Phaneuf et al. BMC Genomics (2020) 21:514

https://doi.org/10.1186/512864-020-06920-4 B M C G enom iCS

METHODOLOGY ARTICLE Open Access

Causal mutations from adaptive laboratory ®
evolution are outlined by multiple scales of
genome annotations and condition-
specificity

Patrick V. Phaneuf', James T. Yurkovich? David Heckmann? Muyao Wu?, Troy E. Sandberg?, Zachary A. King?,
Justin Tan?, Bernhard O. Palsson'>*> and Adam M. Feist>>"

Check for
updates

Abstract

Background: Adaptive Laboratory Evolution (ALE) has emerged as an experimental approach to discover mutations
that confer phenotypic functions of interest. However, the task of finding and understanding all beneficial
mutations of an ALE experiment remains an open challenge for the field. To provide for better results than
traditional methods of ALE mutation analysis, this work applied enrichment methods to mutations described by a
multiscale annotation framework and a consolidated set of ALE experiment conditions. A total of 25,321 unique
genome annotations from various sources were leveraged to describe multiple scales of mutated features in a set
of 35 Escherichia coli based ALE experiments. These experiments totalled 208 independent evolutions and 2641
mutations. Additionally, mutated features were statistically associated across a total of 43 unique experimental
conditions to aid in deconvoluting mutation selection pressures.

Results: Identifying potentially beneficial, or key, mutations was enhanced by seeking coding and non-coding
genome features significantly enriched by mutations across multiple ALE replicates and scales of genome
annotations. The median proportion of ALE experiment key mutations increased from 62%, with only small coding
and non-coding features, to 71% with larger aggregate features. Understanding key mutations was enhanced by
considering the functions of broader annotation types and the significantly associated conditions for key mutated
features. The approaches developed here were used to find and characterize novel key mutations in two ALE
experiments: one previously unpublished with Escherichia coli grown on glycerol as a carbon source and one
previously published with Escherichia coli tolerized to high concentrations of L-serine.
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Conclusions: The emergent adaptive strategies represented by sets of ALE mutations became more clear upon
observing the aggregation of mutated features across small to large scale genome annotations. The clarification of
mutation selection pressures among the many experimental conditions also helped bring these strategies to light.
This work demonstrates how multiscale genome annotation frameworks and data-driven methods can help better
characterize ALE mutations, and thus help elucidate the genotype-to-phenotype relationship of the studied

Keywords: Adaptive laboratory evolution, Mutation functional analysis, Mutation meta-analysis, Mutation

Background

Adaptive Laboratory Evolution (ALE) is used to study
microbial populations under specific conditions over
many generations and provides insights into the under-
lying mechanisms of adaptive phenotypes. Mutations ob-
served from ALE experiments have proven valuable for
both biological discovery and applied biotechnology,
such as the elucidation of the rate and mechanisms of
mutation development [1-5] and the design of industri-
ally relevant strains for increased bioproduction [6]. The
increased scale of ALE experiments—due to the low cost
of sequencing and the inclusion of intermediate/mid-
point samples [7], multiple replicates [8], and population
samples [9]—has increased the number of mutations
that require analysis. While the identification of “key
mutations”, or those mutations hypothesized as being
adaptive, is better enabled with more mutation data [8],
traditional methods are not well suited for large scale
sets of ALE mutations. The potential of mutated non-
coding regulatory features contributing to an adaptive
phenotype further complicates the set of features to con-
sider when seeking to understand ALE mutations. More-
over, multiple experimental parameters can contribute
to the selection pressure that an organism experiences
in experimental evolution [6, 10]. Ultimately, the pri-
mary challenges with traditional mutation functional
analysis are finding the subset of adaptive mutations
among the many that emerge during an ALE experiment
and understanding the adaptive mechanisms of these
mutations relative to specific selection pressures.

The main concern with traditional ALE mutation ana-
lysis is the mutated genes and how the sequence changes
affect their function. Identifying commonly mutated
genetic features (genes or intergenic regions) across rep-
licate ALEs, known as convergence, has been established
as a primary method for identifying potentially causal
mutations, or key mutations, in ALE experiments [8].
Mutation convergence on broader levels of genomic
organization has provided evidence that mutations tar-
geting different features can accomplish similar adaptive
functional changes [11]. This bottom-up convergence of
mutated features across multiple scales of annotations

enables a top-down approach to understand large sets of
mutations: researchers can consider the broader func-
tional annotations emphasized by large sets of small mu-
tated features before analyzing individual mutations.
Enrichment methods have been developed to identify
over-represented classes among large collections [12].
Thus, enrichment methods can leverage high-
throughput genome-wide data and molecular biology
ontologies to identify enriched biological functions from
large sets of mutated genes. However, the challenges of
examining non-coding regulatory features and deconvo-
luting selection pressures for ALE mutations remain.
The accumulating wealth of information on the mo-
lecular biology of Escherichia coli K-12 MG1655 has led
to the emergence of knowledge and data resources that
can help solve challenges in understanding ALE results.
Genome annotation frameworks such as regulons [13],
pathways [14], and clusters of orthologous groups
(COG) [15] describe functionally related coding and
non-coding regulatory features on multiple scales of
genome annotation. Similar to gene set enrichment ana-
lysis [12], significant enrichment can be investigated
across multiple scales of genome annotations for mean-
ingful convergence events. Additionally, the increased
amount and scale of ALE experiments have led to efforts
in consolidating their results. ALEdb, a web-based plat-
form, reports on the mutations and experimental condi-
tions from multiple experimental evolutions [16]. The
mutations and conditions found in ALEdb can be used
to associate mutated features to conditions and provide
evidence on the selection pressures for ALE mutations.
Here, we address the challenges with finding and un-
derstanding adaptive mutations through two approaches.
The first is to better identify key mutations than trad-
itional means by seeking statistically significant mutation
convergence across multiple scales of genome annota-
tions. The second is to better understand these key mu-
tations through their enrichment of functional
annotations and their statistical associations to experi-
mental conditions. We anticipate that the approaches
described here will provide the ability to deconvolute
systematic targets of adaptive mutations and their
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selection pressures to aid in improving ALE mutation
functional analysis.

Results

A framework for finding key mutations using significant
convergence on multiple scales of genome annotations
To comprehensively characterize the frequency of mu-
tated features on the genome for a set of ALE experi-
ments, mutation annotations should consider the variety
of non-coding regulatory features along with coding fea-
tures. Genome references typically include gene annota-
tions, enabling mutation calling pipelines to describe
mutations as affecting genes and/or intergenic regions,
though there exists a multitude of additional feature and
functional annotations. In this work, multiple annotation
types were used to consider different scales of mutated
features (i.e., gene, operon, regulon, etc.) for the E. coli
K-12 M@G1655 genome (Fig. 1a), with a total of 25,321
unique genome annotations for mutations (Fig. 2a). The
smallest-scale genome annotation type used in this work
was referred to as genomic features and described cod-
ing features, non-coding regulatory features, and non-
coding intergenic regions of unknown function. The
regulatory features considered were transcription factor
binding sites (TFBS), promoters, terminators,
attenuator-terminators, and ribosome binding sites
(RBS). These small regulatory features and genes were
described by RegulonDB version 10.0 [17]. Mutated cod-
ing and non-coding features were then mapped to their
transcription units (TU), then operons and functional
annotations (Fig. 1b). The sources of functional annota-
tions used in this work were pathways as described by
the PATRIC database [14], regulons of RegulonDB ver-
sion 10.0 [17], and clusters of orthologous groups
(COGs) [15]. This multiscale annotation framework
included a level of annotation with only genes and inter-
genic regions to provide the expected evidence of con-
vergence according to previously established methods of
finding key mutations [8].

The Sankey diagrams [18] visualizations used in this
work demonstrate the number of mutations to each
feature and the connectivity of smaller-scale features
to their larger-scale counterparts (Fig. 1c). The under-
lying data structure is a directed acyclic graph (DAG).
The DAG represents the frequency of mutated gen-
omic features and how they aggregate towards
broader annotation type features. The nodes in the
DAG represent a mutated feature. The edges of the
DAG represent the connection between those fea-
tures, where their direction typically goes from
smaller to broader annotation types (Fig. 1b). The
edge weights represent the accumulating instances of
mutated genomic features across annotation scales.
The node weights represent the sum of incoming
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edge weights. The visualization presented in this
study for the DAG additionally includes the different
mutation types affecting each genomic feature. A
DAG is constructed per mutation set, where the mu-
tated genomic features are first established from the
mutation information. A single mutation may intro-
duce multiple genomic features as well as multiple
mutations may only contribute to the mutation fre-
quency of one genomic feature. If no explicit genomic
feature can be connected to a mutation, an intergenic
region annotation is assigned according to flanking
genes. Transcription units (TU) are part of the DAG,
though aren’t included in this study’s Sankey dia-
grams due to containing mostly redundant mutated
feature convergence with operons. TUs connected
genes to higher-level annotations associated with
regulatory mechanisms. TUs also enabled the connec-
tion between non-coding features and gene-based
functional annotations, such as pathways and COGs,
according to the genes hosted on a TU (Fig. 1b).
Connections between mutated genomic features and
broader annotations mostly rely on the relationships
established within the multiple sources of operational
and functional annotations integrated for this study.
Mutated intergenic regions of unknown function are
assigned TUs according to overlapping nucleotide po-
sitions. After TUs are assigned, functional annotations
can be connected in the same manner as with mu-
tated genomic features of known functions.

Large features are aggregations of many smaller
features and consequently manifest mutation con-
vergence more easily by random chance (Fig. 2b). A
statistical enrichment method was applied to quan-
tify the significance of mutation convergence on
features of the genome and prioritize their import-
ance for functional analysis. The method assumed
that each nucleotide in the genome has the same
probability of being spontaneously mutated in an
ALE. This assumption translated to annotated fea-
tures on the genome having a probability of being
mutated proportional to their length. Though this
assumption may not perfectly reflect the distribu-
tion of mutations across a genome, it has been ex-
perimentally validated to represent their general
distribution with mutation accumulation studies
[18]. Thus, studies searching for signals of mutation
selection commonly use a random distribution of
mutations across the amino acids or nucleotides for
a set of features [19] or a whole genome [20] as a
null hypothesis in their statistical enrichment tests.
Significant enrichment of annotated features was
tested separately per annotation type (genomic fea-
tures, genetic features, operons, etc). For annotation
types that don’t have explicit coverage of the entire
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Fig. 1 An illustration of how features were connected together in this work’s multiscale annotation framework. a An illustration of the variety of
annotations, given in parenthesis per annotation type, for the E. coli K-12 MG1655 genome and how a single mutation can affect multiple
features across different scales of annotations. The diagonal striped regions illustrate overlapping features. Dark-edged rectangles represent
defining features for an annotation type. Grey-edged boxes represent operational regions or features associated with the defining features.
Features are not to scale. (b) A flow diagram demonstrating the mapping of mutated small-scale features onto larger-scale features of the
multiscale annotation framework of E. coli K-12 MG1655 from this work. ¢ An example of the Sankey diagram visualization used in this work to
demonstrate the number of mutations to each feature and the connectivity of smaller-scale features to their larger-scale counterparts. Each
feature is annotated with a value representing the number of instances the feature was observed to be mutated. Significantly enriched features
are annotated with an asterisk (*). Mutated features contributing to the significant enrichment of higher-level annotations are considered as
hosting key mutations. The venn diagram illustrates the potential for finding more key mutations than traditional methods through multiscale
scale annotation mutation convergence
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Fig. 2 Magnitudes for different aspects of the ALE experiment mutations, conditions, and annotations used within this study. a The total number
of experiments, ALEs, mutations, conditions, and unique genome annotations. b The distribution of mutations and annotation type features
mutated per experiment. ¢ The distribution of single versus multiple feature mutations per experiment, based on genomic features. d The
conditions describing ALE experiments from ALEdb, the combinations of condition labels across ALEs, and the amount of each specific label for

genome, an additional feature was added to the an-
notation type set that represented these non-
annotated regions. For each annotation type, a per-
mutation test of 10,000 iterations was executed
where mutations were distributed across a specific
annotation type’s features using their mutation
probabilities per iteration [19]. The length of each
regulon was defined as the total number of nucleo-
tides in the TUs considered within each regulon.
The length of each COG or pathway was defined as
the total number of nucleotides in the TUs in
which the gene connected to the COG or pathway
was found, excluding the lengths of genes within
the TU not connected to the specific COG or path-
way. Features with more than one mutation and a
permutation test p-value <0.05 (Bonferroni cor-
rected) were considered to be significantly enriched
by mutations. A mutated feature found to be sig-
nificantly enriched had an asterisk (*) prepended to
its label within the flow diagram (Fig. 1c). Finally,

all mutations contributing through convergence to
the significance of an enriched feature were consid-
ered key mutations (Fig. 1c).

The amount and diversity of ALE mutated feature types
and experiment conditions

The dataset used within this work contained 35 Escheri-
chia coli K-12 MG1655 based ALE experiments from
ALEdb [16], totaling 208 independent evolutions and
2641 mutations (Fig. 2a). Within this dataset, experi-
ments have a median of 51 mutations, with a median of
38 being unique (Fig. 2b). As broader annotations types
are considered, a smaller amount of unique features are
mutated per ALE experiment (Fig. 2b). Multi-nucleotide
structural variants or overlapping features (Fig. la) on
the genome can result in more than one genomic feature
affected by a mutation (Fig. 2c), especially in the case of
the numerous small regulatory features (Fig. 2a), there-
fore leading to more mutated features than mutations in
an ALE experiment. Some of these small non-coding
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features can additionally regulate more than one operon,
further complicating the analysis of their effects on the
host. These types of mutations and relationships be-
tween features increase the number of artifacts to con-
sider with the functional analysis of ALE mutations. In
this dataset, mutations affected a median of 87 genomic
features per experiment (Fig. 2b), demonstrating that
there could be more mutated features in an ALE experi-
ment than individual mutation events.

This dataset tracked 10 different types of experimental
condition types with a total of 43 unique conditions (Fig.
2a, d), describing the organism and environment of the
ALE experimental design. Annotations affected by muta-
tions were statistically associated with these conditions
to better understand which may have selected for the
ALE mutations. Fisher’s Exact Test was used for the
statistical association, where a condition and mutated
feature were considered associated if their odds ratio
was greater than 1 with p-value <0.01 (Bonferroni cor-
rected). A p-value <0.01 was used to measure signifi-
cance rather than a p-value < 0.05 to reduce the amount
of false-positives with associations.

Applying methods across a large consolidated ALE
mutation dataset and to individual case studies

The impact of annotating mutations using multiscale
genomic features was explored using 18 E. coli K-12
MG1655 based ALE experiments. We first present a
small case study from a Apgi ALE experiment [21, 22] to
demonstrate how the mutation of both coding and non-
coding features can accomplish the same fitness benefit.
Further, the abundance of both coding and non-coding
features, along with their contributions to key mutation
identification across the data set, was investigated. We
then examined the impact of these methods on the
number of key mutations found across these ALE exper-
iments. Finally, we applied these methods to the muta-
tion sets of two ALE experiments separately, to
demonstrate the novel value of the new types of evi-
dence with mutation functional analysis. The first ALE
experiment represents a newly released mutation set
from a previous ALE growth-rate characterization study
to growth on glycerol as a carbon source [23]. The sec-
ond ALE experiment represents a previously published
mutation set from an L-serine tolerance ALE [24] with a
newly outlined adaptive strategy based on evidence from
this work’s methods.

Key mutations increase through the bottom-up
convergence of mutated features on a multiscaled
annotation framework

The convergence of mutated coding and non-coding
regulatory features onto broader annotations was investi-
gated with existing ALE experiment mutations. Non-
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coding mutations have previously been seen to play a
beneficial role in ALE phenotypes [22, 25]. To illustrate
the convergence of both coding and non-coding muta-
tions onto a broader scale of annotation, a case study
around operons involved in transhydrogenase activity is
presented using data from one of the ALE experiments
consolidated in this study’s data set. This particular ALE
experiment reported on the adaptation to a pgi knockout
(ie., Apgi), finding that the proteins PntA and PntB were
rendered non-functional through truncations [22]. The
study additionally observed a mobile insertion element
mutation upstream of the pntA gene in a replicate lack-
ing pntA and pntB mutations. The same ALE study had
seen SNPs to both sthA and its upstream regions. The
mutations to these upstream regions were hypothesized
to change the expression of the downstream genes in a
way that benefited the Apgi host. Advanced phenotypic
characterization of the endpoint strains with pntA, pntB,
sthA, and upstream mutations revealed a convergence to
equivalent intracellular states, demonstrating the same
phenotype achieved by different mutations. The poten-
tial impact of the upstream mutations became more evi-
dent when integrating annotations for non-coding
regulatory features and observing the convergence of all
small mutated features onto broader annotations such as
operons (Fig. 3a). The upstream mutations targeted pro-
moters for operons of the mutated pntA, pntB, and sthA
genes. The convergence of mutations onto the pntAB
and sthA operons highlighted their importance in this
adaptation and serve to contextualize each mutation
involved.

The abundance of regulatory features with key muta-
tions was investigated with a set of E. coli K-12 MG1655
ALE experiments. A variety of non-coding regulatory
features alongside genes was integrated to reduce the
proportion of non-coding mutation targets with un-
known function (Fig. 3b). It was observed that all small
non-coding regulatory features had mutations involved
in statistically significant convergence (P < 0.05, permu-
tation test, mutations to feature >1). Except for pro-
moters, the median proportions of non-coding features
involved in significant convergence across ALE experi-
ments were higher than that of coding features (Fig. 3c).
In fact, in all cases, mutated RBS were always seen to be
involved in statistically significant convergence.

The convergence of small mutated features onto
broader annotations and functions may not always be
straightforward to manually identify with traditional
methods. For example, an L-serine tolerance ALE ex-
periment acquired adaptive mutations to rho or the
trxA/rhoL intergenic region in different independent
replicates [24]. The intergenic mutation targeted the
rhoLp promoter for the operon hosting both rioL and
rho genes, demonstrating that beneficial mutations
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Fig. 3 The amount of identified key mutations increase through the bottom-up convergence of mutated features on a multiscaled annotation
framework. a The convergence of mutated genes and regulatory features onto pntAB and sthA operons from a Apgi ALE experiment on E. coli K-
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may be found in features not immediately adjacent to a
given gene. Further, beneficially mutated features be-
longing to the same system are not always found on
the same operon. For example, in an ALE experiment
that resulted in a strain which had a elevated levels
of aromatic amino acids, mutations to the rcsA, rcsB,
and yrfF genes were found, along with mutations to
fliR/rcsA and nudE/yrfF intergenic regions [26]. Each
of these key mutated genes are hosted on different
operons and their mutations either truncated their
coding sequences or repressed their expression via
mutations to their promoters and other non-coding fea-
tures. All three genes belonged to the Rcs stress response
system, whose activation by a perturbation (i.e., a ptsHlcrr
knock out) in the starting strain was detrimental to popu-
lation growth. The deactivation of the Rcs system through
the mutations distributed across multiple operons was a
key feature in the genotype which ultimately enabled the

heightened aromatic amino acid levels. Though these
types of mutation convergences can be manually iden-
tified with the prerequisite knowledge and detailed
annotation, the growth in mutation datasets and the
use of more complex organisms render their identifi-
cation less likely.

It was observed that the addition of broader types of an-
notations to the multiscale annotation framework generally
increases the number of key mutations found within ALE
experiments (Fig. 3d). This is demonstrated by the increase
in the median proportion of significantly convergent muta-
tions (P < 0.05, permutation test, mutations to feature > 1)
in ALE experiments with each broader annotation type. For
example, 62% (median) of the mutated features annotated
only with genomic features (i.e., coding and non-coding fea-
tures) were found to be significant. When considering the
COGs for these small features, 71% (median) of mutated
features were involved in significant convergence.
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Top-down functional analysis and mutated feature-to-
condition associations for E. coli K-12 MG1655 growth
selection on glycerol highlights changes to carbon
catabolism and its repression

The methods of top-down functional analysis and mu-
tated feature-to-condition association analysis contextu-
alized mutations in an ALE experiment evolving E. coli
K-12 MG1655 with some variants [27] on glycerol as a
carbon source and resulted in an understanding of key
mutations. The ALE experiment was previously executed
with 30 independent replicates to test the effects of pas-
sage volume on endpoint adaptive phenotypes and rep-
resents a relatively large scale ALE experiment [23].
Besides passage volumes, the conditions used were simi-
lar to the earlier glycerol evolution of Herring et al. 2006
[28]. The replicate ALE endpoints were represented by a
total of 51 samples (24 clonal, 27 population). Of the 51
total endpoints, 18 were represented with both clonal
and population samples, while 6 endpoints were repre-
sented with one or more population samples, and 6 were
represented with one or more clonal samples. Compre-
hensive whole-genome resequencing was performed for
this work. Only mutations with a sample frequency of
50% or more were considered for population samples
and those mutations that overlapped between endpoint
samples were only considered once (see Methods). Col-
lectively, 148 mutations were analyzed, representing a
large ALE experiment mutation set for manual mutation
functional analysis.

The CRP regulon hosted 62 mutated features, the lar-
gest amount within this ALE experiment. The CRP regu-
lon describes the functions associated with the dual
regulator CRP and the cAMP receptor protein, where
cAMP is known as the catabolite gene activator protein.
CRP is known to regulate many functions, one of which
is carbon catabolite repression (CCR) [29, 30] and re-
presses the metabolism of carbon sources besides glu-
cose. The glpK, cyaA, and crr genes were the three most
often mutated in this experiment, hosting 28, 21, and 10
mutations, respectively, and are within the CRP regulon
(Fig. 4a). The CRP regulon and genes were significantly
converged upon by mutations (all P < 0.001, permutation
test, mutations to feature >1) and mutations to these
genes were strongly associated with the selection pres-
sure of glycerol as a carbon source (P <0.001, Fisher’s
exact test, Fig. 4b). In a similar study [28], the glpK, crr,
and cyaA genes were also identified as being key to
adaptation on glycerol as a carbon source. These associ-
ations, along with their convergence on the CRP regu-
lon, suggest the mutations to glpK, crr, and cyaA as
likely selected by the pressure to increase growth rates
by rapidly utilizing glycerol as a carbon source.

The significant convergence of mutated features on
functional annotations contextualized the targets of the
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gIpFKX operon mutations. The significantly convergent
gIpFKX operon (P <0.001, permutation test, mutations
to feature > 1) hosted 30 instances of mutated features,
corresponding to 28 coding SNPs in glpK, where two of
these mutate a GlpR TFBS (located inside the coding se-
quence of glpK). These mutated features significantly
enriched the GIpR regulon (P <0.001, permutation test,
mutations to feature > 1, Fig. 4a). The GIpR regulon rep-
resents the repression of glycerol transport and metabol-
ism in the presence of glucose and the absence of
glycerol or glycerol-3-phosphate for E. coli K-12
MG1655 [31]. The glpR genes of some E. coli K-12
MG1655 are pseudogenized. Similar to the U00096.2 E.
coli K-12 MG1655 reference genome [32], the starting
strain used in this experiment has a functional glpR [27].
The glpFKX operon mutations also significantly con-
verged on the glycerolipid metabolism pathway (Supple-
mental Figure 1), which describes the chemical reactions
involving any lipid with a glycerol backbone. The muta-
tions to glpK may be working to increase the reaction
rate of its product, glycerol kinase (GIpK), which cata-
lyzes the phosphorylation of glycerol and is a rate-
limiting enzyme in glycerol metabolism. GIpK is alloste-
rically inhibited by fructose-1,6-bisphosphate (FBP) [33]
and the crr gene product, Enzyme II A (IIAGlc) [34].
Two SNPs were found in an FBP binding site of GIpK,
and 1 SNP substituted an amino acid that had been pre-
viously observed to abolish FBP regulation altogether
(Supplemental Table 2). Ten SNPs targeted regions that
are used in forming the GIpK oligomer and two SNPs
were predicted to affect structural stability. GlpK is
found to either form a tetramer or dimer, where FBP
can inhibit the tetramer’s catalytic reaction. Mutations
to the subunit interface regions that bias GlpK towards
dimer formation, and therefore avoid FBP inhibition,
have been seen in a similar glycerol evolution study [35].
The 2 SNPs that were predicted to affect structural sta-
bility may be accomplishing the same result. Overall,
53% of the mutations to glpK have effects that could dis-
able inhibition by FBP (Fig. 4d).

Though there were approximately twice as many mu-
tations in cyaA as there were to crr, these mutations
may have accomplished similar adaptive effects. The
presence of mutations to either of these targets was in-
versely correlated with the other (Fig. 4c), indicating an-
tagonistic epistasis. Adenylate cyclase (AC), cyaA’s
product, synthesizes cyclic adenosine monophosphate
(cAMP). A cAMP molecule will bind with CRP and pro-
mote the transcription of CCR genes involved in second-
ary carbon source metabolism, including the glpFKX
operon. Before cAMP can do so, this functionality of AC
must be activated by binding with a phosphorylated
IIAGIc. In the presence of phosphotransferase system
(PTS) sugars such as glucose, IIAGIlc will instead bind
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and inhibit GlpK. In the absence of PTS sugars, IIAGlc
will become phosphorylated, bind, and activate AC'’s
ability to produce cAMP, ultimately reducing the effect
of CCR [36].

A large proportion of the mutations to the cyaA gene
had a disruptive effect. cyaA hosted a total of 21 unique
mutations. The mutations that affect cyaA were of dif-
ferent types: SNPs, deletions, and mobile element inser-
tions (MOB). One-third of the mutations to cyaA, the
two MOBs and five frameshifting deletions, had disrup-
tive effects on the coding sequence (Fig. 4e). AC is
thought to have an N-terminal catalytic domain and C-
terminal regulatory domain [37]. IIAGIlc and glycerol-3-
phosphate (G3P) are both associated with interactions
on the regulatory domain, where phosphorylated IIAGlc
is known to bind to amino acid 609 and activate cAMP
production [36], and G3P is thought to lower AC’s

cAMP production through a feature within the C-
terminal’s final 48 amino acids [38]. The disruptive mu-
tations to cyaA each affected the subset of AC’s features
downstream of the mutation (Fig. 4e). The variety of fea-
tures affected, including the features necessary for AC'’s
activity, provides evidence of the non-essentiality of AC
in this evolution.

The evidence of potential mutation effects to crr also
suggested the possible non-essentiality of IIAGIc in this
evolution. The convergence of mutations to crr resulted
in statistically significant enrichment of the Mlc and
NagC regulons (Fig. 4a, Mlc P < 0.001, NagC P =0.0007,
permutation test, mutations to feature > 1), which both
describe the regulation of the PTS system, a key con-
tributor to the CCR system. All mutations to c¢rr landed
in the PTS EIIA type-1 domain, which hosts the IIAGlc
phosphorylation site. 70% of the mutations to crr were
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predicted to have a structurally destabilizing change on
their host structure (AAGpred >2, crr Supplemental
Table 1). 90% of mutations to crr were predicted to have
deleterious consequences to conserved regions (SIFT
score > 0.05). Additional evidence towards the mutations
having a disruptive effect on crr is the possible epistatic
relationship between cyaA and crr mutations along with
the mutations to ¢yaA having the clear potential to dis-
rupt its functionality. This evidence suggested the poten-
tial non-essentiality of IIAGIc in this evolution.

This ALE experiment generated 148 mutations, an
amount prohibitive to comprehensive manual functional
analysis. The methods of top-down functional analysis
and selection pressure associations generated valuable
evidence that revealed a potential solution for increasing
glycerol metabolism while maintaining the repression of
metabolic systems for other secondary carbon sources.
Of the many mutated regulons for this ALE experiment,
three were emphasized by being both significantly con-
verged upon by mutations (all P <0.001, permutation
test, mutations to feature >1) and significantly associ-
ated with the designed selection pressure of growth on
glycerol (all P <0.001, Fisher’s exact test). The functions
of these regulons contextualized their mutated genes,
further informing on the biological systems potentially
targeted by adaptation. Further investigation into the
mutated genes informed on the possible beneficial
mechanistic effects of their mutations. The mutations to
glpK suggest the increase in its reaction rate through the
disruption of an inhibition mechanism. The mutations
to cyaA and crr suggest the disruption of cAMP synthe-
sis, resulting in CCR maintenance in the presence of a
carbon source that would normally dampen CCR. Such
induction of CCR with mutations resulting from an ex-
perimental evolution on glycerol has been previously ob-
served [35]. These results serve to promote the value of
the evidence generated by the methods of this work in
finding and understanding key mutations for ALE exper-
iments with many mutations. There remains more muta-
tions in this ALE experiment, though the mutations to
glpK, cyaA, and crr had the strongest and most inter-
pretable signals of adaptation.

Top-down functional analysis and mutated feature-to-
condition associations for an E. coli K-12 MG1655 derived
strain and growth selection for L-serine tolerance highlights
changes to the glycine cleavage and transport system and
global regulators

The methods of top-down functional analysis and mu-
tated feature-to-condition association analysis contextu-
alized mutations in an ALE experiment tolerizing a
genetically engineered E. coli K-12 MG1655 strain to L-
serine [24], resulting in previously unreported key muta-
tions. This tolerization ALE experiment involved three
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independent replicate evolution experiments on a strain
of E. coli K-12 MG1655 that had been genetically engi-
neered to remove internal L-serine degradation pathways
with the intention of higher L-serine production for in-
dustrial applications. ALE was necessary to tolerize the
strain to the toxicity of high L-serine concentrations.
The replicate endpoints were each represented by 2
clonal isolates. Comprehensive whole genome resequen-
cing for the study was performed for this work. Muta-
tions that overlapped between endpoint samples were
only considered once (see Methods). Collectively, 27
mutations unique to endpoints were analyzed for this
ALE study. The original Mundhada et al. study [24] re-
vealed mutations to thrA, lrp, rho, argP, pykF, and eno
contributed to L-serine tolerance and fitness in minimal-
media.

The GcevA regulon, representing the glycine cleavage
function, was significantly converged upon (P =0.0013,
permutation test, mutations to feature >1) by mutated
features (Fig. 5a). The starting strain for this ALE experi-
ment was auxotrophic for glycine, therefore glycine was
added to the media. Mutations that could offset a glycine
deficiency would be beneficial. The GcvA regulon was
also found to be significantly associated with the starting
strain mutations and L-serine tolerance (Fig. 5b).

The operon level of annotations contained the largest
amount of significantly convergent features for this ALE
experiment, where all significantly mutated operons
(gvcA P =0.0046, remainder P < 0.001, permutation test,
mutations to feature > 1) except rhoL-rho were signifi-
cantly associated (P <0.001, Fisher’s exact test) with L-
serine tolerance and starting strain mutations (Fig. 5b).
Due to hosting the largest amount of significantly con-
vergent features, the operon level of annotations was the
most revealing in the adaptive changes for this ALE ex-
periment. By observing the mutations to operons, we
can better understand non-coding mutations and their
potential effect on gene products and the systems they
contribute to. Regulatory genes for the glycine cleavage
system host mutations in the regulatory features of their
transcription units. The gcvA operon contains mutations
in its promoter and a repressive GecvA TFBS (Fig. 5a).
The gcvA gene encodes for a transcriptional dual regula-
tor for the glycine cleavage system operon gcvTHP [39,
40]. Downregulating gcvA’s transcription could inhibit
its activation of gcvTHP’s transcription. GevA can also
form a glycine cleavage repression complex with GcvR
[40]. The gcvR gene’s promoter (gcvRp) experienced a 1
bp DEL in two endpoints (Fig. 5a). Upregulating gcvR’s
transcription could have the effect of further repressing
the gcvTHP operon coding for glycine cleavage. GevR is
additionally inhibited by glycine [41]. Mutations to gcvA
and gecvR regulatory features may simply be removing
their presence through the alteration of their promoters,
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leaving the glycine cleavage system operon with an un-
stimulated transcription rate. The gcvB operon, which
plays a role in the glycine transport system and is co-
regulated with the glycine cleavage system through
GcevA, hosted mutations to two different features. The
gevB gene of one endpoint hosted a mobile element in-
sertion (i.e., MOB), where another endpoint hosted a 1
bp DEL in an activating GevA TFBS (Fig. 5a). The gcvB
gene encodes a small regulatory RNA that acts as a re-
pressor of cycA [42], which also hosts a SNP, and func-
tions as a symporter of glycine, D-serine, and D-alanine
[43]. Disruption of gcvB may increase the uptake of gly-
cine by disabling the repression of CycA. The original
study recognized the mutations to the gcvB operon as
potentially beneficial. The emphasis on the glycine cleav-
age system due to the significant convergence of the
GcevA regulon by mutations suggests mutations to the
gevA and gevR operons as additionally being key.

The operons for global regulators /rp and rho were
both significantly enriched by the convergence of their
mutated coding sequences and promoters (P <0.001,

permutation test, mutations to feature > 1). Irp is a glo-
bal regulator for the leucine response system and has ex-
perimental evidence demonstrating its participation in
L-serine tolerance [24]. The roles of these global regula-
tors in this adaptation remains unknown due to their
large network of interactions, though the lrp and rho
coding sequence mutations were found to contribute the
most fitness among all endpoint mutations of this ex-
periment [24].

This ALE experiment generated a variety of mutations
to both coding and non-coding regions, where mutations
to non-coding features not considered in the original
study provided evidence for new key mutations. The
methods of top-down functional analysis and selection
pressure associations generated valuable evidence that
revealed a potential optimization for the strain’s glycine
auxotrophy. The richer annotations for non-coding fea-
tures on the genome revealed the high frequency of
regulatory features targeted by ALE mutations and facili-
tated the discovery of previously unrecognized mutated
regulatory features. Significant enrichment of features on
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the multiscale annotation framework emphasized the
systems in which the ALE mutations affected, informing
on the normally more elusive non-coding mutations.
This emphasis on higher-level features revealed previ-
ously unconsidered changes to the glycine cleavage sys-
tem that could benefit the host strain. These results
serve to promote the value of the evidence generated by
the methods of this work in finding and understanding
key mutations.

Discussion

To better identify and understand causal mutations from
ALE experiments, this study developed a multiscale gen-
ome annotation framework and applied a statistical en-
richment method for mutated features across annotation
scales. Using this framework, it was found that (1) ALE
mutations target a variety of regulatory features includ-
ing promoters, attenuator-terminators, and ribosomal
binding sites, (2) mutated non-coding regulatory features
were often involved in significant convergence events,
and (3) the method of bottom-up convergence from
small to large features on the multiscale annotation
framework found more key mutations than when con-
sidering only genes and intergenic regions for mutation
convergence. The convergence of mutated features onto
broader functional annotations additionally enabled a
top-down approach to mutation functional analysis,
where one can first consider biological functions hosting
mutations before investigating the numerous smaller
mutated features. Further, we computed statistical asso-
ciations between a large set of experimental evolution
conditions and mutated features. These associations pro-
vided evidence towards clarifying the selection pressures
for mutated features among the multiple conditions de-
scribing each ALE experiment. Taken together, the re-
sults presented here have several implications.

First, the identification of key mutations was enhanced
by seeking mutations involved in statistically significant
convergence events across multiple scales of genome an-
notation. By including regulatory feature annotations
alongside genes, a larger proportion of an experiment’s
mutations were placed in features with known functions,
which were subsequently connected to broader annota-
tion types such as operons and functional annotations.
Being able to connect more mutations to known features
resulted in more convergence events across the annota-
tion framework. Additionally, the application of a statis-
tical enrichment test can be wused to prioritize
convergence events in the followup work of mutation
functional analysis. This will become more important as
ALE experiments increase in scale. All mutated regula-
tory feature types were involved in statistically significant
convergence events, and except for promoters, had a
higher median proportion of their mutations involved in
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these events than mutated genes. These results suggest
that mutations to non-coding regulatory features should
be considered as important as coding features when
searching for key mutations, though standard genome
annotations often lack non-coding regulatory features.
When only considering mutations from significantly
converged upon features, the amount of significant or
key mutations on larger-scale annotation types (operons,
pathways, regulons, COGs) remains larger than those on
smaller annotation types (e.g., genes, promoters). The
convergence of a variety of small mutated features onto
broader annotations also serves to maximize the amount
of evidence used in identifying the overall changes of an
adaptive genotype. In its application, this method identi-
fied new regulatory key mutations for a published ALE
study on L-serine tolerance [24], demonstrating the
value of richer annotations and convergence across mul-
tiple scales of annotation. Additionally, significant con-
vergence involving the most beneficial mutations to the
L-serine tolerance evolution, those to the coding se-
quences and regulatory features of the Irp and rho genes,
was made explicit with the inclusion of regulatory fea-
tures in mutation annotations. These approaches can
therefore lessen the challenge of finding key mutations
by providing enhancements to traditional methods.
Second, the functional analysis of key mutations was
enhanced by considering the functions of the features
upon which mutations converged and the conditions
that mutated features were associated with. We found
that a top-down mutation functional analysis proved
valuable in contextualizing key mutations according to
the high-level functional annotations to which they were
connected and shared with other key mutations. The
three most frequently mutated genes of strains from the
ALE experiment on glycerol [23] all converged on the
CRP regulon, revealing the functional proximity of their
products through their participation in the CCR system.
This convergence served to inform how mutations to
these genes could have manipulated the CCR system to
enable only the catabolism of glycerol and maintain the
repression of the remaining secondary carbon source ca-
tabolism systems. The new key mutations proposed for
the L-serine ALE study [24] were additionally enhanced
by this top-down functional analysis approach with the
significant convergence of the GcvA regulon, describing
their involvement in the glycine cleavage system. The
starting strain for this experimental evolution was auxo-
trophic for glycine and had to have it provided as a sup-
plement. This convergence informed how these mutated
features could alleviate the strain’s glycine auxotrophy
by either repressing the glycine cleavage system to con-
serve glycine or increasing the uptake of glycine. Simi-
larly, the association of mutated features to conditions
can deconvolute the conditions selecting for mutations.
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The three most prominent key mutated genomic fea-
tures of the glycerol ALE were primarily associated with
the condition of glycerol as a carbon source, further
strengthening the functional analysis’ focus on glycerol
metabolism. The key mutations of the L-serine ALE with
genomic features mutated more than once were likewise
uniquely associated with the conditions of the starting
strain and high concentrations of L-serine. Mutated
feature-to-condition association is valuable to mutation
interpretation in that researchers can focus their efforts
on how these mutations enable adaptation to the signifi-
cantly associated conditions of interest. These methods
can lessen the challenge of understanding key mutations
by providing enhancements to traditional methods.

The methods presented here demonstrate the value in
leveraging the diverse available resources describing ALE
variants, but are not without limitations. The procedure
for finding the statistical significance of mutation con-
vergence assumes that each nucleotide on the genome
has the same probability of being spontaneously mu-
tated, leading to features having the probability of being
mutated proportional to their length in nucleotides. Nu-
cleotides can have varying mutation rates; for example,
wild type E. coli indel mutation rates have been observed
to be higher in mononucleotide runs of 4 or more [18].
Parameterizing different genomic features or nucleotide
locations with better representative mutation rates
would enable increased accuracy in the significance mea-
surements of mutation convergence events. There add-
itionally exist numerous annotation frameworks
currently not integrated, such as structural annotations
[44, 45], gene product complexes [46], and gene ontol-
ogies [47, 48]. Their inclusion would increase the cover-
age of biological domains for the methods this work.
The abundance of annotation frameworks is often lim-
ited to model organisms such as E. coli K-12 MG1655.
To use these methods with other organisms would re-
quire knowledge bases that describe the genes and regu-
latory architecture of those organisms’ genome, along
with the biological functions that the genes contribute
to. Evolution experiments often also include midpoint or
intermediate samples. The results of this work only in-
cluded endpoint samples, as not all experiments had
midpoints, to enable a uniform analysis method across
all experiments. The inclusion of midpoint samples
could provide further evidence of mutation convergence
through the dynamics of clonal interference, as well as
the opportunity for mutation time series analysis. Corre-
lations between mutated features proved useful for inter-
preting the relationship between the mutated c¢yaA and
crr genes from the glycerol carbon source ALE case
study. Applying the same correlation method on a larger
scale mutated feature set tends to generate less inter-
pretable results, though statistical evidence of
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relationships between mutated features would still be
valuable. More sophisticated methods for establishing
these relationships within large-scale sets of mutated fea-
tures are necessary to extract meaningful interpretations.
Finally, the key mutations found in this work were de-
rived from sets of mutations of a scale that still can be
managed manually, albeit with great effort. As ALE data-
sets grow and automation-enabled studies increase in
overall sample number, this work’s methods will become
necessary to comprehensively consider and understand
an ALE experiment’s mutations.

Conclusion

Here, we have reported on data-driven approaches to
better find and understand ALE key mutations. We
demonstrated how a multiscale genome annotation
framework and statistical association methods can better
identify and characterize adaptive mutations generated
through controlled evolution experiments. We anticipate
that this workflow will be leveraged in the future to pro-
vide deeper insights into the vast amounts of -omics
data that are generated for targeted microorganisms
amenable to ALE and provide the blueprints for similar
data-driven annotation frameworks.

Methods

ALE experiments

This work focuses on ALE experiments with a starting
strain of E. coli K-12 MG1655 or derivative thereof, due
to the availability of experimental data and genome an-
notations. Thirty five ALE experiments, each using a
unique set of conditions and selection pressures, were
exported from ALEdb [16] for this work [8, 21, 23, 24,
26, 49-57]. These ALE experiments consist of 208 evo-
lutions and 2641 mutations. Mutations in population
samples with a frequency below 50% were filtered out to
instead focus on mutations that demonstrate dominant
selection within a sample. When inspecting experiments
for key mutations, endpoint samples containing known
hypermutator strains were discarded in an effort to focus
on less complex genotypes.

ALE experiment mutation organization

Only mutations from endpoint flask samples (i.e., the
flask that contained the final sequenced sample) were
considered for the ALE experiments used in this work.
Both clonal and population samples were included in
this work. If the same mutation was available in more
than one sample from an endpoint flask, the instance of
the mutation with the highest sample frequency was
chosen to represent all instances of the mutation from
the flask.
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ALE experiment conditions

The ALE experiment conditions metadata used in the
associations was gathered from the metadata reports
available from ALEdb [16] for each ALE experiment
considered in this work.

Software for analysis and figure generation

Quantitative plots

Unless otherwise stated, figure plots were generated
using Matplotlib version 3.0.3 [58] and seaborn version
0.9 Python software packages [59].

Flow diagrams

The mutation flow diagrams of Figs. 1c, 3a, 4a, 5a and
Supplemental Fig. 1 were generated using the Floweaver
Python software package [60].

Mutation needle plot diagram
The mutation needle plot of Fig. 3e was generated using
the muts-needle-plot Javascript software package [61].

Mutation calling

The breseq pipeline version 0.33.1 [62] was used to map
the DNA-seq reads to an E. coli K-12 MG1655 reference
genome. The reference genome was either the NCBI ac-
cession NC_000913 version 3 reference genome or a de-
rivative based on this NCBI genome [63]. DNA-seq
quality control was accomplished using the software
AfterQC version 0.9.7 [64].

Mutation effect prediction

The predicted disrupted effects of mutations to the
genes in the glycerol evolution results were generated
using the mutfunc web application [65].

Software scripts
Software scripts and data essential to the publication is
available through a github repository [66].

Supplementary information
Supplementary information accompanies this paper at https://doi.org/10.
1186/512864-020-06920-4.

[ Additional file 1: Supplementary figures and tables. ]
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ALE: Adaptive laboratory evolution; COGs: Cluster of orthologous groups;
DAG: Directed acyclic graph; TU: Transcription unit; TFBS: Transcription factor
binding site; RBS: Ribosomal binding site; SNP: Single nucleotide
polymorphism mutation; DEL: Deletion mutation; INS: Insertion mutation;
MOB: Mobile element insertion mutation; CCR: Carbon catabolite repression;
FBP: fructose-1,6-bisphosphate; EIIA: Enzyme Il A; lIAGIc: Enzyme lIA (Glo);
AC: Adenylate cyclase; cCAMP: Cyclic adenosine monophosphate;

PTS: Phosphotransferase system; AAGpred: The difference between the free
energy of unfolding the protein structure before and after a mutation;

SIFT: Sorting intolerant from tolerant
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