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Abstract

The essence of shotgun lipidomics is to maintain consistency of the chemical environment of lipid 

samples during mass spectrometry acquisition. This strategy is suitable for large-scale quantitative 

analysis. This strategy also allows sufficient time to collect data to improve the signal-to-noise 

ratio. The initial approach of shotgun lipidomics was the electrospray ionization (ESI)-based direct 

infusion mass spectrometry strategy. With development of mass spectrometry for small molecules, 

shotgun lipidomics methods have been extended to matrix-assisted laser desorption/ionization 

mass spectrometry (MALDI MS) and ambient mass spectrometry, including MS imaging methods. 

Furthermore, the object of analysis has extended from organ and body fluid levels to tissue and 

cell levels with technological developments. In this article, we summarize the status and technical 

challenges of shotgun lipidomics at different resolution of measurements from the mass 

spectrometry perspective.
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1. Introduction

The complete set of lipids in tissues or cells is referred to as the lipidome [1]. According to 

the classification of the LIPID Metabolites and Pathway Strategy (LIPID MAPS) project, 

lipids can be divided into eight main categories: fatty acyls, glycerolipids, 

glycerophospholipids, sphingolipids, sterol lipids, prenol lipids, saccharolipids, and 

polyketides [2, 3]. Each category can be further classified into different lipid classes and 

subclasses, based on their polarities, charge(s), sizes, linkages to the backbone, and distinct 

functional groups. The LIPID MAPS structure database currently records 43,616 unique 

lipid structures (as of 9/13/2019) [4]. Lipid functions are highly related to their structure, 

*To whom correspondence should be addressed: Xianlin Han, Ph.D., Barshop Institute for Longevity and Aging Studies, University of 
Texas Health Science Center at San Antonio, 7703 Floyd Curl Drive, Mail Code 8254, San Antonio, TX 78229, 210-562-4104 (O), 
hanx@uthscsa.edu. 

HHS Public Access
Author manuscript
Trends Analyt Chem. Author manuscript; available in PMC 2020 July 25.

Published in final edited form as:
Trends Analyt Chem. 2019 December ; 121: . doi:10.1016/j.trac.2019.115697.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



concentration, and spatial and temporal distribution. The composition, distribution, and 

dynamics of the lipidome reflect the status of cellular metabolism [5]. Dysregulation of lipid 

metabolism is associated in the onset and progression of many diseases, including 

cardiovascular diseases, neurodegeneration, diabetes, and cancer [5, 6].

Lipidomics is the study of lipids based on qualitative and quantitative analysis of lipidomes 

in a systematic fashion [7, 8]. Lipidomics analysis is facilitated by decades of biological 

mass spectrometry advancements [9–14]. Due to the huge difference in lipid properties from 

water-soluble metabolites, lipidomics is very different from conventional metabolomics in 

terms of sample preparation, mass spectrometric analysis, and data processing. Due to the 

chemical nature of lipid molecules, metabolomics and proteomics techniques developed 

based on aqueous systems are not always suitable for lipidomics analysis. Lipidomic 

analysis requires non-aqueous phase extraction and ionization, and it considers lipid 

aggregation under certain conditions, which are unique features of lipid analysis [15].

Shotgun lipidomics analysis occurs under specific experimental conditions with a constant 

lipid solution concentration [12, 16–18]. In most cases, there is no separation process 

conducted prior to the mass spectrometric analysis. Thus, shotgun lipidomics can provide 

sample signals from a uniform chemical environment. Since the chemical environment of 

the solution do not change during analysis, differences in signal response of homologues are 

minimized. The signal-to-concentration relationship can be calibrated readily. Accurate 

absolute quantification after normalization to a common denominator can be achieved with a 

limited number of internal standards [15, 19]. As a result, high-accuracy and large-scale 

absolute quantitative analysis is easier to achieve by shotgun lipidomics than by separation-

based lipidomics.

According to the essential features of shotgun lipidomics, the scope of shotgun lipidomics 

has been extended to cover analyses after both direct infusion and desorption (including 

imaging analysis) [20]. The direct infusion-based electrospray ionization is the earliest 

ionization strategy used in shotgun lipidomics. This is mainly because, in the early stages of 

shotgun lipidomics, it was the best approach for direct analysis of lipid extraction in 

homogeneous solutions. This approach is still the most widely used in quantitative shotgun 

lipidomics [16, 21]. With the development of MALDI matrices that are specific to small 

molecules, technical approaches in shotgun lipidomics have been expanded [22–26]. 

Recently, with the development of ambient ion sources (such as desorption electrospray 

ionization (DESI), laser ablation electrospray ionization (LAESI), and liquid extraction 

surface analysis-mass spectrometry (LESA-MS)) and mass spectrometry imaging (MSI) 

technologies, the scope of shotgun lipidomics has been expanded into direct desorption 

analysis [27–31]. Currently, analytical methods based on direct desorption or imaging 

analysis are becoming more important in lipidomics analysis because they provide valuable 

information on the spatial distribution of lipids. The combined use of these approaches 

should be very effective to understand lipidomes on different resolution. Figure 1 shows a 

number of methodological approaches to expand the scope of shotgun lipidomic analysis. 

Table 1 summarized the significance and purpose of shotgun lipidomics analysis at different 

levels of measurements for biomedical research.
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The ultimate goal of lipidomic analysis is to achieve a full coverage of precise structural 

analysis, accurate quantification, and a comprehensive understanding of lipid dynamics at all 

levels. This goal is far from the existing analytical capabilities. We believe this requires a 

combination of lipidomics based on both efficient separation and direct analysis. Shotgun 

lipidomics offers unique advantages in both quantitative and spatial distribution analysis.

In this review, we overview the progress in and challenges of shotgun lipidomics analysis at 

different resolution of measurements, with an emphasis on instrumental analysis and sample 

processing. We discuss current technical characteristics and bottlenecks, to provide insights 

that inspire new ideas and drive novel technological advancement.

2. Shotgun lipidomics at spatial levels

2.1 Analysis at macro/organ level

This level is a macroscopic explanation of changes in the whole body or organs. For solid 

tissue, this level of analysis is for the representative part of the organ or entire organ. Its 

resolution is usually in the order of a few millimeters or tens of millimeters. For body fluid 

samples, its analytical difficulty depends on the type of body fluid. Lipid concentrations vary 

widely among different body fluids. For serum or plasma, approximately lipid content in one 

hundred microliters corresponds to lipids contents in 10 milligrams of tissue. For sample 

with a very low lipid content such as cerebrospinal fluid, several times or tens of times of the 

volume of plasma or serum are required. Analysis of serum and plasma is relatively easier to 

achieve than tissue samples. The main reason is that the quantity of samples is sufficient, the 

samples are homogenate, and the lipid content is usually abundant. However, for samples of 

cerebrospinal fluid, the total amount of samples that can be obtained is limited, and it is hard 

to quantify low abundance lipid species. At the level of organs and body fluids, quantitative 

shotgun lipidomics is widely used in mechanism studies of diseases associated with lipid 

metabolism or in biomarker discovery studies [20, 32–34]. The most commonly measured 

lipid classes are sphingolipids (SL), glycerophospholipid (GPL), glycerolipids (GL), and 

non-esterified fatty acid (NEFA). They are involved deeply in the construction of cellular 

membrane, energy metabolism, transportation, and signal transduction [6]. More than 45 

classes of lipids are quantifiable by shotgun lipidomic analysis [5]. In this macrolevel 

analysis, tens of milligrams of tissue samples are typically required for quantitative analysis. 

The mass spectrometry strategies or modes that can be used are very diverse, including 

precursor-ion scan, neutral loss scan, high-resolution mass spectrometry, and multi-

dimensional mass spectrometry strategy (MDMS) [11, 35–39]. Absolute quantitative 

analysis has been easily implemented in a homogeneous direct infusion system. In the case 

of quantitative analysis using the MDMS method, it is possible to achieve at least one 

internal standard for each lipid class. The choice of the internal standard needs to avoid 

interference with endogenous substances, and the spiking content is not less than 10% of the 

high abundance component. In the calculation, the correction of the abundance of 13C 

isotope with molecular weight changes should be considered. The in-depth review by Wang 

et al. [15] should be helpful for considering the selection of internal standards. In this level, 

the overall quantitative accuracy for lipid species that present in modest-to-high abundance 
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can be greater than 90% [40]. For a brief introduction to the basic technical concepts of 

lipidomics, please refer to a tutorial written by Wang et al. [41].

From the perspective of instrumental analysis, there is no practical difficulty in the 

quantitative accuracy of the macro/organ level. However, if the sample collection and quality 

control does not attract enough attention, it will affect the accuracy of the quantification 

[42]. At the macro/organ level, the minimal sample size for analysis is relatively easy to 

guarantee. Since human to small animal samples are used, there are still certain requirements 

for sample consistency to avoid data variation. The difficulty of sample collection is varied 

among different organs. Samples from the liver and muscle are relatively homogenous and 

easily collected. However, if only a partial part of the organ is collected, the distribution of 

fat and blood vessels needs to be considered. For organs with complex and non-

homogeneous morphological structures, such as the brain and kidneys, partial excision and 

collection is more likely to cause data variations. Further, caution should be taken when 

collecting from small animals, such as mice. The accuracy of the anatomical position and 

degree of exfoliation of the adherent tissue have a great influence on the sample consistency.

In addition, different biological models should be considered. Usually, sample deviation 

among patients are very large. If it is a model organism, the wild type should be stable. 

However, due to the introduction of additional interventions, the level of gene expression is 

not usually consistent among samples in the experimental group, thus variations in lipid 

quantification may increase. Therefore, in addition to careful handling of the sampling 

operation, background information of the sample should be considered to determine the 

appropriate number of samples for statistical analysis.

There are primarily two analytical challenges at this level: accurate quantification of low-to-

modest abundance lipids and determination of fine structural information. The concentration 

range of lipids in a biological sample varies from amol to nmol/mg of protein (estimated 

from LIPID MAPS). Ion suppression by high abundant species during ionization or trapping 

capacity limits the dynamic range of a mass spectrometer. However, the quantitative 

dynamic range of shotgun lipidomics is only approximately four orders of magnitude. 

Therefore, using the MDMS strategy, selective ionization, and pre-separation of the lipid 

extraction by liquid-liquid partitioning or liquid-solid partitioning should be very useful to 

significantly increase the dynamic range [38, 43]. For example, triglycerides are the 

predominant component in adipose tissue. Pre-separation of triglycerides from other polar 

lipids is necessary for shotgun lipidomics analysis of the majority of lipid classes [8]. This 

challenge is not only due to the full range of lipid concentration distribution, but also 

because the lipids self are prone to aggregation. To avoid or reduce the adverse effects of 

aggregation, the concentration of each lipid for infusion should be less than 10 pmol/μl.

Derivatization strategies can be used to significantly improve signal quality in multiple ways 

[44]. First, derivatization can lead to increases in ionization sensitivity by introducing a 

functional group that is prone to ionization. Second, derivatization can improve the linear 

dynamic range of lipid analysis by selectively improving ionization efficiency of low 

abundance lipid classes. For example, Trimethylsilyl (TMS) derivatization of 

phosphatidylinositol phosphate [45] and N-(4-aminomethylphenyl)pyridinium (AMPP) 

Wang and Han Page 4

Trends Analyt Chem. Author manuscript; available in PMC 2020 July 25.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



derivatization of NEFA [46] greatly enhanced the quantification range. Moreover, 

derivatization can enhance analytical specificity with tagged moieties. For example, 

phosphatidylglycerol (PG) and bis(monoacylglycero)phosphate (BMP) are isomers. They 

can be distinguished by TMS derivatization due to differences in the characteristics of 

derivatized fragments [47]. In addition to expanding the derivatization coverage of lipid 

classes, simplification of the derivatization process and methods that do not require 

purification are important development directions, especially for smaller size analyses. For a 

more detailed understanding of derivatization methods, please refer to recent review articles 

written by Hu et al. and Ryan et al. [44, 48].

Comprehensive coverage of fine structural information of lipid molecules is an important 

research area at this level. Positional determination of unsaturated bonds in lipid molecules 

and differentiation of cis and trans isomers are currently critical challenges [49]. In diseases 

such as cancer, the content of isomers differs from the normal state [50]. Therefore, 

determination of fine structure and quantitative or ratio analysis are required. Current studies 

on the localization and quantification of carbon-carbon double bonds employ oxidation 

reactions on double bonds, including ozone induced dissociation (OzID) [51], 

photochemical method such as Paternò–Büchi reaction [52], and ultraviolet 

photodissociation (UVPD) [53]. A recently published review article [54] provides detailed 

information about this topic.

In the high vacuum environment of common mass spectrometry, we do not consider ion 

collisions because their mean free path is greater than the dimensions of the vacuum cavity. 

However, after the introduction of collision gas, the mean free path of ions and the average 

kinetic energy change. These changes are related to the collision cross section of ions. The 

collision cross section is determined by their molecular structures. Ion mobility mass 

spectrometry (IMS-MS) is an effective method to distinguish three-dimension conformation 

such as cis-trans isomers [55]. There are many variants of ion mobility mass spectrometry. 

These methods combine different collision gas conditions with different electric field modes 

to produce different separation fields. The ions are separately detected based on differences 

in their collision cross sections and mass-to-charge ratios. High field asymmetric waveform 

ion mobility spectrometry (FAIMS) [56], drift tube ion mobility spectrometry (DTIMS) 

[57], and traveling wave ion mobility spectrometry (TWIMS) [58] are major IMS-MS 

technologies that have been used for lipidomic analysis. Due to similarities in the common 

structure of a specific lipid class and small differences in the collision cross section of each 

lipid species, the separation power of complex mixtures is limited. Nevertheless, the 

combination of ion mobility mass spectrometry with MALDI, DESI, or other ambient 

ionization methods for lipid extraction could accurately distinguish high abundance 

components [59, 60]. A recently published review article [61] can be consulted to learn new 

methods and ideas for lipid separation and structural elucidation by ion mobility mass 

spectrometry.

At the macro level, direct infusion analysis is still a dominant approach. Table 2 summarizes 

the comparison between related technologies and challenges.

Wang and Han Page 5

Trends Analyt Chem. Author manuscript; available in PMC 2020 July 25.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



2.2 Analysis at micro/tissue level

In this review, we refer to analysis of a sample size of less than 2 mg or a spatial resolution 

for imaging from 20 to 200 μm as micro- or tissue-level analysis. There are three scenarios 

for direct infusion analysis at this level. First, some changes occur only in local areas of the 

organ, and if analyzed at the organ level, this change is likely to be masked in the 

background. Therefore, the number of available samples for anatomical sampling of these 

small areas is very limited. Examples are the dorsal root ganglion and islets. For this type of 

bulk sample, homogenization before lipid extraction is usually performed, followed by a 

direct infusion strategy.

Second, samples are obtained from isolated primary cells or organelles. For isolated primary 

cells, considering the loss during isolation and purification, only up to hundreds of 

thousands of cells can be obtained. For organelle analysis of cultured cells, in theory, this 

amount of sample is sufficient to ensure quantification; however, the purity of the sample 

will affect the accuracy and stability of the results. For example, the separation of subcellular 

organelles is usually carried out by ultracentrifugation, density gradient centrifugation, size 

exclusion, or immunoaffinity capture. Such methods provide inadequate purity or lipidome 

integrity for exosome analysis [62]. Recently, the application of novel separation methods, 

such as flow field-flow fractionation (FIFFF), provided better purity and showed 

improvements in lipidomic analysis [63]. For cell or organelle samples, the sample can be 

extracted after sufficient dispersion. Direct infusion analysis is a commonly used strategy.

Third, tissue-level samples are usually obtained from pathological sections or tissue 

biopsies. For tissue section samples that do not require imaging analysis, the weight of the 

tissue section is usually around 1 mg, and the strategy of homogenization-extraction and 

direct infusion analysis is often used; however, analysis from the tissue section requires 

tissue transfer from a glass slide. This differs from bulk samples in that protein-based 

quantification becomes more difficult. This is because the tissue must be stripped from the 

glass slide to quantify protein content. Collection of tissue section samples can be effectively 

achieved using laser microdissection [64]. In addition to quantification based on protein 

content, other normalizers (e.g., DNA content, sample weight, or sample volume) can also 

be used for quantification.

The strategy for direct infusion analysis is characterized by maximum utilization of multiple 

MS acquisition modes. The major advantages of this approach are high accuracy of targeted 

or untargeted quantitative analysis. It should be noted that due to the very small amount of 

sample, such as < 1 mg, conventional extraction methods can cause a large amount of 

transfer loss. It is possible that global analysis of broad lipid classes is not achievable. 

Without a simplified extraction strategy, it is possible that there is no signal detectable due to 

severe sample loss. In this case, a compromise strategy is unavoidable. With a simplified 

extraction strategy, it is possible to selectively retain some lipid classes for effective 

detection with a small sample size [64]. For example, a simplified liquid extraction 

procedure of conventional biphasic lipid extraction such as methyl tert-butyl ether-methanol 

(MTBE-MeOH) method and butanol-MeOH (BUME) method, or a solid phase extraction 

(SPE) extraction strategy, can be employed [65–69]. If direct infusion analysis is coupled 

with monophasic liquid extraction methods (such as MeOH, ethanol, and isopropanol), a 
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signal drop of major lipids caused by the loss of samples during transferring can be reduced 

[70–73]. Thus, an orthogonal extraction strategy that combines multiple simplified 

extraction methods, each of which consumes a portion of the sample, and the final combined 

data can effectively increase the data amount for lipidomic analysis. A recent review 

provided a good guide for solvent selection in lipid extraction [74]. In addition, the available 

methods of chemical derivatization in small volume samples are limited. Multiple sample 

manipulation steps will result in transferring losses, such that selection and development of 

one-pot derivatization methods, such as Fmoc derivatization of phosphatidylethanolamine 

(PE) [75] and 2-picolylamine derivatization of fatty acids [76], which do not require 

separation and purification are necessary.

Microfluidic devices may have the potential to enhance micro level lipid analysis [77]. In 

this study by Sun et al., the authors integrated solid-phase microextraction materials into 

microfluidic tubing. The advanced point of this idea is the selective separation of lipid from 

samples to reduce the suppression effects of other non-lipid molecules. However, current 

microfluidic devices are mostly developed for operation in an aqueous phase system. The 

materials used in microfluidic devices are usually not compatible with solvents required for 

comprehensive lipid extraction, because chloroform is required. Although the fully 

implemented example has not yet appeared, we believe that development of a slipchip 

microfluidic device designed with all-glass materials can be used to achieve comprehensive 

extraction of lipids via microlevel biphasic separation such as Bligh-Dyer extraction [78, 

79].

MS imaging analysis at the tissue level is readily available. Desorption electrospray 

ionization (DESI) and MALDI mass spectrometry imaging are the most common methods. 

At the modest-to-high spatial resolution level, DESI imaging achieves resolutions between 

100 μm and 200 μm. Although the resolution of the DESI method is not high, this method 

can realize the analysis of the native state of the tissue. This method has been widely used 

for clinical sample biomarker discovery and interoperation tissue boundary recognition of 

cancer [27, 28, 80, 81]. If the need for rapid diagnosis is not taken into account, the use of 

higher resolution methods such as MALDI imaging can provide more detailed information 

for pathological analysis, making it easier to match the results of histochemistry. In the field 

of application, the resolution achieved by MALDI imaging is between 20 μm and 100 μm. 

For example, in a model study of colorectal cancer liver metastasis, the authors screened a 

matrix that effectively enhanced glycerophospholipid signals in liver tissue, revealing 

fingerprinting lipid species for tumor metastasis at different spatial resolutions [82]. In the 

high-resolution mode, small tumor foci at the early-stage of metastasis of the mouse liver 

were revealed. There are many excellent reviews on mass spectrometry imaging methods 

that are worth reading [80, 83–86]. Here, we mainly discuss some technical aspects for 

lipidomic analysis.

The advantage of the DESI-based imaging method is its convenience to obtain essential 

information needed for pathological diagnosis without additional sample processing [27–

29]. This method keeps the sample in its natural state. Inspired by the MDMS strategy [38, 

39], which utilizes multiple MS modes and selective ionization, lipid classes can also be 

selectively ionized by changing the solution composition in DESI. A major drawback of this 
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type of method is the inability to conduct absolute quantification because it lacks a precise 

way to add internal standards.

The MALDI imaging method enables a higher resolution analysis than DESI. A large 

number of small molecule matrices are available for lipidomic analysis [87]. In imaging 

analysis, lipids cannot be physically separated. Therefore, selective ionization is an optimal 

approach to improve the dynamic range and lipid coverage. Although many matrices have 

been developed for lipid analysis, there are not sufficient to construct a complete selection 

list for selective ionization analysis. The current matrix combinations for selective ionization 

do not compare to the flexibility of direct infusion analysis [22, 24]. For MALDI analysis, 

discovery of a novel matrix may also promote improvements of ionization efficiency. 

However, discovery of these matrices, which can significantly improve sensitivity for lipid 

analysis, is difficult to predict. Nanomaterial matrices are a type of matrix that is expected. 

However, although the nanomaterial matrix exhibits excellent low background interference 

properties, their sensitivity to analyzing lipids cannot be compared to organic matrices. 

Currently, nanomaterial matrices are more advantageous for the analysis of small molecular 

weight metabolites, but not lipids because the organic matrix (even those specific for 

metabolites analysis) still has strong or unpredictable interference peaks in the range of 

molecular weights less than 500 Da.

At modest-to-high resolution levels, MALDI imaging can provide absolute quantitative 

analysis [88]. An internal standard addition method based on a spotter or inkjet printer can 

accurately provide a given amount of internal standard at a modest resolution level [89]. As 

far as we know, there are no example that using a pneumatic spray method for accurate 

addition of internal standards for high-resolution imaging. However, in the case of correction 

with optic images, a precisely-controlled pneumatic spray method allows the accurate 

addition of internal standard. It should be noted that both the internal standard and matrix 

require a uniform distribution and co-crystallization with lipids in these sections. Therefore, 

the thickness of the tissue section and deposition time of the matrix need to be optimized. A 

thickness less than 10 μm is more conducive to quantitative analysis.

At the tissue level of analysis, sampling and extraction of small volume samples, as well as 

accurate and absolute quantification in mass spectrometry imaging, are currently major 

challenges. The acquisition of depth information, such as quantification of low abundance 

lipids and interpretation of structural information, becomes more difficult due to sensitivity 

or sample size limitations [90, 91]. Therefore, future developments may come by improving 

ionization efficiency. This is discussed in the following sections. Table 2 provides some 

comparisons and technical features of related technologies.

2.3 Single-cell level analysis

Single-cell lipidomic analysis is very important for revealing fundamental biological 

processes [92]. For example, cell division is a highly dynamic process that is rapidly 

regulated in the cell cycle [93]. This process involves dramatic changes in cell membrane 

structure and composition. It is known that hundreds of proteins are involved in regulation, 

synthesis, decomposition, modification, and transport of lipids at complex spatial and 

temporal levels [6]. However, people understanding of protein and gene expression 
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regulation in this process is far beyond our understanding of lipid changes. In addition, the 

plasma membrane is the basis for maintaining cellular homeostasis. Analysis of its changes 

is necessary to reveal the disease mechanism.

Lipids are not synthesized under the guidance of the DNA sequence. Lipid synthesis can be 

directly derived from conversion of exogenous uptake or occur ab initio [94]. Analysis of the 

genome at the single-cell level can be performed using amplification and labeling methods 

to achieve highly sensitive analysis [95]. Proteomics can use the antibody or labeling 

technology to achieve high-resolution analysis with the laser ablation inductively coupled 

plasma mass spectrometry imaging [96]. However, the challenge of lipidomics in high-

resolution analysis is even greater. There are no methods to amplify, and a labeling method 

that can be used for signal enhancement is lacking. In addition, due to its chemical 

properties, many aqueous phase analysis methods are not suitable for lipid analysis. The 

most important choice to overcome these mismatches and achieve a technological 

breakthrough is the advancement of mass spectrometry.

Analysis at the single-cell level is divided into two categories: imaging analysis at single-cell 

or subcellular resolution and sensitivity, which is subject to the sampling area size, mainly 

through MALDI or secondary ion mass spectrometry (SIMS). This method is characterized 

by providing important spatial information. As resolution increases, sub-cellular level 

imaging analysis can be achieved. The other analysis strategy is to sample and analyze 

single cells directly using infusion ionization.

The cytosol lipids of cells can be extracted by capillary micro sampling [97]. The advantage 

of this method is that they can be directly sampled from the tissue surface or cultured 

adherent cells without cell isolation. The disadvantage of this method is that it does not 

reflect the actual or even major lipid components of a cell. Because the cytoplasm is not 

uniform, the extracted cytosol is not complete, and the cell membrane components cannot be 

analyzed. However, this is an effective method when it is necessary to exclude interference 

from the cell membrane. There have been many studies on single-cell metabolomics and 

lipidomics methods for extracting cytosol from cells. These methods include different 

ionization methods [98–100], optimization of sampling and direct infusion volumes [101–

103], and use of SPE for selective extraction [104, 105].

Analysis of intact cells can provide more comprehensive information about the cellular 

lipidome [106, 107]. However, application of this analytical method requires isolation of 

adherently-grown cells or analysis of suspended cells. It should be noted that the method of 

analyzing single cells based on droplets and microfluidic systems has matured in single-cell 

manipulation. However, online direct infusion mass spectrometry is not optimized for lipid 

analysis because the design of these microfluidic methods is based on aqueous phase 

analysis. Currently a large number of compromise strategies are the separation of cells using 

a microfluidic system followed by offline detection using MALDI MS [108, 109].

Currently, relative quantitative analysis of direct infusion single-cell lipidomics is based on a 

comparison of normalized mass spectral signal intensities [103, 107–111]. This relative 

comparison cannot be consistent due to the ionization environment, and the precision and 
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reliability of the quantification are affected to some extent. Achieving absolute 

quantification of single-cell lipidome analysis or quantification via a stable reference is an 

important direction that needs to be addressed in the future.

MS imaging analysis is an important approach for lipidomic analysis at the single-cell and 

subcellular levels. For high-resolution MALDI imaging, there are two configurations to 

perform laser adsorption and ionization: the transmission (Figure 2A) and reflection (Figure 

2B, C) modes. Due to the characteristics of the MALDI instrument, the distance from the 

exit objective lens to the sample is usually a few centimeters long. In the ordinary optical 

design, it is difficult to focus below 10 μm in the reflective mode. To improve resolution (to 

decrease the laser spot size), researchers have proposed an improved configuration based on 

the microscope design, which uses a transmission mode to allow the laser to be incident 

from the back of the sample to focus on the surface of the sample section [112]. This is a 

brilliant and simple method that draws directly from proven technologies. This design allows 

the lens to be placed very close to the sample for single-cell level imaging. This 

transmission-mode geometry optical design makes it easier to achieve subcellular resolution. 

However, the transmission mode has high requirements for sample uniformity. Due to the 

texture of the sample and influences of crystallization of the matrix, the effective intensity of 

the laser reaching the surface after passing through the sample varies. This inhomogeneity of 

light intensity affects the ionization efficiency [112].

Most high-resolution MS imaging systems use the reflection mode. In commercially 

available products, the resolution for tissue imaging has reached 10 μm. In theory, it reaches 

the threshold for single-cell resolution. In fact, although the diameter of cells in tissue is 

mostly in the range of 10–20 μm, an MSI resolution below 5 μm is similar to a single-cell 

resolution level due to the heterogeneity of cell morphology. To improve the resolution in the 

reflection mode, the resolution of the 5 μm level can be achieved by expanding the laser spot 

diameter before focusing, improving the spot shape of the light source, and optimizing the 

lens-to-sample distance [113]. Due to inherent characteristics of optical systems, efforts to 

further reduce the spot in the reflective mode require more complex optical designs and are 

very difficult. It is well known that reducing the distance from the lens to the sample surface 

can easily reduce the size of the laser spot. To enable the lens to be placed close to the 

sample for high-resolution imaging while avoiding disadvantages of the transmission mode, 

an improved reflection mode was created by generating a hollow lens (Figure 2C). In this 

way, the sample can fly along the lens axil through a hole in the reflection mode, and the 

laser can focus on the sample surface through the peripheral annular area of the lens. This 

method is called scanning microprobe matrix-assisted laser desorption ionization (SMALDI) 

[114, 115]. Recently, the best resolution of mass spectrometry imaging at 1.4 μm using this 

mode has been reached [116]. At this resolution power, changes in lipids during mitosis can 

be observed. The autofocus system is an integral part of the system because of the depth of 

field decreases dramatically. The lens of SMALDI can be very close to the sample to achieve 

high-resolution imaging; however, the splashed sample can also cause contamination of the 

lens, affecting the stability for long-term acquisition. In addition, since the central portion of 

the lens with the best optical performance cannot be utilized, and the shape of the spot (laser 

energy profile) is not optimized. Yet, overall, this design can well balance the effects of 

Wang and Han Page 10

Trends Analyt Chem. Author manuscript; available in PMC 2020 July 25.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



various constraints. By further improving the design of the lens system, it is expected that 

the resolution will be enhanced to less than 1 μm in the near future.

For the reflection mode, it may be difficult to reduce the spatial resolution to below 400–500 

nm for lipid MS imaging. At the 400–500 nm resolution level, the amount of sample that can 

be utilized is only 1/10 of the current best resolution. To improve the sensitivity, mainly by 

increasing the ionization efficiency, it would be effective to use a laser with a higher energy 

density, a shorter pulse, or a method of introducing post-ionization. We are optimistic about 

achieving resolutions at the near 400–500 nm level, as the major technical obstacles have 

been resolved in recent years. This is because focusing on this level can be achieved by 

expanding the laser beam diameter before objective lens focusing [113] and shortening the 

distance from the objective lens to the sample. The matrix sublimation deposition technique 

also has no obstacles at this level. The morphology of the tissue section was also stable at 

atmospheric pressure, and the deformation of the sample was also minimized [117]. The 

main problem with MALDI at atmospheric pressure is a decrease in sensitivity. The 

integration of other technologies, such as laser-induced post-ionization technique, can 

hopefully achieve imaging analysis at the 400–500 nm resolution. Therefore, the SMALDI 

configuration is likely to be the most accurate MS imaging technology that is able to match 

optical microscope imaging. It is highly possible that for quantitative lipid imaging, the 

internal standards can be quantitatively deposited using a pneumatic spray or electrospray-

assisted pneumatic spray, and the resolution level around1 μm can be achieved.

In theory, the optical resolution can be greatly improved in the transmission mode, 

especially under an ultraviolet excitation source, and the Abbe limit can be as low as about 

150 nm. However, considering the problems mentioned above, the non-uniformity of the 

transmitted laser beam must be solved to ensure the stability and reliability of the signal. 

The technical complexity of achieving the requirements can be very high because 

crystallization of the matrix can affect laser focusing. In addition, a sophisticated and 

complex adaptive optics system is required. It is necessary to equip with a more accurate 

autofocus system, automatic energy compensation system, and short pulse laser. In addition, 

matrix deposition at a nanometer scale is also a technical problem. Although the matrix 

sublimation method achieved the best-known minimum crystal size, there are no effective 

approaches to achieve quantitative sublimation of internal standards. Therefore, it is difficult 

to perform accurate quantitative MS imaging.

Sensitivity is a central constraint factor for accessing rich information from each pixel. As 

spatial resolution increases, the amount of limitedly available sample in each pixel leads to 

insufficient sensitivity. In addition to the quantification challenge, it is increasingly difficult 

to perform identification by MS/MS in situ.

In the MALDI process, the ionization efficiency is less than 1 out of 1000 desorbed 

molecules [118]. The sensitivity can be greatly improved by increasing the ionization 

efficiency. In addition to the development of new matrices and increased the sensitivity of a 

detector, increasing the energy profile of the laser is a direct way, such as changing the 

tunable wavelength and improved spot energy distribution. Derivatization is another way to 

increase the sensitivity. This method works well for targeted analysis. However, 
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derivatization at the single-cell resolution level is much more difficult to implement than the 

tissue level.

From the perspective of the instrumentation, universal improvement of the ionization 

efficiency by post-ionization is a fundamental way for single-cell level analysis. An 

improved post-ionization method (called MALDI-2) based on MALDI imaging was 

designed by Soltwisch and co-workers (Figure 3A) [119]. A sample plume produced by the 

first MALDI process was post-ionized by a second laser beam to generate secondary 

MALDI-like ionization processes in the gas phase. At a 5-μm resolution, the signal 

increased by two orders of magnitude. A large number of neutral molecules in the gas plume 

are ionized. The ionization efficiency of low-abundance species, which are suppressed by 

high-abundance species, is greatly enhanced. This increase in ionization efficiency also 

increases the dynamic range. The application of laser post-ionization technology in MALDI 

imaging has proven that this idea is one of the most potential and scalable technologies for 

single-cell level MS imaging. We expect the combination of SMALDI and MALDI-2 to 

archive accurate mass spectrometry imaging of lipids at subcellular resolution.

This laser-induced post-ionization strategy can be used not only for MALDI imaging, but 

also for ESI-based single-cell analysis (Figure 3B) [99]. If the ionization efficiency is high 

enough, it can improve sensitivity and reduce the ion suppression effect, which is more 

conducive for quantitative analysis.

Unlike MALDI and DESI, we believe that the SIMS method is very suitable for providing 

surface information because there is no extraction process. The gas cluster ion beam (GCIB) 

technology using the super heavy ion beam in the SIMS can achieve minimal molecular 

fragments, while the sensitivity is also greatly reduced [120]. If the ion beam energy is 

increased, the resolution can be increased accordingly; however, the fragmentation becomes 

severe. So although the idealized resolution can be higher, the current practical resolution is 

2 μm [121]. The main development direction of this method is to generate ion beams with a 

larger cluster size. If a significant breakthrough is made in the development of ion beams, 

this approach may provide a wealth of meaningful information for lipidomic surface 

imaging, even including three-dimensional imaging. The advantage of nanoSIMS is that it 

can achieve a 200-nm resolution [122]; however, valid qualitative information is limited. As 

such, it is difficult to expect that this technique will have a wide range of applications in 

lipidomics.

In lipidomic analysis at the single-cell level, direct infusion-based analysis and imaging-

based analysis complement each other. At this level of analysis, no matter which method is 

used, the sensitivity becomes the most important constraint factor. For both electrospray and 

MALDI ionization processes, there are 2–3 orders of magnitude of signal improvement in 

ionization efficiency to be achieved. As the performance of ion transmission and detectors 

increases, detection sensitivity will increase further. Table 2 provides some comparisons and 

summaries of related technologies and challenges.
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3. Perspectives on shotgun lipidomics at temporal levels

The difficulty of analyzing dynamic changes of lipids on a time resolution is far greater than 

analysis on spatial resolution. In circadian physiology, such as the effects of circadian 

rhythm changes on metabolism or in stress response studies, such as anesthesia resuscitation 

or inflammatory response, there have been some studies on lipid changes at different time 

points, and many interesting discoveries have been revealed [123–128]. These studies are all 

in hours or days as a time unit. By reducing the sampling interval, temporal resolution can 

be increased, but the temporal resolution that can be improved is very limited. Stable isotope 

labeling methods are often used for comparative/quantitative analysis. For cultured cell 

samples, stable isotope labeling can be used to track the flux of lipid metabolism. Some 

representative methods, such as X13CMS or lipidome isotope labeling of yeast (LILY) [129, 

130], have demonstrated that lipid labeling can be efficiently quantified. The stable isotope 

labeling method can also be used for labeling in small animals. There is little research in 

applying isotopic labeling for high temporal resolution lipidomics. We believe that lipidomic 

analysis with higher temporal resolution can be obtained by selecting multiple isotopic 

labels and applying appropriate time or transient labeling.

Due to the fluidity of the membrane, even if the time interval of sample collection is 

shortened or stable isotope labeling is used, dynamic information of membrane lipids may 

change due to a long duration of removal from a physiological environment. Ultra-fast and 

low-temperature freezing can reduce this effect. The SIMS technology is a surface analysis 

method that is compatible with cryo-freeze during sample preparation [131]. Therefore, it is 

possible to study dynamic changes of the cellular lipidome by this means, and 

simultaneously, high-resolution imaging can be achieved. It is known that PE is usually 

enriched on the inner leaflet of the cell membrane, whereas in mitotic cytokinesis, PE is 

distributed on the outer leaflet in the cleave furrow [132]. Similar to such dynamic changes 

of PE during mitosis, the analysis of time snapshots obtained by SIMS cell surface scanning 

may reveal many fundamental discoveries that are yet unknown.

Since mass spectrometry requires substantial ‘extraction’ of molecules from the sample, the 

challenges of using mass spectrometry to analyze dynamic lipidome changes at high 

temporal resolution far exceeds the challenge in spatial resolution. Optical-based analysis 

methods have significant advantages in high time-resolved dynamic analysis and real-time 

analysis in vivo. Fluorescent probe labeling is commonly used in optical imaging 

methods[133]. The advantage of this type of approach is high sensitivity. The disadvantage 

is that the structure of the fluorescent probe is inconsistent with the natural structure of the 

lipid molecule. Since the lipid molecules themselves are relatively small, this type of probe 

may have a greater negative effect on the results than the protein probe. Therefore, real-time 

imaging methods based on Raman spectroscopy have been developed in recent years[134]. 

This method overcomes the shortcomings of fluorescent probes. The insufficiency of Raman 

imaging is that the sensitivity needs to be improved. Currently, it is usually used to observe 

specific cells type rich in lipids. Although optical-based methods can achieve high temporal 

resolution, the specificity is limited. The result often displays the overall functioning of a 

class of lipids. It is difficult to distinguish specific lipid species.
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4. Conclusion

Mass spectrometric analysis of lipids has evolved for nearly 40 years. Shotgun lipidomics 

has also exceeded 15 years of research history. During the development process, the scope 

and methods of shotgun lipidomics have undergone profound changes. The scope of shotgun 

lipidomics has also expanded from massive tissue sample level to micro- or even single-cell 

levels. The analysis ranges from qualitative and quantitative determinations of lipid 

molecular species expended to position determinations of unsaturated bonds and isomer 

characterization and quantification. Data dimensions of the analysis extend from mixtures to 

spatial distribution of lipid molecules and dynamic change characterization. The expansion 

of these research areas has been driven by advances in a range of instruments and analytical 

methods. Quantitative analysis is a major advantage of shotgun lipidomics, including its 

increased sensitivity as a prerequisite. Increasing ionization efficiency or selective ionization 

improves sensitivity and the dynamic detection range, which is crucial for shotgun 

lipidomics.
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Figure 1. 
Approaches to expand the scope of shotgun lipidomic analysis.
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Figure 2. 
Schematic diagram of MALDI MS imaging configuration. A, Transmission mode. B, 

Reflection mode. C, SMALDI.
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Figure 3. 
Schematic diagram of laser-induced post-ionization. A, MALDI MS imaging with laser-

induced post-ionization. B, ESI-based direct infusion MS with laser-induced post-ionization.
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Table 1.

Different measurement levels of shotgun lipidomics for the scenarios and objectives of biomedical research.

Macro/Organ Level Micro/Tissue Level Single-cell Level

Representative 
samples

Whole organs (e.g., liver, heart)/Body 
Fluids (e.g., serum, plasma)

Tissue section/Local part of organs (e.g., 
islet, dorsal root ganglion)/Collection of 
organelles (e.g., mitochondrial)

Cultured cells/Tissue section

Application 
scenario

Functional research. The role of 
lipidome in the development of the 
disease is understood from the 
perspective of the overall physiological 
function of the organs or the whole body.
[135, 136]

Corresponds to research at the resolution 
of histological level or above. It is of great 
significance for the study of drug 
functions and release, as well as the 
mechanism or the development of 
diseases. [29, 122, 137, 138]

Corresponds to studies at the 
cellular and molecular levels. It 
is the cornerstone of basic 
research.[85, 92, 97]

Technical 
maturity of 
biomedical 
applications

High maturity. There is a need to 
increase the automation and 
standardization of quantification. The 
analysis of the fine structure of lipid 
molecules is at the forefront of 
methodological research.

Generally, technical mature in the 
qualitative analysis. The quantification 
analysis is not mature enough. Increased 
sensitivity is the key to solving the 
problem.

Technically immature. The 
current research is focused on 
methodological study. In 
addition to improving 
sensitivity, micrometer/
nanometer operations and 
control are also technical 
bottlenecks.
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Table 2.

Technical characteristics of shotgun lipidomics at different level of measurements.

Scope of Analysis MS Identification Quantification Derivatization Fine structure 
characterization

Major 
technology 
trends

Macro/Organ (Of or 
above 1 mm)

ESI 
MALDI 
Ambient 
MS

>1000 species; > 45 
lipid classes

Absolute 
quantification No limitation

*****
Limited 

quantitative 
methods

Automated high-
throughput 
process

Micro/Tissue(20–
200 μm)

ESI 
MALDI 
Ambient 
MS

<1000 species; 
Major species of SL, 
GPL, GL and NEFA

Relative 
quantification; 
Limited Absolute 
quantification

Limited choices **

Efficient 
extraction and 
derivatization 
methods

Single-cell/
Subcellular(<10 
μm;Below mean cell 
size)

ESI 
MALDI 
SIMS 
LAESI 
LESA

<100 species; High 
abundant species of 
SL, GPL, GL and 
NEFA

Relative 
quantification Rare *

Improvement of 
ionization 
efficiency
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