in each
differentiated cell type has been measured (see SI Appendix, Sup-
plementary Materials and Methods 1.1 through 1.5 for complete
implementation details).

1) Calculate the normalized covariance ~Cij ¼ CovðXi ,   XjÞ
EðXiÞEðXjÞ between

each pair of terminal states.
2) Pick the pair of states with highest normalized covariance and

merge them, forming a new pseudostate whose barcode
counts are the sum of the counts from the original pair.
Return to step 1, repeating this process until all of the states
have been joined together.

3) Using the tree obtained from neighbor joining, identify all
instances where conformal symmetry is broken with a chosen
false-discovery rate (FDR).

4) Identify the set of cross-tree transitions that best explains the
observed symmetry violations.

5) Detect and fix possible distortions in tree topology caused by
cross-tree transitions.

We have packaged these steps as a bioinformatic method called
CLiNC that is available in Python and R (https://github.com/
AllonKleinLab/CLiNC/).

Robustness Tests with Simulated Data. We investigated the robust-
ness of CLiNC using simulated differentiation processes on trees
with variable tree size, number of detected clones, error rates in cell
type assignment, and number of cross-tree transitions. Considering
trees with 4 to 24 leaves (SI Appendix, Fig. S1A), the probability of
inferring the correct tree depended on the size of the tree and the
number of barcodes, with 1,000 barcoded clones sufficient for all
trees tested (Fig. 4A and SI Appendix, Fig. S1 B–D). Simulated error
in cell-type assignment had little effect for realistic error rates
(<10%) but progressively degraded inference at higher rates in a
data-size-dependent manner (Fig. 4B and SI Appendix, Fig. S1 E–G).

With respect to detecting cross-tree transitions, we found that tree
reconstruction was consistently accurate when there was only one
cross-tree transition (>95% correct) but decreased as transitions
were added (88% for two transitions and 69% for three transitions;
SI Appendix, Fig. S1 M and N). In cases where tree inference suc-
ceeded, CLiNC accurately detected the number of cross-tree tran-
sitions (Fig. 4C), and with only one transition the precise transition
was correctly localized in 98.5% of cases. However, accuracy was
substantially lower when there were two or three transitions (2/2
correct in 54% of cases and >2/3 correct in 55% of cases; Fig. 4D).
Even when inference failed, however, the reported transition was
often near the correct one. When including the parents of the correct
nodes as acceptable source and target nodes, there was a substantial
increase in accuracy (2/2 correct in 84% of cases and >2/3 correct in
87% of cases; Fig. 4D). Together, these results support the accuracy
of CLiNC in the case of bona fide trees or those with one transition,
which were the cases we considered theoretically (Fig. 3) as the basis

i’

j’

i’

j’

k j i

i’

j’

i j k

i’

j’

ik j

Covariance pairs violating conformal 

symmetry upon cross-tree transition  j’    i’

Case 1 Case 2 Case 3

Non-tree transitionA B

Fig. 3. Conformal symmetry breaking by multiple paths to the same end state. (A) Multiple paths to the same end state can be modeled as a transition across
the tree. The figure shows a scenario where cells are transferred from node j’ to node i’. (B) Cross-tree transitions cause specific violations of conformal
symmetry. Given a triplet of leaf nodes i, j, kwhere i and j are more closely related to each other than they are to k, there are three scenarios where symmetry
is broken, defined by the positions of i, j, k relative to i’ and j’.
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for the algorithm. We urge caution when conformal symmetry vio-
lations suggest the existence of more than one cross-tree transition.

To further assess robustness, we asked how self-renewal—represented
by self-edges and so excluded by our formal model assumptions—would
affect the accuracy of tree inference. In simulations, accuracy of tree in-
ference increased during the initial sampling time steps, peaking at a
chase period roughly 1.5 times the tree height (tree height= the minimum
time for a cell to reach any leaf starting from the root node; Fig. 4E).
Thereafter, accuracy was profoundly affected by behavior at downstream
leaf nodes: If terminal states were allowed to divide during the experiment
(“expansion model”), the fraction of correctly inferred trees was 98% and
the peak and remained at or near 100% for all subsequent time points. If
these cells instead were continuously replaced (“turnover model”), or they
accumulated without dividing or dying (“accumulation model”), then the
accuracy of tree construction instead rapidly decreased and subsequently
remained close to 0%. In these cases, we found that leaf nodes with
similar distance to the root were inappropriately grouped together (SI
Appendix, Fig. S1O). Errors caused by self-renewal were mitigated when
we restricted to shallow trees where all leaves had similar distance to the
root (Fig. 4F). Thus, the accuracy of CLiNC in systems with self-renewal
depends critically on the division dynamics of committed cells and on the
timing of barcode sampling, and more generally these simulations teach
us that correlations observed in clonal data at steady state (11) should be
interpreted with caution.

Inferring the Hematopoietic Hierarchy.We applied CLiNC to analyze
published clonal data on hematopoiesis after stem cell trans-
plantation in mice (14). Over several decades, researchers have as-
sembled a detailed map of hematopoietic differentiation and found
that it can, on the whole, be described as a tree-like process. Yet
several aspects of the tree are the target of ongoing revision (30).
Recently, it was shown that both monocyte–neutrophil progenitors
and monocyte–dendritic cell (DC) progenitors (31) give rise to
monocytes (14, 19), violating a strict tree model. Another question
relates to the ontogeny of basophils. Basophils, being a type of
granulocyte, are thought to share a progenitor with neutrophilic
granulocytes (20, 22, 23). However, recent studies (16, 21, 32) sug-
gest that basophils may in fact be closer to erythrocytes and mega-
karyoctes. In a previous study (14), we analyzed the trajectory of
clones over time to understand how early progenitor state affects
fate choice and applied a heuristic permutation-based approach to
reconstruct a tree from clonal barcode correlations in terminal

states. Here, we revisit the same data to ask whether normalized
covariance reconstructs a more accurate hematopoietic tree and if
there are violations of conformal symmetry that can identify cross-
tree transitions.

In ref. 14, hematopoietic stem cells and early multipotent pro-
genitor (MPP; Lin− Kit+ Sca1hi) cells were transplanted into sub-
lethally irradiated host mice and then isolated after 1 or 2 weeks of
differentiation (Fig. 5A). Using single-cell RNA sequencing, the cell
type and barcode sequence of each cell was identified. The resulting
data (Fig. 5B) include 93,500 barcoded cells, belonging to 9,300
clones spread across nine cell types, including erythrocytes, baso-
phils, neutrophils, monocytes, three types of dendritic cells, natural
killer (NK) cells, and B cells.

As required by our model, cell barcoding was synchronous (likely
occurring within 24 h of viral transduction) and applied to a puta-
tively uncommitted starting population. Although hematopoietic
cells do self-renew, transcriptional analysis of cell cycle genes
showed that 78% of analyzed cells were cycling (SI Appendix, Fig.
S2) and prior work suggests the remaining postmitotic cells were
likely retained within the bone marrow through the chase period (33,
34). Thus, murine hematopoiesis over 1 to 2 weeks is intermediate
between the “expansion” and “accumulation” models investigated in
Fig. 4 E and F, and therefore suitable for analysis with CLiNC.
Longer-term lineage-tracing experiments (11), however, may perform
poorly.

Following the CLiNC pipeline, we computed normalized co-
variance (Fig. 5C) for each pair of cell types and iteratively joined
states with the highest normalized covariance (Fig. 5D), resulting in
a hierarchy that agreed with past literature (30). Using an FDR of
2%, we detected 15 symmetry violations (out of 84 putatively sym-
metric triples; Fig. 5E). Two cross-tree transitions optimally
explained these violations (Fig. 5 F–H): An erythroocyte-to-basophil
transition explained 2 violations and a transition from the common
progenitor of all dendritic cells to the monocyte lineage explained 12
violations.

The detected dendritic-to-monocyte transition is consistent with
recent evidence that monocytes may differentiate by two routes: a
monocyte–neutrophil pathway and a monocyte–dendritic pathway
(19). We previously used barcode data to show that dendritic cell-
related monocytes were enriched with dendritic cell gene markers,
and likewise for neutrophils (14, 19). Here, we have used the co-
variance of barcode counts across lineages to provide a complimentary
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line of evidence for two routes of monocyte differentiation. The de-
tected erythroocyte-to-basophil transition is also intriguing given the
ongoing controversy between alternative tree models that place baso-
phils closer to the neutrophil or erythroid lineages (16, 20–23). Our
analysis suggests that a strict tree model might not be appropriate for
describing the ontogeny of monocytes or basophils.

Together, the dendritic-to-monocyte and erythroid-to-basophil
transitions explain 13 out of 15 detected symmetry violations (one
violation was predicted by both transitions). The two leftover
violations—an increased NK/plasmocytoid-DC (pDC) covariance
compared to NK/CD11+ DCs, and an increased monocyte/CD11+
DCs covariance compared to monocyte/CD8+ DCs—could not be
parsimoniously explained by cross-tree transitions. The leftover vi-
olations might be the result of false discovery (84 putative symme-
tries with FDR = 2%), or they might represent bona fide alternative
differentiation pathways. pDCs may have both lymphoid and mye-
loid differentiation pathways (35), possibly explaining their increased
covariance with NK cells.

Discussion
We defined a model of cell differentiation as a tree-structured
branching process, calculated the low-order moments of this pro-
cess (forward problem), and then showed how to reconstruct the tree
from these moments (reverse problem). Analysis of conformal
symmetry and the violations induced by cross-tree transitions in-
dicate the broad scope of what can be inferred from barcode sta-
tistics alone. Our theoretical results suggest a recipe for the analysis
of barcode data that is implemented in Python and R packages
available online (https://github.com/AllonKleinLab/CLiNC). The
method is well-suited to experimental data from commonly used
barcoding methods and immediately applicable to existing datasets,
as shown by our reanalysis of a published barcoding study of
hematopoiesis.

Yet, these results rely on a set of biological assumptions that do
not always apply. The branching process model excludes cell–cell
interactions that cannot be expressed in terms of a mean field, such
as feedback control of total cell number, and validity of the
neighbor-joining algorithm requires that cell division and differen-
tiation can be decoupled. Many processes are well-captured by these
assumptions, but certain phenomena, such as strict asymmetric di-
vision (36), are not accommodated. The model also ignores cell
death or stable propagation of a cell state through self-renewal and
assumes that barcodes are all deposited in a single cell type at a
single developmental stage, which is only approximately true for
many experimental strategies (2, 11, 14) and not true at all for others
(8, 9, 15). A more profound deviation from our model is the growing
recognition that some fate choices may be better described as con-
tinuous processes than as discrete, hierarchical decision trees. Ex-
ploring the mathematics of barcode distribution when each of these
assumptions is relaxed is an interesting area for further research.

In the meantime, we have tried to provide guidelines that can
inform interpretation of CLiNC output and guide the preparation of
data (SI Appendix, Fig. S3). Using simulations, we identified the
bounds on sampling depth and error rate for minimizing error in tree
inference (Fig. 4 A and B), found that inference becomes unreliable
when there are more than two cross-tree transitions (Fig. 4 C and D),
and showed that the effect of self-renewal is dependent on the di-
vision and death kinetics of mature cells (Fig. 4 E and F). Some of

these parameters can be estimated without prior knowledge of the
system, such as sampling depth and error rate. Others, such as the
division kinetics of mature cells, could be inferred from gene
expression (SI Appendix, Fig. S2) or measured directly through
carefully timed pulse-chase experiments. It remains the case, how-
ever, that retrospective analysis from barcoding data should be
thought of as a hypothesis-generating tool and that definitive proof
of lineage relationships requires prospective labeling or isolation of
putative multipotent cell states. As the community establishes future
methods for lineage inference, appreciating how various biological
processes skew the data will be critical.

Several other biological processes share a statistical structure with
barcode fluctuations in differentiation and may also obey the theo-
rems stated here. The core elements are an ensemble of self-
replicating units (e.g., barcoded cells) that repeatedly partition
within a structured tree (e.g., the lineage hierarchy). Another pro-
cess with these same elements is the replication and partitioning of
plasmids or mitochondria within dividing cells. Here the plasmids
and mitochondria represent the replicating units, the precise cell
division history represents the structured tree, and horizontal gene
transfer represents the cross-tree transitions that might break con-
formal symmetry. Other examples could include mixed-genotype
pathogen transmission between hosts, or the fluctuation of allele
counts in a species that spreads in a geographically ramifying pat-
tern. Our approach may be useful for inferring hierarchical structure
in these other settings.

Materials and Methods
Robustness Tests on Simulated Data. Trees were generated using an in-
homogeneous branching process. Beginning with a single root node, each
node was either assigned to be a leaf (termination of branching) or an in-
ternal node with two children (continuation of branching). Differentiation
was simulated independently for each “barcode” by initializing a single cell
at the root node and then at each stage assigning to each cell a number of
children sampled from a Poisson distribution with mean 3, and partitioning
the cells binomially to daughters in equal proportions. Self-renewal simu-
lations were carried out on trees with 10 leaves, used 5,000 barcodes, and
used a modified differentiation process where the daughters of cells could
remain at the same node on the next time step. Simulations with cross-tree
transitions were performed on trees with 10 leaves and used 5,000 barcodes.
Accuracy for all simulations was evaluated by two metrics: percent correct,
which refers to the proportion of cases where the inferred tree was an exact
match to the ground-truth tree, and tree distance, in which the predicted
and ground-truth tree were compared using the Robinson–Foulds metric.

Analysis of Barcoding Data in Hematopoiesis. In vivo barcoding data from a
recent paper (14) were used (data are available at the Gene Expression
Omnibus database under accession no. GSE140802). We removed cell types
that were uncommitted progenitors of other cell types also measured in the
experiment and excluded rare cell types, defined as those with fewer than
200 shared barcodes (SI Appendix, Fig. S3A). Cells from 1-week posttransplant
and 2-week posttransplant were combined for analysis. Tree construction and
detection of symmetry violations were carried out using the CLiNC pipeline.
Our analysis is fully reproducible (https://github.com/AllonKleinLab/CLiNC/blob/
master/clinc_python/example/clinc_pipeline.ipynb).

ACKNOWLEDGMENTS. We thank Kyogo Kawaguchi for helpful discussions
on the mathematics and David Brann for comments on the manuscript.

1. P. Jensen, S. M. Dymecki, Essentials of recombinase-based genetic fate mapping in

mice. Methods Mol. Biol. 1092, 437–454 (2014).
2. B. A. Biddy et al., Single-cell mapping of lineage and identity in direct reprogram-

ming. Nature 564, 219–224 (2018).
3. D. S. Lin et al., DiSNE movie visualization and assessment of clonal kinetics reveal

multiple trajectories of dendritic cell development. Cell Rep. 22, 2557–2566

(2018).
4. R. Lu, N. F. Neff, S. R. Quake, I. L. Weissman, Tracking single hematopoietic stem cells

in vivo using high-throughput sequencing in conjunction with viral genetic barcoding.

Nat. Biotechnol. 29, 928–933 (2011).
5. M. B. Woodworth, K. M. Girskis, C. A. Walsh, Building a lineage from single cells:

Genetic techniques for cell lineage tracking. Nat. Rev. Genet. 18, 230–244

(2017).

6. J. M. Kebschull, A. M. Zador, Cellular barcoding: Lineage tracing, screening and be-

yond. Nat. Methods 15, 871–879 (2018).
7. Z. Yang, B. Rannala, Molecular phylogenetics: Principles and practice. Nat. Rev. Genet.

13, 303–314 (2012).
8. R. Kalhor et al., Developmental barcoding of whole mouse via homing CRISPR. Sci-

ence 361, eaat9804 (2018).
9. A. McKenna et al., Whole-organism lineage tracing by combinatorial and cumulative

genome editing. Science 353, aaf7907 (2016).
10. D. E. Wagner, A. M. Klein, Lineage tracing meets single-cell omics: Opportunities and

challenges. Nat. Rev. Genet., 10.1038/s41576-020-0223-2 (2020).
11. W. Pei et al., Polylox barcoding reveals haematopoietic stem cell fates realized in vivo.

Nature 548, 456–460 (2017).
12. J. Sun et al., Clonal dynamics of native haematopoiesis. Nature 514, 322–327 (2014).

Weinreb and Klein PNAS | July 21, 2020 | vol. 117 | no. 29 | 17047

D
EV

EL
O
PM

EN
TA

L
BI
O
LO

G
Y

A
PP

LI
ED

M
A
TH

EM
A
TI
CS

https://github.com/AllonKleinLab/CLiNC
https://www.pnas.org/lookup/suppl/doi:10.1073/pnas.2000238117/-/DCSupplemental
https://www.pnas.org/lookup/suppl/doi:10.1073/pnas.2000238117/-/DCSupplemental
https://www.pnas.org/lookup/suppl/doi:10.1073/pnas.2000238117/-/DCSupplemental
https://github.com/AllonKleinLab/CLiNC/blob/master/clinc_python/example/clinc_pipeline.ipynb
https://github.com/AllonKleinLab/CLiNC/blob/master/clinc_python/example/clinc_pipeline.ipynb


13. D. E. Wagner et al., Single-cell mapping of gene expression landscapes and lineage in
the zebrafish embryo. Science 360, 981–987 (2018).

14. C. Weinreb, A. Rodriguez-Fraticelli, F. D. Camargo, A. M. Klein, Lineage tracing on
transcriptional landscapes links state to fate during differentiation. Science 367,
eaaw3381 (2020).

15. A. E. Rodriguez-Fraticelli et al., Clonal analysis of lineage fate in native haemato-
poiesis. Nature 553, 212–216 (2018).

16. B. K. Tusi et al., Population snapshots predict early haematopoietic and erythroid
hierarchies. Nature 555, 54–60 (2018).

17. S. Hormoz, N. Desprat, B. I. Shraiman, Inferring epigenetic dynamics from kin corre-
lations. Proc. Nat. Acad. Sci. 112, E2281–E2289 (2015).

18. R. Mayor, E. Theveneau, The neural crest. Development 140, 2247–2251 (2013).
19. A. Yáñez et al., Granulocyte-monocyte progenitors and monocyte-dendritic cell

progenitors independently produce functionally distinct monocytes. Immunity 47,
890–902.e4 (2017).

20. Y. Arinobu et al., Developmental checkpoints of the basophil/mast cell lineages in
adult murine hematopoiesis. Proc. Nat. Acad. Sci. U.S.A. 102, 18105–18110 (2005).

21. R. Drissen et al., Distinct myeloid progenitor-differentiation pathways identified
through single-cell RNA sequencing. Nat. Immunol. 17, 666–676 (2016).

22. C. B. Franco, C.-C., Chen, M. Drukker, I. L. Weissman, S. J. Galli, Distinguishing mast cell
and granulocyte differentiation at the single-cell level. Cell Stem Cell 6, 361–368
(2010).

23. H. Huang, Y. Li, Mechanisms controlling mast cell and basophil lineage decisions. Curr.
Allergy Asthma Rep. 14, 457 (2014).

24. E. Clayton et al., A single type of progenitor cell maintains normal epidermis. Nature
446, 185–189 (2007).

25. C. Lopez-Garcia, A. M. Klein, B. D. Simons, D. J. Winton, Intestinal stem cell re-
placement follows a pattern of neutral drift. Science 330, 822–825 (2010).

26. T. E. Harris, Branching processes. Ann. Math. Statist. 19, 474–494 (1948).
27. N. Saitou, M. Nei, The neighbor-joining method: A new method for reconstructing

phylogenetic trees. Mol. Biol. Evol. 4, 406–425 (1987).
28. M. M. Chan et al., Molecular recording of mammalian embryogenesis. Nature 570,

77–82 (2019).
29. S. Nowotschin et al., Charting the emergent organotypic landscape of the mamma-

lian gut endoderm at single-cell resolution. bioRxiv:10.1101/471078 (15 November
2018).

30. Y. Zhang, S. Gao, J. Xia, F. Liu, Hematopoietic hierarchy–An updated roadmap. Trends
Cell Biol. 28, 976–986 (2018).

31. D. K. Fogg et al., A clonogenic bone marrow progenitor specific for macrophages and
dendritic cells. Science 311, 83–87 (2006).

32. S. Zheng, E. Papalexi, A. Butler, W. Stephenson, R. Satija, Molecular transitions in early
progenitors during human cord blood hematopoiesis. Mol. Syst. Biol. 14, e8041
(2018).

33. F. Naeim, P. Nagesh Rao, S. X. Song, R. T. Phan, “Structure of normal hematopoietic
tissues” in Atlas of Hematopathology, F. Naeim, P. Nagesh Rao, S. X. Song, R. T. Phan,
Eds. (Academic Press, ed. 2, 2018), pp. 1–28.

34. D. Gupta, H. P. Shah, K. Malu, N. Berliner, P. Gaines, Differentiation and character-
ization of myeloid cells. Curr. Protoc. Immunol. 104, 22F.25.21–22F.25.28 (2014).

35. A. Musumeci, K. Lutz, E. Winheim, A. B. Krug, What makes a pDC: Recent advances in
understanding plasmacytoid DC development and heterogeneity. Front. Immunol.
10, 1222 (2019).

36. J. A. Knoblich, Mechanisms of asymmetric stem cell division. Cell 132, 583–597 (2008).

17048 | www.pnas.org/cgi/doi/10.1073/pnas.2000238117 Weinreb and Klein

https://www.pnas.org/cgi/doi/10.1073/pnas.2000238117

