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Abstract
With 6.93M confirmed cases of COVID-19 worldwide, making individuals aware of their sanitary health and ongoing pan-
demic remains the only way to prevent the spread of this virus. Wearing masks is an important step in this prevention. Hence, 
there is a need for monitoring if people are wearing masks or not. Closed circuit television (CCTV) cameras endowed with 
computer vision function by embedded systems, have become popular in a wide range of applications, and can be used in 
this case for real time monitoring of people wearing masks or not. In this paper, we propose to model this task of monitoring 
as a special case of object detection. However, real-time scene parsing through object detection running on edge devices 
is very challenging, due to limited memory and computing power of embedded devices. To deal with these challenges, we 
used a few popular object detection algorithms such as YOLOv3, YOLOv3Tiny, SSD and Faster R-CNN and evaluated them 
on Moxa3K benchmark dataset. The results obtained from these evaluations help us to determine methods that are more 
efficient, faster, and thus are more suitable for real-time object detection specialized for this task.

Keywords Object detection · Face mask detection · COVID-19 · Deep learning

Abbreviations
mAP@50  Mean average precision with 50% IoU
IoU  Intersection over union
FPS  Frames per second
API  Application program interface
SGD  Stochastic gradient descent
FLOPs  Floating point operations

Introduction

As suggested by medical practitioners, it is a necessity to 
wear a mask whenever you are at public places or places 
with high probability of people gathering, to prevent the 
spread of the virus. Because it is so important to wear masks 
it is essential to have a monitoring system. Till now the only 
way of monitoring the people if they are wearing the mask 
was manual. Hence to overcome this cumbersome process 
of manual monitoring, we propose a real-time monitoring 
of people wearing medical masks with the help of artificial 
intelligence equipped with deep learning. We have come up 
with an easily adaptable model that can detect the people 
wearing masks from the images or live feed fed to it. This 
can be used in places such as banks, hospitals, transporta-
tion hubs, and even some traffic monitoring systems come 
with closed circuit television (CCTV) cameras pre-installed. 
These are areas which receive a high density of footfall, and 
thus become active sources of transmission. It is absolutely 
essential that people use medical masks in these areas.

Now the task of monitoring people wearing masks or not 
is particularly challenging because of the following reasons: 
(1) Detection of faces from a CCTV camera feed is particu-
larly difficulty as their size is very small as compared to 
the rest of the environment (2) While wearing masks much 
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of the facial features gets covered, therefore facial detec-
tion becomes very difficult (3) There is no standard type 
of masks that people wear, they come in different colours 
so detection becomes difficult unlike license plate detec-
tion where all license plates follow a particular convention 
(4) Far range detection become very difficult. So to tackle 
all these challenges we modeled the task of masked and 
unmasked face detection as a special case of object detec-
tion. We have treated the masked face and unmasked face 
as special objects, which we will detect in real time using 
popular deep learning based object detection models like 
YOLO, SSD and Faster R-CNN.

Related Works

Mask and Maskless Face Classification System 
to Detect Breach Protocols in the Operating Room

Nieto-Rodríguez et al. (2018) proposed ICDSC participants 
to interact with a system to classify faces into two catego-
ries: faces with and without surgical masks. The system 
assigns a per-personID through tracking to trigger only one 
alarm for a maskless face across several frames in a video. 
The tracking system also decreases the false positive rate. 
The system reaches 5 fps with several faces in VGA images 
on a conventional laptop. The output of the system provides 
confidence measures for the mask and maskless face detec-
tions, image samples of the faces, and for how many frames 
faces have been detected or tracked.

Methods

Overview

Recently, closed circuit television (CCTV) cameras, 
equipped with computer vision function by embedded 
systems, have been deployed in a wide range of applica-
tions, involving surveillance (Sage and Young 1999), facial 
recognition (Qian and Xu 2009), license plate detection 
of vehicles (Kashyap et al. 2018), etc. These applications 
require platforms that are able to sense the environment, 
parse scenes and react accordingly, of which the core part 
is scene parsing. Different surveillance applications require 
different stages of scene parsing, including recognizing dif-
ferent types of objects in the scene, locating where these 
objects are, and determining exact boundaries around 
each object. These scene parsing functions correspond to 
three basic research areas in the field of computer vision, 
namely image classification, object detection and seman-
tic (instance) segmentation. The most common one that 
is adopted as a basic functional module for scene parsing 

in surveillance applications is visual object detection, and 
hence it has been the area of increasing interest. The variety 
of open deployment environments makes automatic scene 
parsing running on a surveillance platform highly demand-
ing, which brings many new challenges to the object detec-
tion algorithms. These challenges mainly include: (1) how 
to deal with various variations (e.g., small sizes, shadows, 
illumination, angle of view, and rotation) in object’s visual 
appearance in CCTV camera images; (2) how to deploy 
object detection algorithms on a surveillance platform with 
limited memory and computing power; (3) how to balance 
the detection accuracy and real-time requirements. Object 
detection methods based on traditional machine learning 
and hand-crafted features are prone to failure when dealing 
with these variations. One competitive approach to address 
these challenges is object detectors based on deep learning 
techniques that are popularized in recent years.

The growth of computing power (e.g., graphical process-
ing units and dedicated deep learning chips) and the avail-
ability of large-scale labelled samples [e.g., ImageNet (Deng 
et al. 2009), PASCAL VOC (Everingham et al. 2015) and 
COCO (Lin et al. 2014)], has led to the extensive study of 
deep neural networks due to its fast, scalable and end-to-
end learning framework. Especially, when compared with 
traditional shallow methods, Convolution Neural Network 
(CNN) (Lecun et al. May 2015) models have achieved signif-
icant improvements in image classification [e.g., DenseNet 
(Huang et al. 2016) and ResNet (He et al. 2015)], object 
detection [e.g., SSD (Liu et al. 2015) and Faster R-CNN(Ren 
et al. 2015)] and semantic segmentation [e.g.,UNet (Ron-
neberger and Fischer 2015) and Mask R-CNN He et al. 
2017), etc. Since the beginning when CNN models were 
successfully introduced in object detection tasks R-CNN, 
(Girshick et al. 2013), this detection framework has attracted 
lots of research interest and many state-of-the-art object 
detectors based on CNN have been proposed in recent years. 
Specifically, YOLO series models (Redmon et al. 2015; Red-
mon and Farhadi 2016, 2018)] might be the most popular 
deep object detectors in practical applications as the detec-
tion accuracy and speed are well balanced. Despite that, the 
inference of these detectors still requires high-performance 
computing and a large run-time memory footprint to main-
tain good detection performance; it brings high computation 
overhead and power consumption to on-board embedded 
devices of surveillance platforms. Only reducing the size 
of the model can run the object detection method on these 
embedded devices. The YOLO series, SSD series and other 
networks have lightweight versions called YOLO-tiny (Red-
mon and Farhadi 2018), YOLO-Lite (Pedoeem and Huang 
2018) tiny SSD (Womg et al. 2018), but the detection accu-
racy of the networks is greatly reduced. Therefore, how to 
reduce the model size and floating point operations (FLOPs) 
without notably reducing detection accuracy becomes an 
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urgent problem to be solved when deploying object detec-
tors on embedded devices in surveillance systems. The most 
popular method is to reduce the parameters and model size 
of the network by redesigning a more efficient network. 
For example, SqueezeNet (Iandola et al. 2016), MobileNet 
(Andrew 2017), ShuffleNet (Zhang et al. 2017), etc., these 
methods can maintain detection accuracy to a great context 
which significantly reduces the model size and floating point 
operations (FLOPs).

Moxa3K Benchmark Dataset

To train the object detectors on classes ‘mask’ and ‘nomask’, 
we use a dataset called ‘Moxa3K’ that we created. As the 
name suggests it has 3000 images, with 2800 images in the 
training set and 200 images in the testing set.

The dataset contains the Kaggle data set of medical 
masksHsun 2020, which contains 678 images. These images 
are mainly from China, Russia and Italy region taken dur-
ing the ongoing pandemic. Most of these pictures depict 
a crowded area with a large number of people. As a result 
of which there are a lot of labels in these series (Fig. 1a). 
There are also 757 images which consist of close-ups of 
faces which include frontal faces as well as side profiles 
(Fig. 1b). Rest 1565 images are scraped from the internet 
mainly via Google image search results (Fig. 1c). These 
images are mainly of the ongoing COVID-19 situation in 
India which contains a lot of people wearing masks. All 
these images are evenly distributed over the train and test 
set. Therefore using these efficient object detection mod-
els namely YOLOv3, YOLOv3Tiny(Redmon and Farhadi 
2018), SSD (Liu et al. 2015) on MoblieNetv2Sandler et al. 
2018 and Faster R-CNN (Ren et al. 2015) on Inception v2 
(Szegedy et al. 2016) we detected faces with masks and 
no masks. We trained and evaluated these models on our 
Moxa3K benchmark dataset and analysed their performance 
in this particular task in order to find the model which has a 
proper balance of accuracy in the challenging conditions of 
open deployment environments and real time compute capa-
bility on these embedded platforms of surveillance systems. 

The directory structure of the dataset is shown in 
(Fig. 2a). All the images of the dataset are stored in the 
“Images” directory. The format of all the images are 
JPG (JPEG). The naming convention of these images are 

“MOXA_<serial number of the image starting from 0 
>.jpg” so the image’s names ranges from “MOXA_0.jpg” 
to “MOXA_2999.jpg”.

In these 3000 images of the dataset 9161 faces are with-
out mask and 3015 faces are with masks and all of them have 
been labelled. These images are labelled in YOLO format 
which stores annotations in text files as well as in Pascal 
VOC(Everingham et al. 2015) format, which stores annota-
tion XML files. The classes of these labels are ’mask’ for 
people wearing masks and ’nomask’ for people not wear-
ing masks. We have used bounding boxes to localize the 
masked faces and unmasked faces in the images. As shown 
in (Fig. 2b). A tool called LabelImg (Tzutalin 2015) by 
Tzutalin was used in the process.

The YOLO format stores the labels in text files with the 
same name as each image file, for example the image file of 
“MOXA_101.jpg” will have the labels stored in the text file 
“MOXA_101.txt” containing the following information in 
a single line: (1) class ID, which are numbers starting from 
‘0’ assigned to the classes in the dataset, in our case we have 
only two classes “nomask” which is assigned the ID ‘0’and 
“mask” which is assigned the ID of ‘1’ (2) (x,y) coordi-
nates of the center of the object’s bounding box (3) height 
and width of the bounding box (absolute values of 2, 3 are 
divided by the image height and width and stored). (Fig-
ure 3) shows the format of YOLO labels. All the text files 
ranging from “MOXA_0.txt” to “MOXA_2999.txt” contain-
ing the corresponding labels are stored in the “YOLO” direc-
tory inside the “Annotations” directory. Figure 4b shows 

Fig. 1   a Image from China 
region  b Closeup image of a 
face c Image from India

Fig. 2   a Directory structure of Moxa3K dataset  b The red bounding 
boxes are faces without and the green ones are with masks (colour 
figure online)
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annotation of Fig. 4a from our dataset, in the annotation we 
can see first two lines starting with ‘1’ which corresponds 
to 2 masked faces in Fig. 4b, and the remaining two lines 
start with ‘0’ which corresponds to the two faces without 
masks in the image. 

The Pascal VOC (Everingham et al. 2015) format stores 
details of the objects in images in an XML file. These 
XML files in our dataset are of the same name as the cor-
responding images, for example the image “MOXA_49.
jpg” will have all the labels stored in the “MOXA_49.
xml” file. These XML files contain informations like: (1) 
name of the image inside<filename> tag (2) name of the 
dataset in the<database> tag which in our case will be 
Moxa3k (3) dimensions of the image in<size> tag (4) the 
details of the object are stored in the<object> tag, inside 
the<object> tag there is<name> tag which stores the name 
of the objects, in our case these names will be “mask” and 
“nomask”, the coordinates of the bounding boxes in <bdn-
box> tag in format:<bdnbox><xmin></xmin<ymin></
ymin><xmax></xmax><ymax></ymax></bdnbox>, 
here the<xmin>,<ymin> tags store (x1,y1) coordinates of 
the (Fig. 5) respectively and <xmax> ,<ymax> tags store 
(x2,y2) coordinates of the (Fig. 5). Figure6b show annota-
tion of Fig. 6a from our dataset, in the annotation we can 
see a single <object> tag with <name> “mask” and the 

coordinates of the bounding boxes. All the XML files are 
stored in “Pascal VOC” directory.

In our dataset we have also taken care of the boundary 
conditions, such as people wearing handkerchief as mask, 
and people covering their face with their hands or with a 
cloth in their hand as shown in Fig. 2b, the green bounding 
box contains a lady covering her mouth with a handkerchief 
which is labelled as ‘mask’ . We also have several samples 
where there are “mask” and “no mask” faces which are 
blurred like in Fig. 7a to increase the robustness of the object 
detections. In addition there are samples which have a top 
angle view to replicate the viewing angle of CCTV cameras 
(Fig. 7b), so that we can match the deployment environ-
ments of the models which will be trained using this dataset. 
Besides this we also have samples of images where the faces 
are rotated at particular angles (Fig. 7c) to facilitate rotation 
invariant detections. Our dataset also includes samples with 
both frontal face (Fig. 1b) as well as side profiles of faces 
(Fig. 6a) and it contains samples of crowded areas (Fig. 7d)
with lots of people in a single frame where the size of the 
bounding boxes of some faces are very small and also con-
taining samples with only one person in the frame where the 
bounding box is fairly large. We also have images with dif-
ferent illumination condition, and also with different weather 
conditions like winter (Fig. 7e) where foggy environments 
make object detections very difficult, and also there are sam-
ples taken in sunny summer environments (Fig. 7f). All these 
factors greatly increase the robustness of the object detectors 
trained on this dataset.

Experiments and Performance on Various Models

Here we have particularly worked with single shot 
object detectors like YOLOv3 (Redmon and Farhadi 
2018),YOLOv3Tiny (Redmon and Farhadi 2018), SSD (Liu 
et al. 2015), and double shot detectors like Faster R-CNN 
(Ren et al. 2015), which were trained on our dataset, and 
their performances were analyzed. In the case of SSD and 
Faster R-CNN we went with efficient and lightweight net-
works like MobileNet v2 (Sandler et al. 2018) and Incep-
tion v2 (Szegedy et al. 2016) respectively to improve per-
formances at low compute capabilities without affecting 

Fig. 3  YOLO label format

Fig. 4  Image with corresponding YOLO labels

Fig. 5  Coordinates of the 
bounding boxes in VOC format

Fig. 6  Image with corresponding VOC labels
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accuracy of detection for real time inferences. For YOLO 
models: YOLOv3 and YOLOv3Tiny we used the native 
Darknet network. The main task here is to find the object 
detector that balances both accuracy and compute speed, 
as the main use of this system is on edge devices of the 
surveillance platforms where real time detections are very 
important.

Hardware and Enviornments

All the models are trained on an instance of Google Colab 
platform with an Intel(R) Xeon(R) CPU @ 2.30GHz pro-
cessor, 13 GB RAM and 1 Nvidia Tesla P-100 GPU run-
ning Linux OS (Ubuntu 15.04 LTS). The inference tests 
and evaluation of all these models are done on a machine 
with Intel Core i5-9300H (9th Gen) @2.40 GHz processor, 
with 8 GB of RAM and 1 Nvidia GTX 1650 GPU running 
Linux OS (Ubuntu 20.04 LTS). All measurements of images 
and frame sizes are taken in pixels. We report all inference 
time in ms per 1280x720 image including all pre and post-
processing and number of frames of 1280x720 processed 
per second (FPS).

YOLOv3

YOLOv3 is one of the most popular object detectors which 
tackles the task of real time detection with its state of art 
algorithms. Prior detection systems repurpose classifiers or 
localizers to perform detection. They apply the model to an 
image at multiple locations and scales. High scoring regions 
of the image are considered detections. YOLO uses a totally 
different approach. It applies a single neural network to the 

entire image. This network divides the image into regions 
and predicts bounding boxes and probabilities for each 
region. These bounding boxes are weighted by the predicted 
probabilities. YOLO has several advantages over classifier-
based systems. It looks at the whole image at test time so 
its predictions are informed by global context in the image.

YOLOv3 makes an incremental improvement to the 
YOLO series models in object detection accuracy. First, 
YOLOv3 adopts a new backbone network, i.e., Darknet-53, 
as a feature extractor. Darknet-53 uses more successive 3 × 3 
and 1 × 1 convolutional layers rather than Darknet-19 in 
YOLOv2 and organizes them as residual blocks (Redmon 
and Farhadi 2018). Hence, Darknet-53 is much more power-
ful than Darknet-19 but still more efficient than ResNet-101 
(He et al. 2015). Second, YOLOv3 predicts bounding boxes 
at three different scales by following the idea of feature 
pyramid network for object detection (Redmon and Farhadi 
2018). Three detection headers separately built on the top 
of three feature maps with different scales are responsible 
for detecting objects with different sizes. Each grid in the 
detection header is assigned with three different anchors, and 
thus predicts three detections that consist of 4 bounding box 
offsets, 1 objectiveness and C class predictions. The final 
result tensor of the detection header has a shape of N × N × 
(3 × (4 + 1 + C)), where N × N denotes the spatial size of the 
last convolutional feature map.

Training Following the default configurations in Dark-
net (Redmon and Farhadi 2018), we trained YOLOv3 on 
Moxa3K benchmark dataset using SGD with the momentum 
of 0.9 and weight decay of 0.0005. We use an initial learning 
rate of 0.001 that is decayed by a factor of 10 at the itera-
tion step of 3200 and 3600. We set the maximum training 

Fig. 7  a Blurred faces b top 
angle camera view c rotated 
face d crowded environments 
e foggy environments f sunny 
environments
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iteration as 4000 and use mini-batch size of 64. We set the 
size of input image as 416 for YOLOv3. Multiscale training 
is enabled by randomly rescaling the sizes of input images. 
We initialized the backbone networks of the model with the 
weights pre-trained on ImageNet (Deng et al. 2009).

Evaluation and analysis With the trained weights we ran 
evaluations on test set of Moxa3K benchmark dataset, in 
native Darknet environment. For hyperparameters we used 
the same configuration as the training with input image size 
as 416. The Inference time of the model is 23 FPS,with total 
binary floating point operations (BFLOPS) 65.312, 65.2M 
parameters and a model size of 246.3MB. The evaluation 
was done on the following parameters: (1) precision, (2) 
recall, (3) mean of average precision (mAP) measured at 0.5 
intersection over union (IoU), (4) F1-score for each class and 
the following results were obtained (Table.1).

We also ran evaluations by varying the input image size 
on the following parameters: (1) precision, (2) recall, (3) 
mean of average precision (mAP) measured at 0.5 inter-
section over union (IOU), (4) F1-scores (5) FLOPs and (6) 
inference time as frames per second (FPS)and these are the 
results obtained (Table 2).

We can see that the mAP of 608 × 608 input size is  3% 
greater than the 416 × 416 input size model, however its 
inference time is  94.77% greater than the later. Another 
important observation is when we increase the input size to 
832 × 832 the mAP decreases by  3.5% with an increase in 
the inference time by  207.68% from the 416 × 416 model. 
So we can say that the YOLOv3 is not that sensitive to input 
size and the 416 × 416 model is most suitable for real time 
inference.

YOLOv3 Tiny

Similar to YOLOv3 (Redmon and Farhadi 2018) the crea-
tors also designed a smaller model for constrained envi-
ronments which is the YOLOv3 Tiny. The YOLOv3 Tiny 
runs on the same algorithm but uses a lighter version of the 
model with only 2 YOLO layers. Being light weight it is 
able to achieve much faster inference with a low processing 

overhead. Which is very essential for deployment in surveil-
lance platforms.

Training Following the default configurations in Darknet 
(Redmon and Farhadi 2018), we trained YOLOv3 (Redmon 
and Farhadi 2018) Tiny on Moxa3K benchmark dataset 
using SGD with the momentum of 0.9 and weight decay 
of 0.0005. We use an initial learning rate of 0.001 that is 
decayed by a factor of 10 at the iteration step of 3200 and 
3600. We set the maximum training iteration as 4000 and 
use a mini-batch size of 64. We set the size of the input 
image as 416 for YOLOv3 Tiny. Multiscale training is ena-
bled by randomly rescaling the sizes of input images. We 
initialized the backbone networks of the model with the 
weights pre-trained on ImageNet (Deng et al. 2009).

Evaluation and analysis With the trained weights we ran 
evaluations on test set of Moxa3K benchmark dataset, in 
native Darknet environment. For hyperparameters we used 
the same configuration as the training with input image size 
as 416. The Inference time of the model is 138 FPS with 
total binary floating point operations (BFLOPS) 5.449, 8.7M 
parameters and a model size of 34.7MB. The evaluation was 
done on the following parameters: (1) precision, (2) recall, 
(3) mean of average precision (mAP) measured at 0.5 inter-
section over union (IoU), (4) F1-score for each class and 
following results were obtained (Table 3).

Like Yolov3 we also ran evaluations by varying the input 
image size on the following parameters: (1) precision, (2) 

Table 1  Class wise performance analysis of YOLOv3

Here instances are no. of objects detected

Class

Nomask Mask Overall

Images 200 200 200
Instances 135 875 1015
Precision 0.45 0.81 0.76
Recall 0.25 0.77 0.79
F1-Score 0.32 0.78 0.77
mAP@50 46.69% 81.26% 63.99%

Table 2  Performance analysis over various input sizes of YOLOv3

Input size

416 x416 608x608 832x832

Precision 0.76 0.76 0.73
Recall 0.79 0.80 0.75
F1-Score 0.77 0.78 0.74
mAP@50 63.99% 66.84% 61.73%
BFLOPS 65.31 139.512 261.247
FPS 21.2 10.9 6.9
Inference time (ms) 47.1 91.74 144.92

Table 3  Class wise performance analysis of YOLOv3 Tiny

Instances are number of objects detected

Class

Nomask Mask Overall

Images 200 200 200
Instances 112 713 825
Precision 0.38 0.76 0.71
Recall 0.12 0.64 0.66
F1-Score 0.18 0.69 0.69
mAP@50 41.06% 71.48% 56.27%
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recall, (3) mean of average precision (mAP) measured at 0.5 
intersection over union (IOU), (4) F1-scores (5) FLOPs and 
(6) inference time as (FPS) and these are the results obtained 
(Table 4). Here the 416 × 416 model wins by a large margin 
and is well suited for real time applications.

SSD: Single Shot Multibox Detection on Mobilenet v2

Single Shot object detection or SSD (Liu et al. 2015) takes 
one single shot to detect multiple objects within the image. 
SSD is faster than R-CNN because in R-CNN (Girshick 
et al. 2013) we need two shots, one for generating region 
proposals and the other for detecting objects. SSD is used 
to speed up the process by eliminating the region proposal 
network which results in a drop in accuracy, so we com-
bined the MobileNet v2 (Sandler et al. 2018) and SSD to get 
better accuracy. Thus it performs fairly well in constrained 
environments especially like in our case which requires 
real time performance with low computation power. Resnet 
(He et al. 2015),VGG (Simonyan and Zisserman 2014) or 
alexnet (Krizhevsky et al. 2012) has a large network size 
and it increases the number of computations whereas in 
Mobilenet v2 there is a simple architecture which reduces 
the processing overhead without hampering the detection to 
a great extent. Hence, we used mobilenet v2 over Resnet or 
VGG to facilitate real time performances with low process-
ing overhead.

Training We trained SSD with Mobilenet v2 backbone 
using tensorflow object detection API(Huang et al. 2016) 
with tensorflow 1.15 on Moxa3K benchmark dataset 
using SGD with the momentum of 0.9 and weight decay 
of 0.00004. We use an initial learning rate of 0.004 that is 
decayed by a factor of 0.95 with decay steps of 800720. We 
set the maximum training steps as 4000 and use a batch size 
of 24. We used the size of input image as 300 for Mobilenet 
v2 SSD. We initialized the backbone network of the model 
with the weights pre-trained on MS-COCO (Lin et al. 2014).

Evaluation and analysis With the trained weights we ran 
evaluations on test set of Moxa3K benchmark dataset, on 

tensorflow 1.15 using tensorflow object detection API (Huang 
et al. 2016) evaluation scripts with COCO metrics (Lin et al. 
2014). For hyperparameters we used the same configuration as 
the training with input image size as 300. The Inference time 
of the model is 67.18 FPS [this inference was ran using the 
OpenCV DNN Modules backed with CUDA support (Samaga 
2018)], and a model size of 19.3 MB . The evaluation yielded 
the following results (Table 5).

From the (Table 5) it is evident that the model is more effi-
cient in detecting masks over no mask. With an inference time 
of 14.88 ms it is well capable of performing realtime detec-
tions however the quality of detections comes at cost as we 
have relatively lower mAP.

Faster R‑CNN on Inception v2

Traditional CNN (Lecun et al. 2015) divides the image into 
multiple regions and then classifies each region into various 
classes. Hence it needs a lot of regions to predict accurately 
and therefore high computation time. To solve this problem 
Girshick et al proposed R-CNN (Girshick et al. 2013) which 
uses selective search to generate regions. It extracts around 
2000 regions from each image and for each region, CNN is 
used to extract specific features. Finally, these features are then 
used to detectobjects. Due to this it takes high computation 
time as each region is passed to the CNN separately. Also, it 
uses three different models for making predictions. To solve 
this problem Girshick had suggested Fast R-CNN (Girshick 
2015), which passes the entire image to ConvNet which gen-
erates regions of interest (instead of passing the extracted 
regions from the image). Also, instead of using three different 
models (as we saw in R-CNN), it uses a single model which 
extracts features from the regions, classifies them into different 
classes, and returns the bounding boxes. All these steps are 
done simultaneously, thus making it execute faster as com-
pared to R-CNN. Fast R-CNN is, however, not fast enough 
when applied on a large dataset as it also uses selective search 
for extracting the regions. Finally Shaoqing Ren et al proposed 
Faster R-CNN (Ren et al. 2015), which fixes the problem of 
selective search by replacing it with Region Proposal Network 
(RPN). We first extract feature maps from the input image 
using Convolution Neural Network and then pass those maps 
through a RPN which returns object proposals. Finally, these 
maps are classified and the bounding boxes are predicted. 
Despite being significantly faster than its predecessors it 
still has a huge computational overhead. Although it is very 

Table 4  Performance analysis over various input sizes of 
YOLOv3Tiny

Input size

416 × 416 608 × 608 832 × 832

Precision 0.71 0.72 0.68
Recall 0.66 0.70 0.68
F1-Score 0.77 0.78 0.74
mAP@50 56.27% 55.08% 56.57%
BFLOPS 5.449 11.640 21.797
FPS 138 72 46.5
Inference time (ms) 7.2 13.8 21.5

Table 5  Class wise performance 
analysis of SSD

Class Images mAP@50

Nomask 200 29.81%
Mask 200 63.24%
Overall 200 46.52%
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accurate it might not be well suited for the deployment envi-
ronments of our task which requires real time performances at 
low computational overhead.

Training We trained Faster R-CNN (Ren et al. 2015) with 
Inception v2 (Szegedy et al. 2016) backbone using tensor-
flow object detection API (Huang et al. 2016) with tensor-
flow 1.15 on Moxa3K benchmark dataset using SGD with 
the momentum of 0.9 and weight decay of 0.00004. We use 
an initial learning rate of 0.004 that is decayed by a factor 
of 0.95 with decay steps of 800720. We set the maximum 
training steps as 4000 and use batch size of 24. We used the 
size of input image as 300 for Inception v2 Faster R-CNN. 
We initialized the backbone network of the model with the 
weights pre-trained on MS-COCO (Lin et al. 2014).

Evaluation and analysis With the trained weights we 
ran evaluations on test set of Moxa3K benchmark dataset, 
on tensorflow 1.15 using tensorflow object detection API 
(Huang et al. 2016) evaluation scripts with COCO metrics 
(Lin et al. 2014) (Table6). For hyperparameters we used the 
same configuration as the training with input image size as 
300. The Inference time of the model is 14.88 FPS (Qian 
and Xu 2009) [this inference was ran using the OpenCV 
DNN Modules backed with CUDA support (Samaga 2018)], 
a model size of 52.3MB. The evaluation yielded the follow-
ing results (the results are yielded with maximum number 
of detections as 100).

We see that the model has a mAP of 60.5% with an IoU 
of 50%, and with a higher IoU of 75% it’s mAP increases 
to 89% which tells us that model performs really well with 
higher levels of threshold values.

Results and Comparison

Comparing the performances of the stated models on 
Moxa3K benchmark dataset (Table 7) we see that the max-
imum mAP is obtained with YOLOv3 608x608, however 
with the increased input size and the comparatively heavy 
processing overhead it fails to give real time inference. 

However YOLOv3 with 416 x 416 gives a FPS of 21.2 
with an mAP of 63.99%. But considering the fact that the 
main application of this detection system is to be deployed 
in a surveillance based platform supported by embedded 
systems with limited compute capability the YOLOv3 
416x416 model will fail to produce real time inference. 
The YOLOv3 Tiny model however fits perfectly for the use 
case, it has a satisfactory mAP of 56.27% with a FPS of 
138. It provides a good balance of accuracy and real time 
inference. With a very less processing overhead it is able 
to provide real time detections of masked and no masked 
faces on the surveillance platforms with limited compute 
power.We ran some test samples on the trained models to 
compare their performances (Fig. 8).

Conclusion

The idea of detecting whether people wearing face masks 
or not find its best implementation in areas with very high 
footfall, such as markets, offices, rail stations etc. because 
the chances of transmission are highest in these areas. 
Our system can be implemented at any location which can 
provide a video input, for eg: live feed, recorded video 
feed, etc. Thus a detection model which has the ability 
to run at real time and is accurate enough to detect small 
objects like masked faces, can be very effective in these 
edge applications in surveillance platforms. In future to 
improve the detection system more advanced object detec-
tion models can be used. In addition to that the dataset can 
be expanded further to enhance the training and evaluation 
process so that a better analysis of performance of the vari-
ous object detection models can be done on it.

Table 6  Performance analysis of faster R-CNN

Metric IoU Area Result

50 to 95% All 22.8%
50% All 60.5%

Average precision 75% All 89.0%
50 to 95% Small 18.9%
50 to 95% Medium 32.7%
50to 95% Large 29.5%
50 to 95% All 42.0%

Average recall 50 to 95% Small 38.8%
50 to 95% Medium 49.2%
50 to 95% Large 50.0%

Table 7  mAP and FPS of trained models on Moxa3K dataset

Model mAP@50 FPS

YOLOv3 414x414 63.99 21.2
YOLOv3 608x608 66.84 10.9
YOLOv3 832x832 61.73 6.9
YOLOv3Tiny 414x414 56.27 138
YOLOv3Tiny 608x608 55.08 72
YOLOv3Tiny 832x832 56.57 46.5
SSD 300 MobliNetv2 46.52 67.1
F-RCNN 300 Inceptionv2 60.5 14.8
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