
 

 

Since January 2020 Elsevier has created a COVID-19 resource centre with 

free information in English and Mandarin on the novel coronavirus COVID-

19. The COVID-19 resource centre is hosted on Elsevier Connect, the 

company's public news and information website. 

 

Elsevier hereby grants permission to make all its COVID-19-related 

research that is available on the COVID-19 resource centre - including this 

research content - immediately available in PubMed Central and other 

publicly funded repositories, such as the WHO COVID database with rights 

for unrestricted research re-use and analyses in any form or by any means 

with acknowledgement of the original source. These permissions are 

granted for free by Elsevier for as long as the COVID-19 resource centre 

remains active. 

 



Applied Mathematics and Computation 388 (2021) 125536 

Contents lists available at ScienceDirect 

Applied Mathematics and Computation 

journal homepage: www.elsevier.com/locate/amc 

Modeling the competitive diffusions of rumor and knowledge 

and the impacts on epidemic spreading 

He Huang 

a , b , Yahong Chen 

c , ∗, Yefeng Ma 

d 

a School of Economics and Management, China University of Geosciences (Beijing), Beijing 10 0 083, China 
b School of Economics and Management, Tsinghua University, Beijing 10 0 084, China 
c School of Information, Beijing Wuzi University, Beijing 101149, China 
d Institute of Quantitative & Technical Economics, Chinese Academy of Social Sciences, Beijing 100732, China 

a r t i c l e i n f o 

Article history: 

Received 27 February 2020 

Revised 2 July 2020 

Accepted 12 July 2020 

Available online 25 July 2020 

Keywords: 

Multi-layer network 

Competitive information diffusions 

Epidemic spreading 

Self-protection 

Outbreak threshold 

a b s t r a c t 

The interaction between epidemic spreading and information diffusion is an interdisci- 

plinary research problem. During an epidemic, people tend to take self-protective mea- 

sures to reduce the infection risk. However, with the diffusion of rumor, people may be 

difficult to make an appropriate choice. How to reduce the negative impact of rumor and 

to control epidemic has become a critical issue in the social network. Elaborate mathemat- 

ical model is instructive to understand such complex dynamics. In this paper, we develop a 

two-layer network to model the interaction between the spread of epidemic and the com- 

petitive diffusions of information. The results show that knowledge diffusion can eradicate 

both rumor and epidemic, where the penetration intensity of knowledge into rumor plays 

a vital role. Specifically, the penetration intensity of knowledge significantly increases the 

thresholds for rumor and epidemic to break out, even when the self-protective measure is 

not perfectly effective. But eradicating rumor shouldn’t be equated with eradicating epi- 

demic. The epidemic can be eradicated with rumor still diffusing, and the epidemic may 

keep spreading with rumor being eradicated. Moreover, the communication-layer network 

structure greatly affects the spread of epidemic in the contact-layer network. When people 

have more connections in the communication-layer network, the knowledge is more likely 

to diffuse widely, and the rumor and epidemic can be eradicated more efficiently. When 

the communication-layer network is sparse, a larger penetration intensity of knowledge 

into rumor is required to promote the diffusion of knowledge. 

© 2020 Elsevier Inc. All rights reserved. 

 

 

 

 

 

 

1. Introduction 

Epidemics continue to trigger world alarms in recent decades [1,2] , and have become a serious threat to human health

[3–5] . Currently, a new type of coronavirus (COVID-19) is circulating worldwide [6] , and its plateaus hasn’t been reached up

to the time of writing this manuscript [7] . However, the world is still not fully prepared for the outbreak of an epidemic

[8] . There are many reasons behind this, including the widespread presence of viral vectors (such as mosquitoes) [9] , virus

mutation [10] , low effect of treatment [11,12] , seasonal outbreak (such as influenza) [13,14] , etc. As a consequence, the global

protection is not enough, and people are usually encouraged to strengthen personal protection to reduce the risk of being
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infected, and they are also willing to do that [15,16] . Previous researches have discovered the important role of individual-

level self-protection in eliminating epidemics and saving human lives [17] . Wang et al. reviewed the researches on the

coupled dynamics of behavior and epidemic, and summarized that people’s precautions obviously affect the prevalence of

an epidemic [18,19] . 

More importantly, the self-protective awareness will spread across the population [20] , yielding an interdisciplinary re-

search area: interaction between information diffusion and epidemic spreading [21] . Previous complex network models have

found that information diffusion plays an important role in promoting the spread of self-protective measures during an epi-

demic [22,23] . However, in the era of information explosion, the accuracy of information is difficult to guarantee. The spread

of incorrect information may mislead people to choose the measures of low effect or no effect. Tai et al. reviewed in detail

the rumors on protective measures during the outbreak of SARS, such as fumigating vinegar [24] . In addition, even if the

correct information is spreading in social networks, rumors against it may discourage people from adopting it [25] . One of

the reasons for the inaccurate information to prevail in social networks is that, most people only have common sense and

lack relevant professional knowledge to make accurate judgments. The professional knowledge is usually mastered by a few

people. For example, Prelec et al. conducted a survey on the knowledge of US state capitals [26] . One question is “Philadel-

phia is the capital of Pennsylvania, yes or no?” The answer given by most respondents is “yes”, which is incorrect. Although

the respondents are from world-class universities, they failed to give the right answer. To explore the reason behind, Prelec

et al. found that almost all respondents have the common sense that Philadelphia is the largest city in Pennsylvania, while

the knowledge that “Harrisburg is the capital of Pennsylvania” is mastered by a few people. Similarly, during SARS, people

may have the common sense that acetic acid has a certain bactericidal effect, but the knowledge is that the concentration

of acetic acid in vinegar is not enough to kill the virus. In this research, we define inaccurate information as rumor and

accurate information as knowledge. As what we learn from the study of Prelec et al., rumor may spread more widely than

knowledge, which is very harmful to controlling an epidemic. 

Therefore, it is important to know how the diffusion of rumor affects the spread of an epidemic, and whether rumor and

epidemic can be contained by the diffusion of knowledge. We adopt a two-layer network to model the processes of infor-

mation diffusion (including rumor diffusion and knowledge diffusion) and epidemic spreading. In the communication-layer

network, we adopt a UA 1 A 2 model to describe the competitive diffusions of rumor and knowledge. Specifically, we propose

a unidirectional transition probability from the rumor-believed state to the knowledge-believed state, which represents the

penetration of knowledge into rumor. In the contact-layer network, we adopt an SEIS model to describe the spread of epi-

demic. The infected state is divided into two stages: infected but undetected (E), infected and detected (I). When infected

nodes are detected, they will be quarantined immediately. Previous epidemic models often assumed that the diffusion of in-

formation is driven by local risk information (e.g., whether the linked neighbors are infected [27] ). However, in our epidemic

model, the direct risk sources (i.e., unobserved infected nodes) are not detected, which makes the local risk information less

“protective” [28] . Moreover, people prefer to making pre-protection, regardless of whether there is any infected neighbor

[29] . For instance, in the previously mentioned vinegar case, people’s pre-protection is mainly induced by global risk infor-

mation. As another example, since the COVID-19 virus was proved to be infectious, the knowledge of wearing appropriate

masks is widely spread on social networks of 1.4 billion Chinese users. Therefore, unlike previous models, we will focus on

pre-protection and assume that once the infected node is detected globally, information diffusion will begin. When a node

receives a piece of rumor or knowledge, s/he is likely to take corresponding protective measures. 

We use three methods to analyze the model: numerical prediction, agent-based simulation and mean-field analysis. The

results of the three methods are very close. Based on the results, we summarize three main findings. First , the diffusion

of knowledge can not only eradicate rumor, but also help to eradicate the epidemic, and the penetration of knowledge

into rumor plays a key role. We analyzed the relationship of the outbreak thresholds (of rumor and of epidemic) with

the penetration intensity of knowledge into rumor. In the communication-layer network, when the penetration intensity of

knowledge is increased, the rumor outbreak threshold is increased linearly, so that the rumor becomes easier to control.

In the contact-layer network, no matter whether the self-protective measure is perfectly effective or not, the threshold of

epidemic outbreak increases nonlinearly with the penetration intensity of knowledge, but only if the penetration intensity

of knowledge is large enough to make the knowledge widely spread. Second , it is not necessary to eradicate rumor in

order to eradicate epidemic. Eradicating rumor is undoubtedly helpful to contain the epidemic, but it may cost too much.

When there are enough knowledge-believed nodes, the epidemic outbreak threshold will be increased greatly. Our results

show that when rumor and knowledge are diffusing simultaneously in the communication-layer network, the epidemic

can also be eradicated by the diffusion of knowledge. However, it should be noted that when rumor is eradicated, if the

effectiveness of self-protective measures is very low, the epidemic may not be eradicated. Third , the topology structure of

the communication-layer network is very important for eradicating epidemic in the contact-layer network. When more links

are added to the communication-layer network, which allows people to receive information from more sources, knowledge is

more likely to break out, and rumor and epidemic are more likely to be eradicated. In addition, in a sparse communication-

layer network, a higher penetration intensity of knowledge into rumor is required to diffuse the knowledge. 

2. Models 

The coupled dynamics of information diffusion and epidemic spreading have been extensively studied [18,21,30,31] . A

typical method is to build a two-layer network, with one layer to model the diffusion of information, and the other layer to
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Fig. 1. Illustration of the communication-contact two-layer network. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

model the spread of epidemic [32–36] . For this research, such method is more necessary because there are two competitive

dynamics for information diffusion. 

2.1. Two-layer network 

The structure of the two-layer network is presented in Fig. 1 . The nodes in the two layers are the same, while the links

are not exactly the same. Wang et al. considered a case that the links in the two layers are uncorrelated [27] . Some other

researches proposed a coefficient to denote the overlap (or correlation) of links in the two layers [30,37] . In this research, we

propose a different overlapping method 

1 . We assume that the communication-layer network is the extension of the contact-

layer network. It is because that the spread of epidemic is based on offline contact, while the diffusion of information can

be induced by both online and offline communication. People may never have any face-to-face contact with some online

friends. 

To build the two-layer network, we first create a random network of node count N and average node degree k ′ using

the classical Watts-Strogatz (WS) network model [38] . The first created random network is the contact-layer network. Next,

the nodes and links in the contact network are mapped to the communication-layer network. Moreover, the network is

extended by letting each node randomly link with k ′′ other nodes, generating the second random network with the average

node degree k = k ′ + k ′′ . The second created random network is the communication-layer network. 

2.2. Communication layer 

Previous studies have successfully modeled the diffusion of rumor [39] , and found that the denying of rumor affects the

outbreak size and threshold of rumor [40,41] . But the denying of rumor in their studies is usually described by a constant

probability, not driven by the diffusion of knowledge. During an epidemic, it is easy to discover the diffusion of knowledge

against rumor. For instance, during the COVID-19 epidemic, knowledge about the functions of different medical masks was

widely spread on social media, which helps people to choose the appropriate masks [42] . Moreover, Cyberspace Adminis-

tration of China (CAC) builds a specialized zone for sharing knowledge and refuting rumor during the COVID-19 epidemic

[43] . 

Inspired by previous rumor models and combined with the findings of Prelec et al., we propose a UA 1 A 2 model to

describe the competitive diffusions between rumor and knowledge, extended from the SIS model [44,45] . Each node has

three possible states: unknown (U), rumor-believed (A 1 ), and knowledge-believed (A 2 ). The transition of the three states

are well presented in Fig. 2 . When an unknown node receives information from a rumor-believed (or knowledge-believed)

neighbor, s/he may become rumor-believed (or knowledge-believed), as well. The “infectivity” of rumor (or knowledge) is α1

(or α2 ). After a considerable period of time, the rumor-believed (or knowledge-believed) node may forget the information

and return to the unknown state [46–48] . The expected period length is 1/ f 1 (or 1/ f 2 ). Namely, the probability for the

rumor-believed (or knowledge-believed) node to return to the unknown state is f 1 (or f 2 ). Moreover, there is an important

unidirectional transition between the rumor-believed (A 1 ) state and the knowledge-believed (A 2 ) state. When the rumor-

believed node receives information from a knowledge-believed neighbor, s/he is likely to become knowledge-believed. The

“infectivity” of knowledge on the rumor-believed node is defined as α3 . Apparently α3 denotes the penetration intensity

of knowledge into rumor. It should be noted that a node can transit from the rumor-believed state to the knowledge-

believed state because the knowledge-believed nodes have the extra accurate information (namely knowledge). Thus, the

“infectivity” of knowledge may be lower than that of rumor because people have to take more time/efforts to learn such

extra knowledge. Besides, previous studies also suggested that rumor might be more contagious. For example, in the New

York Times, awe-inspiring tales are likely to be more contagious than the regular news [49] . Therefore, we set α2 < α1 . 
1 Previous overlapping methods are also applicable in our model. 
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Fig. 2. State transition diagram for the competitive diffusions of information. Here “U” denotes the state that people are unknown about rumor and knowl- 

edge. “A 1 ” denotes the state that people believe rumor, and “A 2 ” denotes the state that people believe knowledge. α1 and α2 denote the infectivities of 

rumor and knowledge. α3 denotes the penetration intensity of knowledge into rumor. f 1 and f 2 denote the forgetting probabilities of rumor and knowledge. 

 

 

 

 

 

 

 

 

 

 

 

 

We propose ϕ1 ( t ) and ϕ2 ( t ) to denote the probabilities of a randomly selected link pointing to a rumor-believed node

and a knowledge-believed node [50] . They are obtained as { 

ϕ 1 (t) = 

∑ 

k kP(k ) ·A 1 k (t) ∑ 

k kP(k ) 
= 

∑ 

k kP(k ) ·A 1 k (t) 

〈 k 〉 
ϕ 2 (t) = 

∑ 

k kP(k ) ·A 2 k (t) ∑ 

k kP(k ) 
= 

∑ 

k kP(k ) ·A 2 k (t) 

〈 k 〉 
(1) 

where A 1 k ( t ) and A 2 k ( t ) denote the densities of rumor-believed and knowledge-believed nodes among the nodes with de-

gree k at time t. P ( k ) denotes the distribution function of the node degree. For ease of analysis, we assume that the

communication-layer network is homogeneous and the nodes have similar degrees. Thus, it can be approximately derived

that ϕ 1 (t) = A 1 (t) , and ϕ 2 (t) = A 2 (t) . Here A 1 ( t ) and A 2 ( t ) denote the densities of rumor-believed and knowledge-believed

nodes, respectively. Correspondingly, the probability that a node has n 1 rumor-believed neighbors and n 2 knowledge-

believed neighbors can be given by a trinomial distribution 

T ( k, n 1 , n 2 ) = 

k ! 

n 1 ! n 2 ! ( k − n 1 − n 2 ) ! 
· A 1 ( t ) 

n 1 A 2 ( t ) 
n 2 ( 1 − A 1 ( t ) − A 2 ( t ) ) 

k −n 1 −n 2 (2) 

where k is the degree of node. 

The discrete-time information diffusion process can be described as follows ⎧ ⎪ ⎨ 

⎪ ⎩ 

U(t + 1) = U(t) + A 1 (t) P A 1 → U + A 2 (t) P A 2 → U − U(t) P U→ A 1 − U(t) P U→ A 2 

A 1 (t + 1) = A 1 (t) − A 1 (t) P A 1 → U − A 1 (t) P A 1 → A 2 + U(t) P U→ A 1 

A 2 (t + 1) = A 2 (t) − A 2 (t) P A 2 → U + A 1 (t) P A 1 → A 2 + U(t) P U→ A 2 

(3) 

where the discrete-time probabilities of state transitions are derived following the research of Liu et al [41] as blow ⎧ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎨ 

⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎩ 

P U→ A 1 = 

∑ 

n 1 ,n 2 
[1 − (1 − α1 ) 

n 1 ](1 − α2 ) 
n 2 T (k, n 1 , n 2 ) 

P U→ A 2 = 

∑ 

n 1 ,n 2 
[1 − (1 − α2 ) 

n 2 ] T (k, n 1 , n 2 ) 

P A 1 → A 2 = 

∑ 

n 1 ,n 2 
[1 − (1 − α3 ) 

n 2 ] T (k, n 1 , n 2 ) 

P A 1 → U = f 1 
∑ 

n 1 ,n 2 
(1 − α3 ) 

n 2 T (k, n 1 , n 2 ) 

P A 2 → U = f 2 

(4) 

When an unknown node receives information from a rumor-believed neighbor and a knowledge-believed neighbor at the

same time, s/he is first affected by the knowledge-believed neighbor and then affected by the rumor-believed neighbor, as

shown in Eq. (4) . Namely, we set the priority of knowledge higher than that of rumor. 

Based on the discrete-time probabilities of state transitions, we derive the continuous-time probabilities following Wu

et al. [51] , as detailed in the Appendix A-1. The mean-field dynamic equations of information diffusion are then derived as

below, ⎧ ⎪ ⎨ 

⎪ ⎩ 

d U(t) 
dt 

= f 1 A 1 (t) + f 2 A 2 (t) − kα1 A 1 (t ) U(t ) − kα2 A 2 (t ) U(t ) 

d A 1 (t) 
dt 

= − f 1 A 1 (t) + kα1 A 1 (t ) U(t ) − kα3 A 2 (t) A 1 (t) 

d A 2 (t) 
dt 

= − f 2 A 2 (t) + kα2 A 2 (t ) U(t ) + kα3 A 2 (t) A 1 (t) 

(5) 

Let d U(t) 
dt 

= d 
A 1 (t) 

dt 
= d 

A 2 (t) 
dt 

= 0 , we calculate the equilibrium of information diffusion, based on which we are able to

derive the thresholds for rumor and knowledge to break out, as detailed in the Appendix A-2. The outbreak of rumor

requires the following inequality to be satisfied 

α1 f 2 + α3 f 2 
kα α + α f 

≥ 1 (6) 

2 3 2 1 
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Fig. 3. State transition diagram for the spread of epidemic. Here “S” denotes the state that people are susceptible to the epidemic, “E” denotes the state 

that people are infected but are not detected, and “I” denotes the state that people are infected and detected. β1 denotes the infectivity of epidemic. β2 

denotes the infectivity of epidemic on the knowledge-believed nodes. γ denotes the detecting probability of the infected nodes. f denotes the recovery 

probability of the infected nodes. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

while the outbreak of knowledge requires the following inequality to be satisfied 

kα1 α3 + α2 f 1 
α1 f 2 + α3 f 1 

≥ 1 (7)

2.3. Contact layer 

Previous studies have extensively modeled the spread of epidemic in the contact-layer network [52–55] . As shown in

Fig. 3 , we adopt a transformed SEIS model (or SIIS model [28] ), which is slightly different from the typical SEIS models

[56,57] , to describe the spread of epidemic. When a susceptible node contacts with an undetected infected peer, s/he may

become infected but is not detected (e.g., with mild symptoms). The infectivity of the epidemic is β1 . The undetected

infected nodes are detected at rate γ . Once detected (e.g., with severe symptoms), the infected nodes will be quarantined

immediately and cannot infect other susceptible nodes. After a period of treatment, the detected infected nodes recover to

the susceptible state at rate f . 

In addition, the diffusion of information has an important impact on the spread of epidemic. When the knowledge-

believed nodes take an effective protective measure, s/he will reduce her/his susceptibility to the epidemic. Without loss of

generality, we propose that the infectivity of epidemic on the knowledge-believed nodes changes to β2 . Apparently, β2 < β1 .

However, the rumor-believed nodes adopt an ineffective measure and the epidemic infectivity on them remains β1 . Previous

studies assumed that the spread of epidemic would continuously promote the diffusion of information, because the infected

nodes were identified as risk sources for their neighbors [27] . In this research, the detected infected nodes are quarantined

and “of no risk”, while the direct risk sources are undetected. As a result, the effect of local risk information on containing

the epidemic is greatly reduced [28] . Moreover, we focus on pre-protection instead of local-risk protection (e.g., high-risk

immunization [58] ). Therefore, we don’t consider such local risk information in this research. 

We use ϕE ( t ) to denote the probability of a randomly selected link pointing to an undetected infected node. It can be

calculated as [50] 

ϕ E (t) = 

∑ 

k kP (k ) · E k (t) ∑ 

k kP ( k ) 
= 

∑ 

k kP ( k ) · E k (t) 

〈 k 〉 (8)

where E k ( t ) denotes the density of undetected infected nodes among the nodes with degree k at time t . The contact-layer

network is a sub-network of the communication-layer network. We assume that it is also homogeneous. The node degree

is set as k ′ . It can be approximately obtained that ϕ E (t) = E(t) . The probability that a node has m undetected infected

neighbors can be given by a binomial distribution 

B (k ′ , m ) = 

k ′ ! 
m !(k ′ − m )! 

· E(t) m (1 − E(t)) k 
′ −m (9)

Correspondingly, the discrete-time epidemic process can be described as follows ⎧ ⎨ 

⎩ 

S(t + 1) = S(t) − S(t)[1 − A 2 (t)] P S→ E 1 − S(t ) A 2 (t ) P S→ E 2 + f I(t ) 

E(t + 1) = E(t) + S(t)[1 − A 2 (t)] P S→ E 1 + S(t ) A 2 (t ) P S→ E 2 − γ E(t ) 

I(t + 1) = I(t) + γ E(t) − f I(t) 

(10)

where the discrete-time probabilities of state transitions are derived as ⎧ ⎪ ⎪ ⎨ 

⎪ ⎪ ⎩ 

P S→ E 1 = 

∑ 

m 

[1 − (1 − β1 ) 
m ] B (k ′ , m ) 

P S→ E 2 = 

∑ 

m 

[1 − (1 − β2 ) 
m ] B (k ′ , m ) 

P E→ I = γ

P I→ S = f 

(11)
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Similar to the analysis in the information diffusion model, we derive the continuous-time probabilities of state transitions

based on the discrete-time probabilities, as detailed in the Appendix A-1. The mean-field dynamic equations of epidemic

spreading are derived as below, ⎧ ⎪ ⎨ 

⎪ ⎩ 

d S(t) 
dt 

= −k ′ β1 S(t)[1 − A 2 (t)] E(t) − k ′ β2 S(t) A 2 (t) E(t) + f I(t) 

d E(t) 
dt 

= k ′ β1 S(t)[1 − A 2 (t)] E(t) + k ′ β2 S(t) A 2 (t) E(t) − γ E(t) 

d I(t) 
dt 

= γ E(t) − f I(t) 

(12) 

Let d S(t) 
dt 

= d S(t) 
dt 

= d I(t) 
dt 

= 0 , we calculate the equilibrium of epidemic spreading, based on which we are able to derive

the outbreak threshold of epidemic, as detailed in the Appendix A-3. Specifically, the outbreak of epidemic requires the

following inequality to be satisfied 

k ′ 
γ

[ β1 (1 − A 2 (∞ )) + β2 A 2 (∞ ))] ≥ 1 (13) 

where the equilibrium density of the knowledge-believed nodes A 2 ( ∞ ) is expressed in the Appendix A-1. When A 2 (∞ ) = 0 ,

the epidemic threshold degenerates to β1 = γ /k ′ . 

3. Results 

To evaluate the model, we adopt three different methods including two numerical methods and one theoretical method.

The two numerical methods are: prediction based on the discrete-time state transition equations (abbreviated as predicted

results), and agent-based simulation (abbreviated as simulated results). The theoretical method is the mean-field analysis

based on the continuous-time state transition equations (abbreviated as mean-field results). The predicted results are first

compared with the simulated results for verification. And the mean-field outbreak thresholds are then presented with the

predicted results to reveal more interesting findings. 

3.1. Predicted results vs. simulated results 

To get the predicted results, we adopt MATLAB to iterate the discrete-time state transition equations of information

diffusion and epidemic spreading. For the simulated results, we adopt REPAST to perform a series of agent-based simulations.

Initially, rumor and knowledge are believed by only the minority. But rumor has a much larger “infectivity” than knowledge

and diffuses much faster. The topology of the communication layer and the contact layer are set to be random network, with

the average degree defaulted as k = 8 and k ′ = 6 , respectively. Some other parameters are defaulted as: f 1 = 0 . 2 , f 2 = 0 . 2 ,

f = 0 . 2 , γ = 0 . 2 . 

3.1.1. Communication layer 

Compared with a neutral unknown node, a rumor-believed node is often less susceptible to knowledge. The concept of

a popular decision model, that is belief decision model [59] , can support this conjecture. According to the belief decision

model, each node beliefs on three options: rumor-believed, knowledge-believed, and neutral (or hesitating). When a neu-

tral node receives knowledge, her/his belief on knowledge will be quickly increased. While a rumor-believed node receives

knowledge, her/his belief is first transferred from the rumor-believed option to the neutral option, and then transferred from

the neutral option to the knowledge-believed option. Apparently, the knowledge-believed belief of the rumor-believed node

is less increased due to information fading during belief transfer. Thus, the value of α3 is lower than the value of α2 . When

α3 = 0 , for example, the two information diffusion dynamics are completely separated. While α3 = α2 , the rumor-believed

nodes have no reluctance against knowledge, and rumor is unable to affect the diffusion of knowledge. Therefore, the value

of α3 is vital for the competition between rumor and knowledge, and we select it as a key parameter for analysis. 

As shown in Fig. 4 , the equilibrium densities of the rumor-believed nodes A 1 ( ∞ ) and the knowledge-believed nodes

A 2 ( ∞ ) over α3 are well presented. Increasing α3 decreases the density of the rumor-believed nodes and increases the density

of the knowledge-believed nodes. More importantly, the simulated results and the predicted results are consistent with

each other. Besides, from the results, we infer that both rumor and knowledge may have outbreak thresholds. Specifically,

the outbreak of rumor may require α3 to be smaller than 0.1, while the outbreak of knowledge may require α3 to be larger

than 0.01. That is to say, when α3 is larger than 0.01 and smaller than 0.1, rumor and knowledge will diffuse simultaneously.

3.1.2. Contact layer 

we select the infectivity of epidemic ( β1 ) to compare the predicted results and the simulated results of epidemic preva-

lence. As shown in Fig. 5 , the equilibrium density of the (undetected and detected) infected nodes over β1 is well presented.

Increasing β1 will undoubtedly increase the density of the infected nodes. Moreover, the simulated results and the predicted

results are very close to each other. Besides, from the results, we can detect the epidemic outbreak threshold. It is impor-

tant to study whether the diffusion of information (especially the diffusion of knowledge) could affect the epidemic outbreak

threshold. 
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Fig. 4. Predicted and simulated densities of rumor-believed and knowledge-believed nodes ( A 1 ( ∞ ) and A 2 ( ∞ )) against α3 at the equilibrium of information 

diffusion. The simulated results are draw by black square, and the predicted results are draw by red circle. Other parameters are set as α1 = 0 . 5 , α2 = 0 . 1 . 

(For interpretation of the references to color in this figure legend, the reader is referred to the web version of this article.) 

Fig. 5. Predicted and simulated infected densities ( E(∞ ) + I(∞ ) ) against β1 at the equilibrium of epidemic spreading. The simulated results are draw by 

black square, and the predicted results are draw by red circle. Other parameters are set as α1 = 0 . 5 , α2 = 0 . 1 and β2 = 0 . 1 . (For interpretation of the 

references to color in this figure legend, the reader is referred to the web version of this article.) 

 

 

 

 

 

 

 

 

 

 

 

 

3.2. Outbreak thresholds of information 

To analyze the outbreak thresholds in the communication-layer network, especially to study whether and how rumor can

be eradicated by the penetration of knowledge into rumor, we focus on the parameter space α3 − α1 to draw the heat maps

of rumor-believed densities and knowledge-believed densities. The value of α2 is set as 0.1, α3 is confined in the interval

[0, 0.1], and α1 is confined in the interval [0.1, 1]. 

As shown in Figs. 6 and 7 , the equilibrium densities of rumor-believed nodes and knowledge-believed nodes over α3 −
α1 are almost complementary, reflecting the competition between them. Increasing rumor infectivity ( α1 ) will increase

the density of the rumor-believed nodes and reduce that of the knowledge-believed nodes, while increasing the intensity

of knowledge penetrating into rumor ( α3 ) will reduce the density of the rumor-believed nodes and increases that of the

knowledge-believed nodes. These two parameters could determine which wins in the competition, especially whether the

rumor can be eradicated by knowledge. 

Moreover, from the two figures, we observe the effects of α1 and α3 on the outbreak thresholds of rumor and of knowl-

edge, and we compare the numerical predictions with the mean-field thresholds in Eqs. (6) and (7) . It can be found that

the numerical threshold of rumor is highly matched with the mean-field rumor threshold. As α1 (i.e., infectivity of rumor)

increases, a larger α3 (i.e., penetration intensity of knowledge into rumor) is required to eradicate rumor. And the rumor

outbreak threshold indicates that α3 should increase linearly with α1 , as shown below 

2 

α3 = 

α1 f 2 − α2 f 1 
kα2 − f 2 

(14)
2 We released the constraint that α3 < α2 in the equations to obtain a generalized form of the mean-field threshold on α3 . 
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Fig. 6. Equilibrium densities of the rumor-believed nodes in the parameter space α3 − α1 . The red dashed line denotes the mean-field thresholds for rumor 

to break out. The value of α2 is set as 0.1. (For interpretation of the references to color in this figure legend, the reader is referred to the web version of 

this article.) 

Fig. 7. Equilibrium densities of the knowledge-believed nodes in the parameter space α3 − α1 . The red dashed line denotes the mean-field thresholds for 

knowledge to break out. The value of α2 is set as 0.1. (For interpretation of the references to color in this figure legend, the reader is referred to the web 

version of this article.) 

 

 

 

 

 

 

 

 

The numerical threshold of knowledge is also close to the mean-field knowledge threshold 

3 With the increase of α1 (i.e.,

infectivity of rumor), a larger α3 (i.e., penetration intensity of knowledge into rumor) is required for knowledge to diffuse.

But it should be noted that the equilibrium density of the knowledge-believed nodes increases sharply with α3 . Even if the

infectivity of rumor is extremely high, a small α3 (e.g. α3 = 0 . 2 ) will make knowledge ineradicable. The knowledge outbreak

threshold indicates that α3 increases nonlinearly with the increase of α1 , as shown below 

α3 = 

f 2 
k 

− kα2 f 1 − f 1 f 2 
k 2 α1 − k f 1 

(15) 

Therefore, from the above results, we observe a three-phase phenomenon of information diffusion over α3 . When α3 <

f 2 �k − (kα2 f 1 − f 1 f 2 ) �(k 2 α1 − k f 1 ) , knowledge dies out and rumor is dominant. When f 2 �k − (kα2 f 1 − f 1 f 2 ) �(k 2 α1 −
k f 1 ) < α3 < (α1 f 2 − α2 f 1 ) �(kα2 − f 2 ) , knowledge starts to diffuse. As a result, rumor is gradually confined. When α3 >

(α1 f 2 − α2 f 1 ) �(kα2 − f 2 ) , knowledge takes the dominant position and rumor is eradicated. Thus, the value of α3 (i.e., pen-

etration intensity of knowledge into rumor) is crucial to information diffusion. It largely determines whether rumor can be

eradicated by knowledge. 
3 Compared with rumor, the gap between the predicted thresholds and mean-field thresholds of knowledge is less negligible. It is largely due to two 

reasons. First, the mean-field analysis may lead to some bias. Second, the bias becomes clear when the parameter α3 is confined in a very small range [0, 

0.1] and the step is set as a very tiny value: 0.005. 
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Fig. 8. Equilibrium densities of the infected nodes ( E(∞ ) + I(∞ ) )in the parameter space α3 − β1 . The red dashed line denotes the mean-field thresholds 

for epidemic to break out. The value of α1 , α2 and β2 are set as 0.5, 0.1 and 0, respectively. (For interpretation of the references to color in this figure 

legend, the reader is referred to the web version of this article.) 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

3.3. Outbreak threshold of epidemic 

To analyze the outbreak threshold of epidemic in the contact-layer network, especially to study whether the diffusion of

knowledge helps to eradicate the epidemic, we consider two situations: perfect self-protection and imperfect self-protection.

Firstly, we focus on the parameter space α3 − β1 with the value of β2 set to 0 (i.e., perfect self protection). α3 is confined

in the interval [0, 0.1], and β1 is confined in the interval [0, 1]. Secondly, we fix the infectivity of epidemic ( β1 = 0 . 1) , and

focus on the parameter space α3 − β2 , in order to explore how imperfect self-protection ( β2 ∈ [0, 0.1]) affects the spread of

epidemic by knowledge diffusion. 

As shown in Fig. 8 , in the case of perfect self-protection, increasing the value of epidemic infectivity ( β1 ) will increase

the density of the (undetected and detected) infected nodes, while increasing the penetration of knowledge into rumor ( α3 )

will decrease the density of the infected nodes. The finding verifies that the diffusion of knowledge helps to contain the

epidemic. Moreover, the numerical epidemic threshold is very close to the mean-field epidemic threshold in Eq. (13) . As

epidemic infectivity ( β1 ) increases, a larger penetration intensity of knowledge into rumor ( α3 ) is required to eradicate the

epidemic. The epidemic outbreak threshold indicates that the epidemic infectivity ( β1 ) can increase nonlinearly with the

increase of α3 , as shown below 

β1 = 

⎧ ⎪ ⎨ 

⎪ ⎩ 

γ

k ′ if α3 ≤ f 2 
k 

− kα2 f 1 − f 1 f 2 
k 2 α1 − k f 1 

γ
k ′ − β2 

1 − A 2 ( ∞ ) 
+ β2 if α3 > 

f 2 
k 

− kα2 f 1 − f 1 f 2 
k 2 α1 − k f 1 

(16)

where A 2 (∞ ) = (kα1 α3 − α1 f 2 + α2 f 1 − α3 f 1 ) �k (α1 − α2 + α3 ) α3 , Namely, 

β1 = 

⎧ ⎪ ⎨ 

⎪ ⎩ 

γ

k ′ if α3 ≤ f 2 
k 

− kα2 f 1 − f 1 f 2 
k 2 α1 − k f 1 (

γ
k ′ − β2 

)
k ( α1 − α2 + α3 ) α3 

( kα3 + f 1 ) ( α3 − α2 ) + α1 f 2 
+ β2 if α3 > 

f 2 
k 

− kα2 f 1 − f 1 f 2 
k 2 α1 − k f 1 

(17)

As shown in Fig. 9 , in the case of imperfect self-protection, improving the effectiveness of self-protection (i.e., reduc-

ing β2 ) can significantly decreases the density of the infected nodes, but highly depending on the penetration intensity of

knowledge into rumor ( α3 ). When the intensity of knowledge is insufficient to penetrate the rumor-believed nodes (e.g.,

α3 < 0.02), reducing β2 will not have much impact on the density of infected nodes. While α3 is large enough (e.g.,

α3 = 0.08), reducing β2 can eradicate the epidemic. Moreover, the numerical epidemic threshold is compared with the mean-

field epidemic threshold in Eq. (13) . With the increase of the penetration intensity of knowledge into rumor ( α3 ), a less

effective self-protection, namely a larger β2 , can be enough to eradicate the epidemic. The epidemic outbreak threshold

indicates that β2 can increase nonlinearly with the increase of α3 , as shown below 

β2 = β1 −
(
β1 − γ

k ′ 
)

k (α1 − α2 + α3 ) α3 

(kα1 − f 1 ) α3 − α1 f 2 + α2 f 1 
(18)

where k (α − α + α ) α �[(kα − f ) α − α f + α f ] > 1 − γ �k ′ β . 
1 2 3 3 1 1 3 1 2 2 1 1 
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Fig. 9. Equilibrium densities of the infected nodes ( E(∞ ) + I(∞ ) ) in the parameter space α3 − β2 . The red dashed line denotes the mean-field threshold 

for epidemic to break out. The value of α1 , α2 and β1 are set as 0.5, 0.1 and 0.1, respectively. (For interpretation of the references to color in this figure 

legend, the reader is referred to the web version of this article.) 

Fig. 10. Phase diagram of the two-layer system. 

 

 

 

 

 

 

3.4. Phase diagram 

It can be seen from the above results that information diffusion has significant influence on the epidemic spreading. As

knowledge becomes more “penetrating” into rumor, rumor and epidemic are more likely to be eradicated. Moreover, based

on the outbreak thresholds in the communication-layer network, information diffusion can be divided into three phases. In

this section, we try to explore the phase diagram of the whole two-layer system based on the outbreak thresholds in both

layers. 

As shown in Fig. 10 , the two-layer system can be divided into five phases by α3 − β2 . First, information diffusion can

be divided into three phases: “No knowledge ”, “Rumor vs. knowledge ”, and “No rumor ”. Second, epidemic spreading can be
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Fig. 11. Equilibrium densities of the rumor-believed nodes, of the knowledge-believed nodes, and of the infected nodes over average node degree k in the 

communication-layer network. Other parameters are set as α1 = 0 . 5 , α2 = 0 . 1 , β1 = 0 . 1 , and β2 = 0 . 01 . 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

divided into two phases: “Epidemic outbreak ” and “No epidemic ”. Specifically, the epidemic spreading phases and the infor-

mation diffusion phases are overlapped, generating five phases: “No knowledge & Epidemic outbreak ”, “Rumor vs. knowledge

& Epidemic outbreak ”, “Rumor vs. knowledge & No epidemic ”, “No rumor & Epidemic outbreak ”, “No rumor & No epidemic ”4

Therefore, it is not necessary to equate rumor eradication with epidemic eradication. When rumor cannot be eradicated, the

epidemic can also be eradicated by the spread of knowledge. When rumor can be eradicated, the epidemic may be uneradi-

cated when the effectiveness of self-protection is very low. Moreover, the adjacent phases are interconvertible. For example,

the “Rumor vs. knowledge & No epidemic ” phase can convert to the “No rumor & No epidemic ” phase with the increase of

α3 , and can convert to the “Rumor vs. knowledge & Epidemic outbreak ” phase with the increase of β2 . Based on the phase

diagram, it is possible to find an optimal strategy to contain rumor or epidemic. For example, if the two-layer system is

in the “Rumor vs. knowledge & Epidemic outbreak ” phase (Phase II), the optimal strategy of containing the epidemic is to

develop an effective self-protective measure to reduce β2 . 

3.5. Network structure 

The network structure highly affects the outbreak size and threshold of the spreading dynamics [60,61] . In a two-layer

network, the overlap of the two layers is also important for the spreading dynamics [37] . This research assumes that the

communication-layer network is an extension of the contact-layer network. In the information age, the cost of communica-

tion is greatly reduced, and it becomes easier to extend the communication-layer network. It is interesting to know whether

the extension of the communication-layer network helps to contain rumor and epidemic. Therefore, in this section, we try

to explore the evolution of the rumor-believed density and the infected density with the change of average node degree k

in the communication-layer network. 

As shown in Fig. 11 , when k increases from 0 to 12, the rumor-believed density will increase first and then decrease,

while the knowledge-believed density will increase monotonically. Obviously, rumor is more likely to break out in a sparse

network than knowledge because rumor infectivity ( α ) is much larger than knowledge infectivity ( α ). However, when
1 2 

4 The phase “No knowledge & No epidemic” is possible when the epidemic infectivity ( β1 ) is lower than γ / k ′ . In this section, we default that β1 > γ / k ′ . 
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knowledge starts to break out (e.g., k = 3 ), rumor will be confined immediately and the rumor-believed density will begin

to decrease. It should be noted that a higher penetration of knowledge into rumor helps knowledge to break out in a very

sparse network. Moreover, when the knowledge-believed density starts to increase, the infected density begins to decrease.

More importantly, with the increase of k , the infected density gradually decreases to 0, which indicates that extending the

communication-layer network helps to eradicate the epidemic in the contact-layer network, consistent with Eq. (13) . Besides,

a larger α3 in the communication-layer network is also helpful to eradicate the epidemic. 

In summary, extending the communication-layer network is helpful to eradicate the epidemic, but it largely depends on

the condition that knowledge is able to penetrate the rumor. When people can get information from diverse sources, s/he

is more likely to get access to the accurate information (i.e., knowledge) and get rid of rumor. This will make her/him be

better protected from the epidemic. Besides, compared with reducing rumor infectivity or epidemic infectivity, the cost of

widening information sources is usually lower. 

4. Conclusion and discussion 

During an epidemic, individuals are usually willing to take protective measures to avoid being infected. However, the

diffusion of rumor sometimes prevents them from choosing the effective measures. To make things worse, such rumor is

often contagious and hard to be eradicated, making the epidemic difficult to contain. Therefore, how to contain rumor and

epidemic has become a critical issue to the human society. 

In this research, inferred from the study of Prelec et al. and the practice of Chinese authorities during COVID-19, we

propose that the diffusion of knowledge is the key to controlling both rumor and epidemic. To model interaction between

information diffusion and epidemic spreading, we adopt a two-layer network structure. The UA 1 A 2 model is adopted to

describe the competitive diffusions of information and the SEIS model is adopted to describe the spread of epidemic. Specif-

ically, in the UA 1 A 2 model, we explicitly propose a unidirectional transition probability from A 1 (rumor-believed state) to

A 2 (knowledge-believed state), which denotes the penetration of knowledge into rumor. Three frequently used methods are

used to evaluate the impact of knowledge diffusion on the spread of rumor and epidemic. 

The diffusion of knowledge is able to eradicate both rumor and epidemic, where the penetration intensity of knowledge

into the rumor-believed nodes ( α3 ) plays a vital role. The rumor outbreak threshold increases linearly with α3 , while the

epidemic outbreak threshold increases nonlinearly with α3 . In particular, even if the self-protective measure is not perfectly

effective, increasing α3 is helpful to contain and even eradicate the epidemic. 

It is inappropriate to equate eradicating rumor with eradicating epidemic, although eradicating rumor is helpful to erad-

icate the epidemic. On one hand, when the density of knowledge-believed nodes increases, the outbreak threshold of epi-

demic will significantly increase, no matter whether rumor dies out or not. On the other hand, when rumor is eradicated,

the epidemic may still prevail if the self-protective measure is not effective enough. 

The overlapping of the contact layer and the communication layer is a research focus in the two-layer network structure.

We assume that the communication-layer network is an extension of the contact-layer network. When adding links to

the communication-layer network, namely when people get information from more sources, knowledge is more likely to

break out, while rumor and epidemic are more likely to be eradicated. Moreover, a larger penetration intensity ( α3 ) makes

knowledge more likely to break out in a sparse network. 

From the above conclusions, it can be obtained that information diffusion has significant influence on the epidemic

spreading. Increasing penetration intensity of knowledge or improving effectiveness of self-protection is helpful to eradicate

an epidemic. Therefore, for policy-makers, it is necessary to know which is more suitable for a specific case. The phase

diagram provides lots of implications. First, it should be evaluated at which phase the present two-layer system is located.

Second, an effective strategy is the one that can convert the system from a bad phase (e.g., “Rumor vs. knowledge ” & “Epi-

demic breakout ”) to a nearby better phase (e.g., “Rumor vs. knowledge & “No epidemic ”). 

Our research has several limitations, which can be extended in future studies. First, the dynamic impact of epidemic

spreading on information diffusion is not fully considered. In particular, the spread of rumor may be dynamically affected

by the severity of epidemic. For example, people’s susceptibility to rumor may not be constant, but inversely related to

the outbreak size of epidemic. In other words, when the epidemic outbreak size increases, the infectivity of rumor may

increase, as well. We set the rumor infectivity to a very large value ( α1 = 0 . 5 ), but we didn’t consider its dynamic feature.

In a dynamic case, rumor and epidemic may be more easily contained at the early stage. Second, the transition from the

knowledge-believed state to the rumor-believed state is not considered, which is consistent with most of previous rumor

models [41] . In extreme cases, such transition may occur. For example, a wicked rumor may make people to abandon the

effective practice [25] . Introducing such transition into our model may make the competition between rumor and knowledge

more salient. Third, the topology structures of the contact-layer network and the communication-layer network may be

different, which may affect the spreading process. Fortunately, although we only study the random network, this research

can be easily extended to different network structures. 
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