
Vol.:(0123456789)

Transactions of the Indian National Academy of Engineering (2020) 5:509–518
https://doi.org/10.1007/s41403-020-00157-z

123

ORIGINAL ARTICLE

MOXA: A Deep Learning Based Unmanned Approach For Real‑Time
Monitoring of People Wearing Medical Masks

Biparnak Roy1 · Subhadip Nandy1 · Debojit Ghosh1 · Debarghya Dutta2 · Pritam Biswas1 · Tamodip Das2

Received: 5 May 2020 / Revised: 1 July 2020 / Accepted: 11 July 2020 / Published online: 25 July 2020
© Indian National Academy of Engineering 2020

Abstract
With 6.93M confirmed cases of COVID-19 worldwide, making individuals aware of their sanitary health and ongoing pan-
demic remains the only way to prevent the spread of this virus. Wearing masks is an important step in this prevention. Hence,
there is a need for monitoring if people are wearing masks or not. Closed circuit television (CCTV) cameras endowed with
computer vision function by embedded systems, have become popular in a wide range of applications, and can be used in
this case for real time monitoring of people wearing masks or not. In this paper, we propose to model this task of monitoring
as a special case of object detection. However, real-time scene parsing through object detection running on edge devices
is very challenging, due to limited memory and computing power of embedded devices. To deal with these challenges, we
used a few popular object detection algorithms such as YOLOv3, YOLOv3Tiny, SSD and Faster R-CNN and evaluated them
on Moxa3K benchmark dataset. The results obtained from these evaluations help us to determine methods that are more
efficient, faster, and thus are more suitable for real-time object detection specialized for this task.

Keywords Object detection · Face mask detection · COVID-19 · Deep learning

Abbreviations
mAP@50 Mean average precision with 50% IoU
IoU Intersection over union
FPS Frames per second
API Application program interface
SGD Stochastic gradient descent
FLOPs Floating point operations

Introduction

As suggested by medical practitioners, it is a necessity to
wear a mask whenever you are at public places or places
with high probability of people gathering, to prevent the
spread of the virus. Because it is so important to wear masks
it is essential to have a monitoring system. Till now the only
way of monitoring the people if they are wearing the mask
was manual. Hence to overcome this cumbersome process
of manual monitoring, we propose a real-time monitoring
of people wearing medical masks with the help of artificial
intelligence equipped with deep learning. We have come up
with an easily adaptable model that can detect the people
wearing masks from the images or live feed fed to it. This
can be used in places such as banks, hospitals, transporta-
tion hubs, and even some traffic monitoring systems come
with closed circuit television (CCTV) cameras pre-installed.
These are areas which receive a high density of footfall, and
thus become active sources of transmission. It is absolutely
essential that people use medical masks in these areas.

Now the task of monitoring people wearing masks or not
is particularly challenging because of the following reasons:
(1) Detection of faces from a CCTV camera feed is particu-
larly difficulty as their size is very small as compared to
the rest of the environment (2) While wearing masks much

 * Biparnak Roy
 roybiparnak@gmail.com

 Subhadip Nandy
 subhadipnandyofficial@gmail.com

 Debojit Ghosh
 ghoshdebo2000@gmail.com

 Debarghya Dutta
 debarghyadutta2332k@gmail.com

 Pritam Biswas
 emailtobiswas2000@gmail.com

 Tamodip Das
 iamtamodip@gmail.com

1 Instrumentation and Electronics Engineering, Jadavpur
University, Kolkata, India

2 Electrical Engineering, Jadavpur University, Kolkata, India

http://orcid.org/0000-0001-7069-6574
http://crossmark.crossref.org/dialog/?doi=10.1007/s41403-020-00157-z&domain=pdf

510 Transactions of the Indian National Academy of Engineering (2020) 5:509–518

123

of the facial features gets covered, therefore facial detec-
tion becomes very difficult (3) There is no standard type
of masks that people wear, they come in different colours
so detection becomes difficult unlike license plate detec-
tion where all license plates follow a particular convention
(4) Far range detection become very difficult. So to tackle
all these challenges we modeled the task of masked and
unmasked face detection as a special case of object detec-
tion. We have treated the masked face and unmasked face
as special objects, which we will detect in real time using
popular deep learning based object detection models like
YOLO, SSD and Faster R-CNN.

Related Works

Mask and Maskless Face Classification System
to Detect Breach Protocols in the Operating Room

Nieto-Rodríguez et al. (2018) proposed ICDSC participants
to interact with a system to classify faces into two catego-
ries: faces with and without surgical masks. The system
assigns a per-personID through tracking to trigger only one
alarm for a maskless face across several frames in a video.
The tracking system also decreases the false positive rate.
The system reaches 5 fps with several faces in VGA images
on a conventional laptop. The output of the system provides
confidence measures for the mask and maskless face detec-
tions, image samples of the faces, and for how many frames
faces have been detected or tracked.

Methods

Overview

Recently, closed circuit television (CCTV) cameras,
equipped with computer vision function by embedded
systems, have been deployed in a wide range of applica-
tions, involving surveillance (Sage and Young 1999), facial
recognition (Qian and Xu 2009), license plate detection
of vehicles (Kashyap et al. 2018), etc. These applications
require platforms that are able to sense the environment,
parse scenes and react accordingly, of which the core part
is scene parsing. Different surveillance applications require
different stages of scene parsing, including recognizing dif-
ferent types of objects in the scene, locating where these
objects are, and determining exact boundaries around
each object. These scene parsing functions correspond to
three basic research areas in the field of computer vision,
namely image classification, object detection and seman-
tic (instance) segmentation. The most common one that
is adopted as a basic functional module for scene parsing

in surveillance applications is visual object detection, and
hence it has been the area of increasing interest. The variety
of open deployment environments makes automatic scene
parsing running on a surveillance platform highly demand-
ing, which brings many new challenges to the object detec-
tion algorithms. These challenges mainly include: (1) how
to deal with various variations (e.g., small sizes, shadows,
illumination, angle of view, and rotation) in object’s visual
appearance in CCTV camera images; (2) how to deploy
object detection algorithms on a surveillance platform with
limited memory and computing power; (3) how to balance
the detection accuracy and real-time requirements. Object
detection methods based on traditional machine learning
and hand-crafted features are prone to failure when dealing
with these variations. One competitive approach to address
these challenges is object detectors based on deep learning
techniques that are popularized in recent years.

The growth of computing power (e.g., graphical process-
ing units and dedicated deep learning chips) and the avail-
ability of large-scale labelled samples [e.g., ImageNet (Deng
et al. 2009), PASCAL VOC (Everingham et al. 2015) and
COCO (Lin et al. 2014)], has led to the extensive study of
deep neural networks due to its fast, scalable and end-to-
end learning framework. Especially, when compared with
traditional shallow methods, Convolution Neural Network
(CNN) (Lecun et al. May 2015) models have achieved signif-
icant improvements in image classification [e.g., DenseNet
(Huang et al. 2016) and ResNet (He et al. 2015)], object
detection [e.g., SSD (Liu et al. 2015) and Faster R-CNN(Ren
et al. 2015)] and semantic segmentation [e.g.,UNet (Ron-
neberger and Fischer 2015) and Mask R-CNN He et al.
2017), etc. Since the beginning when CNN models were
successfully introduced in object detection tasks R-CNN,
(Girshick et al. 2013), this detection framework has attracted
lots of research interest and many state-of-the-art object
detectors based on CNN have been proposed in recent years.
Specifically, YOLO series models (Redmon et al. 2015; Red-
mon and Farhadi 2016, 2018)] might be the most popular
deep object detectors in practical applications as the detec-
tion accuracy and speed are well balanced. Despite that, the
inference of these detectors still requires high-performance
computing and a large run-time memory footprint to main-
tain good detection performance; it brings high computation
overhead and power consumption to on-board embedded
devices of surveillance platforms. Only reducing the size
of the model can run the object detection method on these
embedded devices. The YOLO series, SSD series and other
networks have lightweight versions called YOLO-tiny (Red-
mon and Farhadi 2018), YOLO-Lite (Pedoeem and Huang
2018) tiny SSD (Womg et al. 2018), but the detection accu-
racy of the networks is greatly reduced. Therefore, how to
reduce the model size and floating point operations (FLOPs)
without notably reducing detection accuracy becomes an

511Transactions of the Indian National Academy of Engineering (2020) 5:509–518

123

urgent problem to be solved when deploying object detec-
tors on embedded devices in surveillance systems. The most
popular method is to reduce the parameters and model size
of the network by redesigning a more efficient network.
For example, SqueezeNet (Iandola et al. 2016), MobileNet
(Andrew 2017), ShuffleNet (Zhang et al. 2017), etc., these
methods can maintain detection accuracy to a great context
which significantly reduces the model size and floating point
operations (FLOPs).

Moxa3K Benchmark Dataset

To train the object detectors on classes ‘mask’ and ‘nomask’,
we use a dataset called ‘Moxa3K’ that we created. As the
name suggests it has 3000 images, with 2800 images in the
training set and 200 images in the testing set.

The dataset contains the Kaggle data set of medical
masksHsun 2020, which contains 678 images. These images
are mainly from China, Russia and Italy region taken dur-
ing the ongoing pandemic. Most of these pictures depict
a crowded area with a large number of people. As a result
of which there are a lot of labels in these series (Fig. 1a).
There are also 757 images which consist of close-ups of
faces which include frontal faces as well as side profiles
(Fig. 1b). Rest 1565 images are scraped from the internet
mainly via Google image search results (Fig. 1c). These
images are mainly of the ongoing COVID-19 situation in
India which contains a lot of people wearing masks. All
these images are evenly distributed over the train and test
set. Therefore using these efficient object detection mod-
els namely YOLOv3, YOLOv3Tiny(Redmon and Farhadi
2018), SSD (Liu et al. 2015) on MoblieNetv2Sandler et al.
2018 and Faster R-CNN (Ren et al. 2015) on Inception v2
(Szegedy et al. 2016) we detected faces with masks and
no masks. We trained and evaluated these models on our
Moxa3K benchmark dataset and analysed their performance
in this particular task in order to find the model which has a
proper balance of accuracy in the challenging conditions of
open deployment environments and real time compute capa-
bility on these embedded platforms of surveillance systems.

The directory structure of the dataset is shown in
(Fig. 2a). All the images of the dataset are stored in the
“Images” directory. The format of all the images are
JPG (JPEG). The naming convention of these images are

“MOXA_<serial number of the image starting from 0
>.jpg” so the image’s names ranges from “MOXA_0.jpg”
to “MOXA_2999.jpg”.

In these 3000 images of the dataset 9161 faces are with-
out mask and 3015 faces are with masks and all of them have
been labelled. These images are labelled in YOLO format
which stores annotations in text files as well as in Pascal
VOC(Everingham et al. 2015) format, which stores annota-
tion XML files. The classes of these labels are ’mask’ for
people wearing masks and ’nomask’ for people not wear-
ing masks. We have used bounding boxes to localize the
masked faces and unmasked faces in the images. As shown
in (Fig. 2b). A tool called LabelImg (Tzutalin 2015) by
Tzutalin was used in the process.

The YOLO format stores the labels in text files with the
same name as each image file, for example the image file of
“MOXA_101.jpg” will have the labels stored in the text file
“MOXA_101.txt” containing the following information in
a single line: (1) class ID, which are numbers starting from
‘0’ assigned to the classes in the dataset, in our case we have
only two classes “nomask” which is assigned the ID ‘0’and
“mask” which is assigned the ID of ‘1’ (2) (x,y) coordi-
nates of the center of the object’s bounding box (3) height
and width of the bounding box (absolute values of 2, 3 are
divided by the image height and width and stored). (Fig-
ure 3) shows the format of YOLO labels. All the text files
ranging from “MOXA_0.txt” to “MOXA_2999.txt” contain-
ing the corresponding labels are stored in the “YOLO” direc-
tory inside the “Annotations” directory. Figure 4b shows

Fig. 1 a Image from China
region b Closeup image of a
face c Image from India

Fig. 2 a Directory structure of Moxa3K dataset b The red bounding
boxes are faces without and the green ones are with masks (colour
figure online)

512 Transactions of the Indian National Academy of Engineering (2020) 5:509–518

123

annotation of Fig. 4a from our dataset, in the annotation we
can see first two lines starting with ‘1’ which corresponds
to 2 masked faces in Fig. 4b, and the remaining two lines
start with ‘0’ which corresponds to the two faces without
masks in the image.

The Pascal VOC (Everingham et al. 2015) format stores
details of the objects in images in an XML file. These
XML files in our dataset are of the same name as the cor-
responding images, for example the image “MOXA_49.
jpg” will have all the labels stored in the “MOXA_49.
xml” file. These XML files contain informations like: (1)
name of the image inside<filename> tag (2) name of the
dataset in the<database> tag which in our case will be
Moxa3k (3) dimensions of the image in<size> tag (4) the
details of the object are stored in the<object> tag, inside
the<object> tag there is<name> tag which stores the name
of the objects, in our case these names will be “mask” and
“nomask”, the coordinates of the bounding boxes in <bdn-
box> tag in format:<bdnbox><xmin></xmin<ymin></
ymin><xmax></xmax><ymax></ymax></bdnbox>,
here the<xmin>,<ymin> tags store (x1,y1) coordinates of
the (Fig. 5) respectively and <xmax> ,<ymax> tags store
(x2,y2) coordinates of the (Fig. 5). Figure6b show annota-
tion of Fig. 6a from our dataset, in the annotation we can
see a single <object> tag with <name> “mask” and the

coordinates of the bounding boxes. All the XML files are
stored in “Pascal VOC” directory.

In our dataset we have also taken care of the boundary
conditions, such as people wearing handkerchief as mask,
and people covering their face with their hands or with a
cloth in their hand as shown in Fig. 2b, the green bounding
box contains a lady covering her mouth with a handkerchief
which is labelled as ‘mask’ . We also have several samples
where there are “mask” and “no mask” faces which are
blurred like in Fig. 7a to increase the robustness of the object
detections. In addition there are samples which have a top
angle view to replicate the viewing angle of CCTV cameras
(Fig. 7b), so that we can match the deployment environ-
ments of the models which will be trained using this dataset.
Besides this we also have samples of images where the faces
are rotated at particular angles (Fig. 7c) to facilitate rotation
invariant detections. Our dataset also includes samples with
both frontal face (Fig. 1b) as well as side profiles of faces
(Fig. 6a) and it contains samples of crowded areas (Fig. 7d)
with lots of people in a single frame where the size of the
bounding boxes of some faces are very small and also con-
taining samples with only one person in the frame where the
bounding box is fairly large. We also have images with dif-
ferent illumination condition, and also with different weather
conditions like winter (Fig. 7e) where foggy environments
make object detections very difficult, and also there are sam-
ples taken in sunny summer environments (Fig. 7f). All these
factors greatly increase the robustness of the object detectors
trained on this dataset.

Experiments and Performance on Various Models

Here we have particularly worked with single shot
object detectors like YOLOv3 (Redmon and Farhadi
2018),YOLOv3Tiny (Redmon and Farhadi 2018), SSD (Liu
et al. 2015), and double shot detectors like Faster R-CNN
(Ren et al. 2015), which were trained on our dataset, and
their performances were analyzed. In the case of SSD and
Faster R-CNN we went with efficient and lightweight net-
works like MobileNet v2 (Sandler et al. 2018) and Incep-
tion v2 (Szegedy et al. 2016) respectively to improve per-
formances at low compute capabilities without affecting

Fig. 3 YOLO label format

Fig. 4 Image with corresponding YOLO labels

Fig. 5 Coordinates of the
bounding boxes in VOC format

Fig. 6 Image with corresponding VOC labels

513Transactions of the Indian National Academy of Engineering (2020) 5:509–518

123

accuracy of detection for real time inferences. For YOLO
models: YOLOv3 and YOLOv3Tiny we used the native
Darknet network. The main task here is to find the object
detector that balances both accuracy and compute speed,
as the main use of this system is on edge devices of the
surveillance platforms where real time detections are very
important.

Hardware and Enviornments

All the models are trained on an instance of Google Colab
platform with an Intel(R) Xeon(R) CPU @ 2.30GHz pro-
cessor, 13 GB RAM and 1 Nvidia Tesla P-100 GPU run-
ning Linux OS (Ubuntu 15.04 LTS). The inference tests
and evaluation of all these models are done on a machine
with Intel Core i5-9300H (9th Gen) @2.40 GHz processor,
with 8 GB of RAM and 1 Nvidia GTX 1650 GPU running
Linux OS (Ubuntu 20.04 LTS). All measurements of images
and frame sizes are taken in pixels. We report all inference
time in ms per 1280x720 image including all pre and post-
processing and number of frames of 1280x720 processed
per second (FPS).

YOLOv3

YOLOv3 is one of the most popular object detectors which
tackles the task of real time detection with its state of art
algorithms. Prior detection systems repurpose classifiers or
localizers to perform detection. They apply the model to an
image at multiple locations and scales. High scoring regions
of the image are considered detections. YOLO uses a totally
different approach. It applies a single neural network to the

entire image. This network divides the image into regions
and predicts bounding boxes and probabilities for each
region. These bounding boxes are weighted by the predicted
probabilities. YOLO has several advantages over classifier-
based systems. It looks at the whole image at test time so
its predictions are informed by global context in the image.

YOLOv3 makes an incremental improvement to the
YOLO series models in object detection accuracy. First,
YOLOv3 adopts a new backbone network, i.e., Darknet-53,
as a feature extractor. Darknet-53 uses more successive 3 × 3
and 1 × 1 convolutional layers rather than Darknet-19 in
YOLOv2 and organizes them as residual blocks (Redmon
and Farhadi 2018). Hence, Darknet-53 is much more power-
ful than Darknet-19 but still more efficient than ResNet-101
(He et al. 2015). Second, YOLOv3 predicts bounding boxes
at three different scales by following the idea of feature
pyramid network for object detection (Redmon and Farhadi
2018). Three detection headers separately built on the top
of three feature maps with different scales are responsible
for detecting objects with different sizes. Each grid in the
detection header is assigned with three different anchors, and
thus predicts three detections that consist of 4 bounding box
offsets, 1 objectiveness and C class predictions. The final
result tensor of the detection header has a shape of N × N ×
(3 × (4 + 1 + C)), where N × N denotes the spatial size of the
last convolutional feature map.

Training Following the default configurations in Dark-
net (Redmon and Farhadi 2018), we trained YOLOv3 on
Moxa3K benchmark dataset using SGD with the momentum
of 0.9 and weight decay of 0.0005. We use an initial learning
rate of 0.001 that is decayed by a factor of 10 at the itera-
tion step of 3200 and 3600. We set the maximum training

Fig. 7 a Blurred faces b top
angle camera view c rotated
face d crowded environments
e foggy environments f sunny
environments

514 Transactions of the Indian National Academy of Engineering (2020) 5:509–518

123

iteration as 4000 and use mini-batch size of 64. We set the
size of input image as 416 for YOLOv3. Multiscale training
is enabled by randomly rescaling the sizes of input images.
We initialized the backbone networks of the model with the
weights pre-trained on ImageNet (Deng et al. 2009).

Evaluation and analysis With the trained weights we ran
evaluations on test set of Moxa3K benchmark dataset, in
native Darknet environment. For hyperparameters we used
the same configuration as the training with input image size
as 416. The Inference time of the model is 23 FPS,with total
binary floating point operations (BFLOPS) 65.312, 65.2M
parameters and a model size of 246.3MB. The evaluation
was done on the following parameters: (1) precision, (2)
recall, (3) mean of average precision (mAP) measured at 0.5
intersection over union (IoU), (4) F1-score for each class and
the following results were obtained (Table.1).

We also ran evaluations by varying the input image size
on the following parameters: (1) precision, (2) recall, (3)
mean of average precision (mAP) measured at 0.5 inter-
section over union (IOU), (4) F1-scores (5) FLOPs and (6)
inference time as frames per second (FPS)and these are the
results obtained (Table 2).

We can see that the mAP of 608 × 608 input size is 3%
greater than the 416 × 416 input size model, however its
inference time is 94.77% greater than the later. Another
important observation is when we increase the input size to
832 × 832 the mAP decreases by 3.5% with an increase in
the inference time by 207.68% from the 416 × 416 model.
So we can say that the YOLOv3 is not that sensitive to input
size and the 416 × 416 model is most suitable for real time
inference.

YOLOv3 Tiny

Similar to YOLOv3 (Redmon and Farhadi 2018) the crea-
tors also designed a smaller model for constrained envi-
ronments which is the YOLOv3 Tiny. The YOLOv3 Tiny
runs on the same algorithm but uses a lighter version of the
model with only 2 YOLO layers. Being light weight it is
able to achieve much faster inference with a low processing

overhead. Which is very essential for deployment in surveil-
lance platforms.

Training Following the default configurations in Darknet
(Redmon and Farhadi 2018), we trained YOLOv3 (Redmon
and Farhadi 2018) Tiny on Moxa3K benchmark dataset
using SGD with the momentum of 0.9 and weight decay
of 0.0005. We use an initial learning rate of 0.001 that is
decayed by a factor of 10 at the iteration step of 3200 and
3600. We set the maximum training iteration as 4000 and
use a mini-batch size of 64. We set the size of the input
image as 416 for YOLOv3 Tiny. Multiscale training is ena-
bled by randomly rescaling the sizes of input images. We
initialized the backbone networks of the model with the
weights pre-trained on ImageNet (Deng et al. 2009).

Evaluation and analysis With the trained weights we ran
evaluations on test set of Moxa3K benchmark dataset, in
native Darknet environment. For hyperparameters we used
the same configuration as the training with input image size
as 416. The Inference time of the model is 138 FPS with
total binary floating point operations (BFLOPS) 5.449, 8.7M
parameters and a model size of 34.7MB. The evaluation was
done on the following parameters: (1) precision, (2) recall,
(3) mean of average precision (mAP) measured at 0.5 inter-
section over union (IoU), (4) F1-score for each class and
following results were obtained (Table 3).

Like Yolov3 we also ran evaluations by varying the input
image size on the following parameters: (1) precision, (2)

Table 1 Class wise performance analysis of YOLOv3

Here instances are no. of objects detected

Class

Nomask Mask Overall

Images 200 200 200
Instances 135 875 1015
Precision 0.45 0.81 0.76
Recall 0.25 0.77 0.79
F1-Score 0.32 0.78 0.77
mAP@50 46.69% 81.26% 63.99%

Table 2 Performance analysis over various input sizes of YOLOv3

Input size

416 x416 608x608 832x832

Precision 0.76 0.76 0.73
Recall 0.79 0.80 0.75
F1-Score 0.77 0.78 0.74
mAP@50 63.99% 66.84% 61.73%
BFLOPS 65.31 139.512 261.247
FPS 21.2 10.9 6.9
Inference time (ms) 47.1 91.74 144.92

Table 3 Class wise performance analysis of YOLOv3 Tiny

Instances are number of objects detected

Class

Nomask Mask Overall

Images 200 200 200
Instances 112 713 825
Precision 0.38 0.76 0.71
Recall 0.12 0.64 0.66
F1-Score 0.18 0.69 0.69
mAP@50 41.06% 71.48% 56.27%

515Transactions of the Indian National Academy of Engineering (2020) 5:509–518

123

recall, (3) mean of average precision (mAP) measured at 0.5
intersection over union (IOU), (4) F1-scores (5) FLOPs and
(6) inference time as (FPS) and these are the results obtained
(Table 4). Here the 416 × 416 model wins by a large margin
and is well suited for real time applications.

SSD: Single Shot Multibox Detection on Mobilenet v2

Single Shot object detection or SSD (Liu et al. 2015) takes
one single shot to detect multiple objects within the image.
SSD is faster than R-CNN because in R-CNN (Girshick
et al. 2013) we need two shots, one for generating region
proposals and the other for detecting objects. SSD is used
to speed up the process by eliminating the region proposal
network which results in a drop in accuracy, so we com-
bined the MobileNet v2 (Sandler et al. 2018) and SSD to get
better accuracy. Thus it performs fairly well in constrained
environments especially like in our case which requires
real time performance with low computation power. Resnet
(He et al. 2015),VGG (Simonyan and Zisserman 2014) or
alexnet (Krizhevsky et al. 2012) has a large network size
and it increases the number of computations whereas in
Mobilenet v2 there is a simple architecture which reduces
the processing overhead without hampering the detection to
a great extent. Hence, we used mobilenet v2 over Resnet or
VGG to facilitate real time performances with low process-
ing overhead.

Training We trained SSD with Mobilenet v2 backbone
using tensorflow object detection API(Huang et al. 2016)
with tensorflow 1.15 on Moxa3K benchmark dataset
using SGD with the momentum of 0.9 and weight decay
of 0.00004. We use an initial learning rate of 0.004 that is
decayed by a factor of 0.95 with decay steps of 800720. We
set the maximum training steps as 4000 and use a batch size
of 24. We used the size of input image as 300 for Mobilenet
v2 SSD. We initialized the backbone network of the model
with the weights pre-trained on MS-COCO (Lin et al. 2014).

Evaluation and analysis With the trained weights we ran
evaluations on test set of Moxa3K benchmark dataset, on

tensorflow 1.15 using tensorflow object detection API (Huang
et al. 2016) evaluation scripts with COCO metrics (Lin et al.
2014). For hyperparameters we used the same configuration as
the training with input image size as 300. The Inference time
of the model is 67.18 FPS [this inference was ran using the
OpenCV DNN Modules backed with CUDA support (Samaga
2018)], and a model size of 19.3 MB . The evaluation yielded
the following results (Table 5).

From the (Table 5) it is evident that the model is more effi-
cient in detecting masks over no mask. With an inference time
of 14.88 ms it is well capable of performing realtime detec-
tions however the quality of detections comes at cost as we
have relatively lower mAP.

Faster R‑CNN on Inception v2

Traditional CNN (Lecun et al. 2015) divides the image into
multiple regions and then classifies each region into various
classes. Hence it needs a lot of regions to predict accurately
and therefore high computation time. To solve this problem
Girshick et al proposed R-CNN (Girshick et al. 2013) which
uses selective search to generate regions. It extracts around
2000 regions from each image and for each region, CNN is
used to extract specific features. Finally, these features are then
used to detectobjects. Due to this it takes high computation
time as each region is passed to the CNN separately. Also, it
uses three different models for making predictions. To solve
this problem Girshick had suggested Fast R-CNN (Girshick
2015), which passes the entire image to ConvNet which gen-
erates regions of interest (instead of passing the extracted
regions from the image). Also, instead of using three different
models (as we saw in R-CNN), it uses a single model which
extracts features from the regions, classifies them into different
classes, and returns the bounding boxes. All these steps are
done simultaneously, thus making it execute faster as com-
pared to R-CNN. Fast R-CNN is, however, not fast enough
when applied on a large dataset as it also uses selective search
for extracting the regions. Finally Shaoqing Ren et al proposed
Faster R-CNN (Ren et al. 2015), which fixes the problem of
selective search by replacing it with Region Proposal Network
(RPN). We first extract feature maps from the input image
using Convolution Neural Network and then pass those maps
through a RPN which returns object proposals. Finally, these
maps are classified and the bounding boxes are predicted.
Despite being significantly faster than its predecessors it
still has a huge computational overhead. Although it is very

Table 4 Performance analysis over various input sizes of
YOLOv3Tiny

Input size

416 × 416 608 × 608 832 × 832

Precision 0.71 0.72 0.68
Recall 0.66 0.70 0.68
F1-Score 0.77 0.78 0.74
mAP@50 56.27% 55.08% 56.57%
BFLOPS 5.449 11.640 21.797
FPS 138 72 46.5
Inference time (ms) 7.2 13.8 21.5

Table 5 Class wise performance
analysis of SSD

Class Images mAP@50

Nomask 200 29.81%
Mask 200 63.24%
Overall 200 46.52%

516 Transactions of the Indian National Academy of Engineering (2020) 5:509–518

123

accurate it might not be well suited for the deployment envi-
ronments of our task which requires real time performances at
low computational overhead.

Training We trained Faster R-CNN (Ren et al. 2015) with
Inception v2 (Szegedy et al. 2016) backbone using tensor-
flow object detection API (Huang et al. 2016) with tensor-
flow 1.15 on Moxa3K benchmark dataset using SGD with
the momentum of 0.9 and weight decay of 0.00004. We use
an initial learning rate of 0.004 that is decayed by a factor
of 0.95 with decay steps of 800720. We set the maximum
training steps as 4000 and use batch size of 24. We used the
size of input image as 300 for Inception v2 Faster R-CNN.
We initialized the backbone network of the model with the
weights pre-trained on MS-COCO (Lin et al. 2014).

Evaluation and analysis With the trained weights we
ran evaluations on test set of Moxa3K benchmark dataset,
on tensorflow 1.15 using tensorflow object detection API
(Huang et al. 2016) evaluation scripts with COCO metrics
(Lin et al. 2014) (Table6). For hyperparameters we used the
same configuration as the training with input image size as
300. The Inference time of the model is 14.88 FPS (Qian
and Xu 2009) [this inference was ran using the OpenCV
DNN Modules backed with CUDA support (Samaga 2018)],
a model size of 52.3MB. The evaluation yielded the follow-
ing results (the results are yielded with maximum number
of detections as 100).

We see that the model has a mAP of 60.5% with an IoU
of 50%, and with a higher IoU of 75% it’s mAP increases
to 89% which tells us that model performs really well with
higher levels of threshold values.

Results and Comparison

Comparing the performances of the stated models on
Moxa3K benchmark dataset (Table 7) we see that the max-
imum mAP is obtained with YOLOv3 608x608, however
with the increased input size and the comparatively heavy
processing overhead it fails to give real time inference.

However YOLOv3 with 416 x 416 gives a FPS of 21.2
with an mAP of 63.99%. But considering the fact that the
main application of this detection system is to be deployed
in a surveillance based platform supported by embedded
systems with limited compute capability the YOLOv3
416x416 model will fail to produce real time inference.
The YOLOv3 Tiny model however fits perfectly for the use
case, it has a satisfactory mAP of 56.27% with a FPS of
138. It provides a good balance of accuracy and real time
inference. With a very less processing overhead it is able
to provide real time detections of masked and no masked
faces on the surveillance platforms with limited compute
power.We ran some test samples on the trained models to
compare their performances (Fig. 8).

Conclusion

The idea of detecting whether people wearing face masks
or not find its best implementation in areas with very high
footfall, such as markets, offices, rail stations etc. because
the chances of transmission are highest in these areas.
Our system can be implemented at any location which can
provide a video input, for eg: live feed, recorded video
feed, etc. Thus a detection model which has the ability
to run at real time and is accurate enough to detect small
objects like masked faces, can be very effective in these
edge applications in surveillance platforms. In future to
improve the detection system more advanced object detec-
tion models can be used. In addition to that the dataset can
be expanded further to enhance the training and evaluation
process so that a better analysis of performance of the vari-
ous object detection models can be done on it.

Table 6 Performance analysis of faster R-CNN

Metric IoU Area Result

50 to 95% All 22.8%
50% All 60.5%

Average precision 75% All 89.0%
50 to 95% Small 18.9%
50 to 95% Medium 32.7%
50to 95% Large 29.5%
50 to 95% All 42.0%

Average recall 50 to 95% Small 38.8%
50 to 95% Medium 49.2%
50 to 95% Large 50.0%

Table 7 mAP and FPS of trained models on Moxa3K dataset

Model mAP@50 FPS

YOLOv3 414x414 63.99 21.2
YOLOv3 608x608 66.84 10.9
YOLOv3 832x832 61.73 6.9
YOLOv3Tiny 414x414 56.27 138
YOLOv3Tiny 608x608 55.08 72
YOLOv3Tiny 832x832 56.57 46.5
SSD 300 MobliNetv2 46.52 67.1
F-RCNN 300 Inceptionv2 60.5 14.8

517Transactions of the Indian National Academy of Engineering (2020) 5:509–518

123

Acknowledgements This project was supported and guided by Prof.
Rajib Bandopadhyay (Dept. Instrumentation and Electronics Engineer-
ing, Jadavpur University). Mainak Pal (Dept. Electronics and Telecom-
munication Engineering) and Pritthijit Nath (Dept. Computer Science
Engineering) of Jadavpur University also provided their support.

Data Availibility Statement All the config files and weights of all the
trained object detection models along with our dataset Moxa3K has
been provided here: https ://shitt y-bots-inc.githu b.io/MOXA/index
.html, https://MOXA/index.html.

Compliance with ethical standards

Conflict of interest The authors declare that they do not have any con-
flict of interest.

Availability of code All codes are available here:https ://shitt y-bots-inc.
githu b.io/MOXA/index .html link.

Fig. 8 Comparison of the trained models on some test samples

https://shitty-bots-inc.github.io/MOXA/index.html
https://shitty-bots-inc.github.io/MOXA/index.html
https://shitty-bots-inc.github.io/MOXA/index.html
https://shitty-bots-inc.github.io/MOXA/index.html

518 Transactions of the Indian National Academy of Engineering (2020) 5:509–518

123

References

Deng J, Dong W, Socher R, Li L, Li K, Fei-Fei L (2009) Imagenet: a
large-scale hierarchical image database. In: 2009 IEEE confer-
ence on computer vision and pattern recognition, pp 248–255

Everingham M, Eslami SMA, Van Gool L, Williams CKI, Winn J,
Zisserman A (2015) The pascal visual object classes challenge:
a retrospective. Int J Comput Vis 111(1):98–136

Girshick R (2015) Fast r-cnn
Girshick R, Donahue J, Darrell T, Malik J (2013) Rich feature hier-

archies for accurate object detection and semantic segmentation
He K, Zhang X, Ren S, Sun J (2015) Deep residual learning for image

recognition
He K, Gkioxari G, Dollár P, Girshick R (2017) Mask r-cnn
Howard AG, Zhu M, Chen B, Kalenichenko D, Wang W, Weyand T,

Andreetto M, Adam H (2017) Efficient convolutional neural net-
works for mobile vision applications, Mobilenets

Hsun TC (2020) Medical masks dataset, 02
Huang G, Liu Z, van der Maaten L, Weinberger KQ (2016) Densely

connected convolutional networks
Huang J, Rathod V, Sun C, Zhu M, Korattikara A, Fathi A, Fischer I,

Wojna Z, Song Y, Guadarrama S, Murphy K (2016) Speed/accu-
racy trade-offs for modern convolutional object detectors

Iandola FN, Han S, Moskewicz MW, Ashraf K, Dally WJ, Keutzer K
(2016) Squeezenet: Alexnet-level accuracy with 50x fewer param-
eters and<0.5mb model size

Kashyap A, Suresh B, Patil A, Sharma S, Jaiswal A (2018) Automatic
number plate recognition. In: 2018 international conference on
advances in computing, communication control and networking
(ICACCCN), pp 838–843

Krizhevsky A, Sutskever I, Hinton GE (2012) Imagenet classification
with deep convolutional neural networks. In: Proceedings of the
25th international conference on neural information processing
systems - volume 1, NIPS’12, page 1097–1105, Red Hook, NY,
USA, Curran Associates Inc

Lecun Y, Bengio Y, Hinton G (2015) Deep learning. Nat Cell Biol
521(7553):436–444

Lin T-Y, Maire M, Belongie S, Bourdev L, Girshick R, Hays J, Perona
P, Ramanan D, Lawrence Zitnick C, Dollár P (2014) Microsoft
coco: Common objects in context

Liu W, Anguelov D, Erhan D, Szegedy C, Reed S, Fu C-Y, Berg AC
(2015) Ssd: Single shot multibox detector

Nieto-Rodríguez, Mucientes M, Brea VM (2018) Mask and mask-
less face classification system to detect breach protocols in the

operating room. In: Proceedings of the 9th international confer-
ence on distributed smart cameras, ICDSC ’15, page 207–208,
Association for Computing Machinery, New York, NY, USA

Pedoeem J, Huang R (2018) Yolo-lite: a real-time object detection
algorithm optimized for non-gpu computers

Qian Z, Xu D (2009) Research advances in face recognition. In: 2009
Chinese conference on pattern recognition, pp 1–5

Redmon J, Farhadi A (2016) Yolo9000: better, faster, stronger
Redmon J, Farhadi A (2018) Yolov3: an incremental improvement.

arXiv
Redmon J, Santosh D, Ross G, Farhadi A (2015) Unified, real-time

object detection, you only look once
Ren S, He K, Girshick R, Jian S (2015) Towards real-time object detec-

tion with region proposal networks, Faster r-cnn
Ronneberger O, Fischer P, Thomas B (2015) Convolutional networks

for biomedical image segmentation, U-net
Sage K, Young S (1999) Security applications of computer vision.

IEEE Aerosp Electron Syst Mag 14(4):19–29
Samaga YB (2018) Opencv with cuda support. https://github.com/

YashasSamaga/opencv
Sandler M, Howard A, Zhu M, Zhmoginov A, Chen L-C (2018)

Mobilenetv2: inverted residuals and linear bottlenecks
Simonyan K, Zisserman A (2014) Very deep convolutional networks

for large-scale image recognition
Szegedy C, Vanhoucke V, Ioffe S, Shlens J, Wojna Z (2016) Rethink-

ing the inception architecture for computer vision. In: 2016
IEEE Conference on Computer Vision and Pattern Recognition
(CVPR). Las Vegas, NV, pp 2818–2826. https ://doi.org/10.1109/
CVPR.2016.308

Tzutalin. Labelimg. https ://githu b.com/tzuta lin/label Img, 2015
Womg A, Shafiee MJ, Li F, Chwyl B (2018) Tiny SSD: a tiny single-

shot detection deep convolutional neural network for real-time
embedded object detection. In: 2018 15th Conference on Com-
puter and Robot Vision (CRV), Toronto, ON, pp 95–101. https ://
doi.org/10.1109/CRV.2018.00023

Xiangyu Z, Xinyu Z, Mengxiao L, Sun J (2017) An extremely efficient
convolutional neural network for mobile devices, Shufflenet

Publisher’s Note Springer Nature remains neutral with regard to
jurisdictional claims in published maps and institutional affiliations.

https://doi.org/10.1109/CVPR.2016.308
https://doi.org/10.1109/CVPR.2016.308
https://github.com/tzutalin/labelImg
https://doi.org/10.1109/CRV.2018.00023
https://doi.org/10.1109/CRV.2018.00023

	MOXA: A Deep Learning Based Unmanned Approach For Real-Time Monitoring of People Wearing Medical Masks
	Abstract
	Introduction
	Related Works
	Mask and Maskless Face Classification System to Detect Breach Protocols in the Operating Room

	Methods
	Overview
	Moxa3K Benchmark Dataset
	Experiments and Performance on Various Models
	Hardware and Enviornments
	YOLOv3
	YOLOv3 Tiny
	SSD: Single Shot Multibox Detection on Mobilenet v2
	Faster R-CNN on Inception v2
	Results and Comparison

	Conclusion
	Acknowledgements
	References

