
Case Report

Experiences implementing scalable, containerized, cloud-

based NLP for extracting biobank participant phenotypes

at scale

Timothy A. Miller 1,2, Paul Avillach1,3, and Kenneth D. Mandl1,2

1Computational Health Informatics Program, Boston Children’s Hospital, Boston, Massachusetts, USA, 2Department of Pediatrics,

Harvard Medical School, Boston, Massachusetts, USA and 3Department of Biomedical Informatics, Harvard Medical School,

Boston, Massachusetts, USA

Corresponding Author: Timothy A. Miller, PhD, Computational Health Informatics Program, Boston Children’s Hospital,

Landmark Center 5516.7, Mail Stop BCH3187, 300 Longwood Avenue, Boston, MA 02115-5724, USA; timothy.miller@chil-

drens.harvard.edu

Received 25 February 2020; Revised 3 April 2020; Editorial Decision 8 April 2020; Accepted 14 April 2020

ABSTRACT

Objective: To develop scalable natural language processing (NLP) infrastructure for processing the free text in

electronic health records (EHRs).

Materials and Methods: We extend the open-source Apache cTAKES NLP software with several standard tech-

nologies for scalability. We remove processing bottlenecks by monitoring component queue size. We process

EHR free text for patients in the PrecisionLink Biobank at Boston Children’s Hospital. The extracted concepts are

made searchable via a web-based portal.

Results: We processed over 1.2 million notes for over 8000 patients, extracting 154 million concepts. Our largest

tested configuration processes over 1 million notes per day.

Discussion: The unique information represented by extracted NLP concepts has great potential to provide a

more complete picture of patient status.

Conclusion: NLP large EHR document collections can be done efficiently, in service of high throughput pheno-

typing.

Key words: natural language processing, medical informatics, phenotyping, biobanking

LAY SUMMARY

The text entered by physicians into electronic health records con-

tains detailed information about patients, but it is more difficult to

use in research applications than structured fields. Natural language

processing (NLP) techniques can be used to convert text into more

usable formats, but existing NLP tools do not scale to large collec-

tions, can be difficult to use, and existing solutions tend to be spe-

cific to single use cases or settings.

In this work, we developed an architecture to address all of these

problems, using cloud computers (Amazon Web Services Elastic

Compute Cloud) to address scaling, using containerization (Docker)

to hide the complexity of NLP tools, and using open-source and

standard tools (Apache cTAKES, Apache UIMA, Apache

ActiveMQ) for a solution that should be widely usable.

We use this architecture to process the notes for all patients in a

BioBank at Boston Children’s Hospital, with extracted NLP varia-

bles going into a database that can be queried by researchers. We

then conduct experiments on a controlled subset of that data, and

show that, for the range of scaling we explored, processing time

scales nearly linearly with the number of cloud computers used to

do the processing.

VC The Author(s) 2020. Published by Oxford University Press on behalf of the American Medical Informatics Association.

This is an Open Access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0/), which permits unre-

stricted reuse, distribution, and reproduction in any medium, provided the original work is properly cited. 185

JAMIA Open, 3(2), 2020, 185–189

doi: 10.1093/jamiaopen/ooaa016

Advance Access Publication Date: 22 May 2020

Case Report

http://orcid.org/0000-0003-4513-403X
https://academic.oup.com/
https://academic.oup.com/

BACKGROUND AND SIGNIFICANCE

Much of the potentially valuable information in electronic health

records (EHRs) is “locked up” in unstructured text. NLP techniques

can map the text into more usable formats, for example, SNOMED

concept codes. NLP techniques for clinical data have substantially

advanced in the last decade, but most NLP success stories involve

one-off projects requiring substantial NLP and clinical expertise. A

pipeline for large-scale processing of clinical text, with output made

available to all clinical investigators at an institution, could increase

the value of the EHR for research.

We sought to use an open-source NLP system, Apache cTAKES,1

to process the notes for a large biobank patient cohort at a pediatric

hospital, as a first step in developing hardened processes and tools

for processing the notes for the entire patient population. The goal

of this processing is to make NLP phenotyping variables available to

all researchers.

Other recent work has reported using cTAKES for processing

large collections of notes. The first used similar components to this

work—dictionary lookup to extract concepts and negation, applied

to millions of notes.2 Another work used Apache Beam and Spark

and cloud infrastructure to distribute the computation, again with

standard components, applied to over 3 million notes.3 Another re-

lated effort wrapped MetaMap with database persistence, and Rep-

resentational State Transfer (REST) web services as the interface to

both processing and querying.4 The work we describe here differs in

using containerization to encapsulate NLP components, extensive

use of standard, and open-source technologies, and in that our code

is made available on Github.

MATERIALS AND METHODS

The desiderata that influenced our design were encapsulation, re-

peatability, and scalability. By encapsulation we mean hiding as

many NLP details as possible from system users. To do this, we de-

velop several standard NLP components in a container architecture

called Docker, providing recipes for building these containers that

eliminate the requirement to install and manage the cTAKES NLP

software. At the same time, advanced users can tailor the scripts to

create their own containers, requiring minimal effort for those who

are already familiar with cTAKES. Repeatability is important be-

cause NLP research moves quickly, and we want it to be as easy as

possible to run NLP pipelines with new components. Scalability is

important because EHR systems can contain millions of records,

and if we want to be able to repeatedly run different NLP systems,

we aim to have their runtime be measured in hours and not weeks.

Our scalability solution uses multiple technologies detailed below to

allow users to simply specify how many CPU instances they would

like to have running NLP pipelines.

The cTAKES software contains a number of modules that devel-

opers (including author T.A.M.) have created for different NLP

tasks. These include linguistic pre-processing modules for breaking

the text into sentences and tokens, and tagging the tokens with parts

of speech (eg, noun, adjective). Next, candidate phrases are matched

to a dictionary of concepts, by default SNOMED CT and

RxNORM, and tagged with concept codes from the original dictio-

nary, and a Concept Unique Identifier (CUI) from the NLM’s Uni-

versal Medical Language System (UMLS) Metathesaurus. This

dictionary lookup is what many researchers want—putting text into

a coded form that can be queried as easily as billing codes (eg, Inter-

national Classification of Diseases, or ICD codes). The assertion sta-

tus module then labels extracted concepts for whether they are

negated, uncertain, historical, conditional, or non-patient-related

(eg, family history).5

For this work, we developed a package of tools that extend the

functionality of Apache cTAKES to easily scale on commodity cloud

computing infrastructure. These extensions involve the use of three

important technologies: (1) Apache UIMA-AS, an extension to

UIMA to allow for distributed text processing, (2) Docker, a light-

weight virtualization software, and (3) Amazon Web Services

(AWS), and particularly the Elastic Compute Cloud (ec2), which

allows for programmatically starting and stopping computing

resources on demand. The combination of UIMA-AS and ec2 creates

the scalability—different processing pipelines can be distributed be-

tween nearly unlimited numbers of servers. UIMA-AS can also be

configured to allow for on-instance parallelization—we configured

each ec2 instance to run two pipelines in parallel. Individual compo-

nents may or may not take advantage of threading—we considered

that outside the scope of this work, but our assumption is that most

are single-threaded. Finally, Docker gives us encapsulation, as the

UIMA-AS wrappers around cTAKES packages can be packaged as

portable containers that can run on any hardware that runs Docker.

Implementation
Figure 1 shows a schematic of the system architecture. The system

architecture was split into a number of natural components, each of

which is wrapped in a Docker container with a startup script.

UIMA-AS provides tools that allow any component to be replicated

multiple times for scalability, and we use ec2 instances provide the

hardware for each replicated component. Specifically, the ec2

instances we use in this work are m5.large instances, which have 2

CPUs and 8 GB of RAM. The components we used include the fol-

lowing:

Document router

This container encapsulates the Apache ActiveMQ queue manager

software. The cTAKES containers register with this component

when they start up, so that when we pass a document to this compo-

nent it will be routed through the correct components of the NLP

pipeline.

Reader

This container reads from a given data source and passes the docu-

ments to the Document Router. We have implemented several exam-

ple Readers that read from files in a directory, rows in an Oracle

database, or documents in an Apache Lucene index.

NLP component(s)

This container type wraps an Apache cTAKES module that analyzes

input text and adds some annotations to the data structure describ-

ing the document. Each annotator is wrapped in a UIMA-AS config-

uration file that specifies a network address of the cTAKES

resource. A given annotator does not need to know where it belongs

in a larger pipeline. We have implemented pipeline components for

a de-identification module and the cTAKES dictionary lookup

(which also includes negation processing). The de-identification

module wraps the open-source MIST tool,8 using a statistical model

trained on data from the SHARPn project.9 The dictionary lookup

uses the cTAKES default, and we use the rule-based negation system

that implements the ConText algorithm.10

186 JAMIA Open, 2020, Vol. 3, No. 2

Writer

This container type is typically the end stage for a pipeline. We have

implemented writer containers for Oracle database in the i2b2/

tranSMART format and for MongoDB in an ad hoc format, both of

which are configurable with database credentials.

Pipeline specifier

This container type describes how to compose pipeline components

into a complete NLP pipeline. It may also optionally include a writer

component. We have implemented a pipeline that combines the de-

identification component, dictionary lookup component (including

concept negation classification), and writers to both Oracle and

MongoDB databases.

Evaluation
The architecture we described above was tested on a cohort of

patients enrolled in the Boston Children’s Hospital PrecisionLink

Biobank.11 These patients were broadly consented to allow biosam-

ples collected during the course of treatment to be deposited into

storage for future research, not yet specified. Phenotype is derived

from EHR data collected as a byproduct of care. Patients with rele-

vant phenotypes or genotypes can be discovered via the Portal query

tool, which relies on the PIC-SURE API12 to interrogate a PIC-SURE

High Performance Data Store (HPDS).13 Queries can be variant-

first, phenotype first, or a combination.13 To complement the struc-

tured EHR data, we performed high throughput processing on clini-

cal notes for 8239 patients (as of February 1, 2019), so that

phenotype queries could include SNOMED concepts.

We ran our scalable version of cTAKES on AWS over the course

of several days to monitor its progress and minimize any restarts due

to unforeseen computational issues. We used a collection reader

container that read from the Biobank’s central i2b2 database and a

writer that wrote back to a different table in the same i2b2 database.

This run focused on stability and monitoring (as opposed to scalabil-

ity), using two nodes of the cTAKES dictionary lookup pipeline con-

tainer and one node for every other container type. Following this

run, we extracted a subset of 10 000 notes to an AWS filesystem, to

run controlled experiments that would not subject the system to var-

iation in performance if other users simultaneously accessed the

i2b2 database. These notes had an average length of 851 word

tokens, with the largest document having 21 195 tokens. We also

performed analysis of the extracted CUIs from this experiment, in-

cluding unique CUI counts, and statistics describing the distribution

of semantic types of extracted CUIs (https://documentation.uts.nlm.

nih.gov/rest/home.html).

In preliminary testing we found that our speed improvements

were not linear with increases in scaling with ec2. To debug our scal-

ing issue, we made use of a REST-based monitoring interface to the

ActiveMQ queue manager package. This allows us to query the doc-

ument router periodically for reports of queuing behavior. By moni-

toring these queues, we saw that the de-identification component

consistently had larger queues, and so we added additional ec2

instances for that component.

RESULTS

Figure 2 shows the results of different scale-outs for processing the

10 000 notes in a controlled scenario. We show a nearly linear

speedup when going from one to 10 instances of each component.

The fastest configuration is processing 12.45 notes per second. This

corresponds to a speed of over 1 million notes per day, with the ca-

veat that different input reading and output writing regimes may in-

troduce new bottlenecks. The cost per million notes ranged between

$31 for our cheapest setting, to $41 for the fastest setting.

Figure 1. Architecture of scalable processing infrastructure. Solid blue represents storage devices. Outer black boxes represent Docker containers, inner blue

boxes represent UIMA-AS components. Dotted lines (around Temporal6 and DeepPhe7) show potential future components, which we include to indicate where

they fit conceptually in this architecture.

Figure 2. Performance plot, comparing number of m5.large computing nodes

against processing time (left vertical axis) and processing speed (right vertical

axis).

JAMIA Open, 2020, Vol. 3, No. 2 187

https://documentation.uts.nlm.nih.gov/rest/home.html
https://documentation.uts.nlm.nih.gov/rest/home.html

Outputs of processing
We processed more than 1.2 million notes associated with patients

enrolled in the PrecisionLink Biobank, finding over 154 million con-

cepts. These were written to an Oracle database, which were then

incorporated into the user interface, so that codes extracted from

NLP could be used analogously with structured information (ICD

codes) in cohort exploration tools.

In our more controlled experiment that processed 10 000 notes,

the system discovered 14 998 unique CUIs (comprising 394 million

CUI instances). Figure 3 shows the proportions of different semantic

types represented by the extracted CUIs.

DISCUSSION

We were able to engineer our framework so that in our controlled

experiment, scaling occurs nearly linearly with the number of ec2

nodes used. One of the most important practical considerations is

scaling even further to allow for processing of massive collections.

Boston Children’s Hospital has more than 70 million notes in total

that could be processed, and at the fastest speed we report here it

would take 65 days to process them, at cost of $2870 using the fast-

est $41 per million notes estimate from above. Our reported results

suggest that to process all of the BCH notes in a week with this con-

figuration, it would require a scaleup to 93 ec2 nodes. Diminishing

returns of scaleup are likely, however, as various factors make

purely linear scaling difficult to sustain, so this should be seen as a

lower estimate. Experimenting with various ec2 instances and other

parameters could potentially change these figures; deeply exploring

the tradeoffs between processing time and costs will be important

for repeated institution-scale processing.

Our results also show a potential significant potential value in

NLP. Important semantic types like Finding, Body Part, and Sign or

Symptom make up many of these concepts, and these types provide

important information regarding patient status that may not be rep-

resented anywhere in codified data. It is difficult to rigorously quan-

tify the added value of NLP over codified data, since every

institution may use different coding systems, and capture different

levels of granularity. However, in the months following the process-

ing described here, we worked with many interested investigators

and report three example queries that NLP permitted that codified

data did not: ketotic hypoglycaemia, for which the dictionary

lookup identified the SNOMED code, and the negation detector

found rule-outs; opsoclonus myoclonus syndrome, a rare disease

without an ICD9 code that was identified by the NLP dictionary

lookup; and focal epilepsy, for which our coding was not specific

Figure 3. Pie chart showing proportions of different UMLS semantic types represented by extracted CUIs.

188 JAMIA Open, 2020, Vol. 3, No. 2

enough to capture, but which again the dictionary lookup on the

text was able to capture and map to SNOMED.

This is especially valuable in identifying patients with rare dis-

eases, where ICD may not have a code for the disease, but where

NLP captures the disease either through a SNOMED mapping or

through some combination of findings and signs and symptoms.

CONCLUSIONS

This work shows that it is possible to build scalable, containerized,

cloud infrastructure for processing clinical notes in an EHR system.

The resulting infrastructure is more suitable for repeated runs, for

example when new NLP components are developed. The modular

nature of the architecture allows implementers to mix and match

readers and writers for custom setups. The code developed for this

work is available under the Apache 2 license at https://github.com/

tmills/ctakes-docker.

FUNDING
This work was supported by U01TR002623 from the National Cen-

ter for Advancing Translational Sciences, NIH, by U01HL121518

from the National Heart Lung and Blood Institute, NIH, by

R01LM012973 from the National Library of Medicine, and by the

Boston Children’s Hospital PrecisionLink Biobank.

AUTHOR CONTRIBUTIONS
T.A.M. implemented the methods, ran the experiments, and drafted

the manuscript. T.A.M., P.A., and K.D.M. designed the architecture

and interfaces, and edited and revised the manuscript.

CONFLICT OF INTEREST STATEMENT

None declared.

REFERENCES

1. Savova GK, Masanz JJ, Ogren PV, et al. Mayo clinical Text Analysis and

Knowledge Extraction System (cTAKES): architecture, component evalu-

ation and applications. J Am Med Inform Assoc 2010; 17 (5): 507–13.

2. Afshar M, Phillips A, Karnik N, et al. Natural language processing and

machine learning to identify alcohol misuse from the electronic health re-

cord in trauma patients: development and internal validation. J Am Med

Inform Assoc 2019; 26 (3): 254–61.

3. Thayer J, Miller J, Pennington JW. Fault-tolerant, distributed, and scal-

able natural language processing with cTAKES. In: Proceedings of AMIA

Annual Symposium, Poster Session; November 2019; Washington, DC.

4. Wu S, Miller T, Masanz J, et al. Negation’s not solved: generalizability

versus optimizability in clinical natural language processing. PLoS One

2014; 9 (11): e112774.

5. Lin C, Dligach D, Miller TA, et al. Multilayered temporal modeling for

the clinical domain. J Am Med Inform Assoc 2016; 23 (2): 387–95.

6. Savova GK, Tseytlin E, Finan S, et al. DeepPhe: a natural language proc-

essing system for extracting cancer phenotypes from clinical records. Can-

cer Res 2017; 77 (21): e115–e118.

7. Aberdeen J, Bayer S, Yeniterzi R, et al. The MITRE identification scrubber

toolkit: design, training, and assessment. Int J Med Inf 2010; 79 (12):

849–59.

8. Chute CG, Pathak J, Savova GK, et al. The SHARPn project on secondary

use of Electronic Medical Record data: progress, plans, and possibilities.

AMIA Annu Symp Proc 2011; 2011: 248–56.

9. Harkema H, Dowling JN, Thornblade T, et al. ConText: an algorithm for

determining negation, experiencer, and temporal status from clinical

reports. J Biomed Inform 2009; 42 (5): 839–51.

10. Bourgeois FT, Avillach P, Kong SW, et al. Development of the precision

link biobank at Boston Children’s Hospital: challenges and opportunities.

J Pers Med 2017; 7 (4): 21.

11. hms-dbmi/pic-sure. Harvard Medical School - Department of Biomedical

Informatics 2020. https://github.com/hms-dbmi/pic-sure Accessed Febru-

ary 13, 2020.

12. hms-dbmi/pic-sure-hpds. Harvard Medical School - Department of Bio-

medical Informatics 2020. https://github.com/hms-dbmi/pic-sure-hpds

Accessed February 13, 2020.

13. Mandl KD, Glauser T, Krantz ID, et al.; the Genomics Research and Inno-

vationNetwork. The Genomics Research and Innovation Network: creat-

ing aninteroperable, federated, genomics learning system. Genet Med

2019; 22 (2): 371–80.

JAMIA Open, 2020, Vol. 3, No. 2 189

https://github.com/tmills/ctakes-docker
https://github.com/tmills/ctakes-docker
https://github.com/hms-dbmi/pic-sure
https://github.com/hms-dbmi/pic-sure-hpds

