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Abstract
Purpose of Review In December 2019, there was an outbreak of viral disease in Wuhan, China which raised the concern across
the whole world. The viral disease caused by severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) or novel corona-
virus or COVID-19 (CoV-19) is known as a pandemic. After SARS-CoV andMiddle East respiratory syndrome (MERS)–related
CoV, COVID-19 is the third most pathogenic virus, hazardous to humans which have raised worries concerning the capacity of
current security measures and the human services framework to deal with such danger.
Recent Findings According to WHO, the mortality rate of COVID-19 exceeded that of SARS and MERS in view of which
COVID-19 was declared as public health emergency of international concern. Coronaviruses are positive-sense RNA viruses
with single stranded RNA and non-segmented envelopes. Recently, genome sequencing confirmed that COVID-19 is similar to
SARS-CoV and bat coronavirus, but the major source of this pandemic outbreak, its transmission, and mechanisms related to its
pathogenicity to humans are not yet known.
Summary In order to prevent the further pandemic and loss to humanity, scientists are studying the development of therapeutic
drugs, vaccines, and strategies to cure the infections. In this review, we present a brief introduction to emerging and re-emerging
pathogens, i.e., coronavirus in humans and animals, its taxonomic classification, genome organization, its replication, pathoge-
nicity, impact on socioeconomic growth, and drugs associated with COVID-19.
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Introduction

Coronaviruses have been studied for more than 50 years and
have infected many species of animals, which include birds
and humans, and its first reported strain was isolated from the
prototype murine coronavirus strain JHM [1]. The increasing
population, frequent mixing of animals, deforestation, and
urbanization have increased the population of other viruses
too along with coronavirus. Coronaviruses belong to the larg-
est group of viruses which are positive-sense RNA viruses,
have spike-like projections on the surface, and contain a large
unusual genome which has a unique self-replication phenom-
enon with high rate of mutation and recombination. Because
of these special characteristics, this virus needs to cross the
species barrier and find new hosts to survive and replicate. In
2005, Susan and Sonia [2] reported an avian infectious bron-
chitis virus (IBV), bovine coronavirus (BCoV), and porcine
transmissible gastroenteritis virus (TGEV) as the examples of
animal viruses which are of great importance in veterinary
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research methodology. In 2015, reported severe acute respira-
tory syndrome coronavirus (SARS-CoV), porcine epidemic
diarrhea virus (PEDV), and Middle East respiratory syndrome
coronavirus (MERS-CoV) are the best examples of
coronaviruses which caused epidemic diseases in animals
with huge economic loss [3]. From the last two decades, these
viruses caused lethal respiratory infections and serious prob-
lems in different classes of mammals and birds which include
humans, dogs, chickens, pigs, and cows [3, 4].

Taxonomic Classification and Structure

In 1968, Tyrrel et al. coined the name coronavirus, which was
further derived by cryo-electron tomography microscopy
techniques, has a crown-like structure, belongs to the order
Nidovirales and family Coronavirinae which are non-
segmented enveloped positive-sense RNA, and contains a
large genome of 30 kb in size for RNA viruses [4]. The
Nidovirales order includes families Coronaviridae (SARS,
PEDV), Arteriviridae (swine and equine pathogens), and
Roniviridae (invertebrate viruses) [5, 6•]. The other common
characteristics of Nidoviriales are shown in Fig. 1. The major
differences in the family of Nidovirus are in its number, sizes,
and type of structural proteins which leads to morphological
and structural changes of the virus structure. Coronavirus has
always been in controversy as it belongs to SARS-CoV.
However, in 2004, Goebel et al. [7] and Gorbalenya et al.
[8] listed it in Group II which is tabulated in Table 1. In feral
pigeon, graylag goose, andmallard [9], coronavirus sequences
had been detected using reverse transcription and phylogenet-
ic analysis of replicase enzyme and nucleocapsid sequences
whose cellular receptors are not determined yet [10].
Coronavirus is rounded, enveloped, and non-segmented with
approximately 80 to 125 nm in size. It consists of positive-
sense RNA of genome size of ∼ 30 kb and has four structural
proteins which are encoded within the 3′ end of the viral

genome [11–14]. The nucleocapsid protein (N) is helically
symmetrical which forms a helical capsid inside the viral
membrane and contains three viral proteins. There is club
shape–like spike (S) projections of ~ 150 kDa type I glycopro-
teins, forming peplomers from the surface of virion, which
gave them crown-like structure which is depicted by electron
microscopy. The virus also contains membrane (M) proteins
which are extended three times to the outer surface, a small
membrane protein (E), and short N-terminal ectodomain
along with cytoplasmic tail and a highly hydrophobic protein
[15–19, 20•]. The detailed classification of coronavirus group
with its host, viruses, diseases, and cellular responses of CoV
is given in Table 1 and the detailed view of structural genes of
coronavirus is summarized in Table 2. Figure 2 depicts the
structure of respiratory syndrome causing human coronavirus.

Genome Organization and Life Cycle

The spike protein in coronavirus plays an important role in the
entry of virus for its attachment with its receptor and also
determines the tissue tropism of the virus. This entry is not
dependent on pH and its cell-to-cell spread, so it is believed
that it occurs directly through the plasma membrane although
some viruses may utilize endosomal route but it is not through
endosomal route for coronaviruses [34, 35]. In 1995, Holmes
and Compton identified carcinoembryonic antigen-related cell
adhesion molecule 1 (CEACAM 1) as first CoV receptor
binding domain at the N-terminal which was utilized by mu-
rine coronavirus (MHV) whereas SARS-CoV has receptors at
the C-terminal of S1 fusion protein [36, 37]. As the virus
enters into the cell, the 5′ end of the RNA genome which
contains the open reading frames 1a and 1b (ORF 1a and
1b) is translated into poly protein 1a (pp la) (frameshift mech-
anism which occurs at a very high speed) and pp1ab ORF 1a
codes for one to two papain-like proteases and picoronavirus
(group of related RNA viruses which infect vertebrates

Fig. 1 Characteristics of
Nidoviriales family of
coronavirus
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including mammals and birds) which further helps in the for-
mation of mature replicase proteins through pp1a and pp1ab.
ADP-ribose 1-phosphatase activity is also encoded in the X
domain of ORF1 and a RNA-dependent RNA polymerase
(RdRp) and a helicase are encoded in the X domain of 3′ to
5′ exonuclease ORF 1a [38–40]. Also, cyclic phosphodiester-
ase putative enzymatic is encoded downstream in ORF 2a.
Along with this, multiple other enzymes like poly (U)-specific
endo r i bonuc l e a s e (XendoU) and (pu t a t i v e ) S -
adenosylmethionine-dependent ribose 2_-O-methyltranferase
play an important role in metabolism of coronavirus RNA and
with the host cell process [39–41]. The replication of genome
leads to the full-length negative-strand RNA synthesis (pres-
ent in low concentration) which serves as template (mRNA
75–78 nt) for transcription along with leader and lagging
strand at 5′ and 3′ ends of mRNA. The synthesis of positive
and negative strands which involves a unique discontinuous
transcription mechanism is still not completely understood.
The replicase enzyme is translated from the 5′-end of the ge-
nomic RNA, and ORFs are mediated by an internal ribosomal
entry site. The endoplasmic reticulum forms a compartment
with M and E proteins of Golgi bodies which are near the
intracellular membrane, and is an actual site of budding.
During assembly, after budding process the intracellular and
plasma membrane having spike protein interacts with trans-
membrane of M protein and N protein which forms helical
structures with genomic RNA [42]. The nucleocapsid inter-
acts withM protein and budding into vesicles takes place from
where the virus is transported to cell surface, and it leaves the
cell at this stage [43].

Pathogenicity and Transmission

Today, it is well known that SARS-CoV-2 induces clinical
spectrum from asymptomatic forms to severe respiratory

failures requiring mechanical ventilation and treatment in in-
tensive care unit to fatal cases of sepsis and multi-organ dys-
function syndromes [44]. The pathogenic mechanisms under-
lying the most common serious manifestation, i.e., virus-
produced pneumonia characterized mainly by fever, cough,
sore throat, fatigue, headache, and shortness of breath, are
very complex [44, 45]. Infection with SARS-CoV-2 can in-
duce an extensive immune response in the host organism lead-
ing in some cases to massive tissue damage [44]. One of the
most important players in this reaction is interleukin-6 (IL-6),
as this cytokine initiates a series of inflammatory events [44].
Besides this, elevated levels of other inflammatory cytokines
including interleukin-2, interleukin-7, interleukin-10, (IL-2,
IL-7, IL-10), and tumor necrosis factor-α (TNF-α) have also
been reported in the laboratory analyses of patient’s plasma
being related to disease severity [45, 46••]. Viral pneumonia
appears typically bilaterally, involving mostly the lower lobes,
and is more severe in elderly patients older than 70 years of
age and those suffering from various comorbidities [44].
However, most children and younger adults with SARS-
CoV-2 present mild to moderate flu-like symptoms, having
a good prognosis [45]. In addition to the aforementioned clin-
ical manifestations, some patients have complained also about
gastrointestinal problems, such as vomiting and diarrhea [45].
The illustrations of reservoirs and transmission CoV strain are
shown in Fig. 3.

The virus can enter the body through the mucous mem-
branes, particularly nasal and larynx mucosa, passes the respi-
ratory tract, reaches to the lungs, and replicates rapidly [44,
47]. Although there are several possible transmission ways,
respiratory droplets spread by coughing or sneezing is the
principal route for virus distribution, whereas it can occur also
by means of asymptomatic persons [45, 47, 48, 49•]. Getting
the infection usually necessitates a direct close contact (within
2 m) with a virus-positive person for a prolonged period of

Table 1 Classification of coronavirus group with its host, viruses, diseases, and cellular responses

Group Host Virus Diseases Cellular responses

I (Animal Pathogens) Human 229E and NL-63 Respiratory infections Human APN and ACE2

Pig TGEV, PRCoV Respiratory and enteric infection Porcine APN

Cat Canine coronavirus, FeCoV, FIPV Respiratory, enteric, and neurologic infection, and
hepatitis

Canine and feline APN

II (Veterinary
Pathogens)

Human OC43, HKU1, and SARS-CoV Respiratory infection, possibly enteric infection Neu5,9Ac2-containing
moiety

Mouse MHV Enteric and neurologic infection and hepatitis Murine CEACAM1

Rat Sialodacryoadenitis coronavirus Neurologic infection Not determined

Pig Hemagglutinating
encephalomyocarditis

Respiratory, enteric, and neurologic infection, and
hepatitis

Neu5,9Ac2-containing
moiety

Cow BCoV Enteric infection Neu5,9Ac2-containing
moiety

III (Avian Pathogens) Turkey Turkey coronavirus Respiratory and enteric infection Not determined

Chicken IBV Respiratory infection, hepatitis Not determined
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time [44]. In addition, it is possible that SARS-CoV-2 can
spread also via fecal–oral transmission, as the virus has been
detected in the stool and urine of patients [47, 48]. Incubation
period for COVID-19 has been reported by WHO to be be-
tween 2 and 10 days [44]. After entering the body, the virus

can potentially attack the target tissues expressing
angiotensin-converting enzyme 2 (ACE2), including the
lungs, heart, kidneys, and gastrointestinal tract [44, 46••,
48]. Despite the first recovery, the virus typically induces a
second attack, associated with the aggravation of patient’s

Table 2 Detailed view of
structural genes of coronavirus Structural genes Composition Functions Reference

Nucleocaspid (N) Two separate domains, i.e.,
N-terminal and C-terminal.
Highly phosphorylated, TRSs
and genomic packaging
signals are two specific RNA
substrates, consists of nsp3
(component of M protein and
replicase complex)

Domains required to bind RNA,
phosphorylation leads to a
structural change which
increases the affinity of viral
RNA versus non-viral RNA
and this viral genome binds
with N protein forming beads
like conformation. Genomic
packaging signal bind
specifically to the second or
C-terminal RNA binding
domain. Protein interaction
helps in the formation of
replicase-transcriptase
complex (RTC) and
packaging of encapsulated
genome into the viral particles

[21–28]

Membrane (M) Most abundant, small in size
(~ 25–30 kDa), 3
transmembrane domain
structural protein, contains
small N- and large C-terminal
glycosylated ectodomain
which ranges from 6 to 8 nm
inside the virus

Helps to give shape to virion and
exists in dimer from different
conformations, so that
membrane curvatures and
nucleocapsid can bind very
well. Most of the M protein
does not contain signal
sequences although they are
translationally inserted in the
endoplasmic reticulum
membrane

[29, 30]

Envelope (E) Present in small amount
(∼ 8–12 kDa), transmembrane
protein in the virion. Highly
divergent but consists of a
common architect. Also
consists of a N-ectodomain
and C-endodomain terminal
with ion channel activity

Membrane topology of E protein
is not completely resolved.
Helps in assembly and release
of the virus and ion channel in
SARS-CoV; this protein is
required for pathogenesis but
not for viral replication

[31–33]

Spike (S) Heavily N-linked glycosylated
protein of ~ 150 kDa which
uses N-terminal sequence for
the functioning to the ER,
consists of S glyco-trimeric
class I fusion protein in which
S1 helps in the formation of
the large receptor-binding
domain and S2 in stalk of the
spike molecule

Helps in the formation of
homotrimers encoded by S
protein spike like structure on
the outer surface of the virion,
Helps in attachment to the host
receptor

[15–20]

Hemagglutinin-esterase
(HE)

Subset of β-coronaviruses, acts
as a hemagglutinin which
binds sialic acids on the
surface of glycoproteins and
also contains acetyl-esterase
activity

Enhances murine hepatitis virus
(MHV) neurovirulence and
the S protein-mediated cell
entry through which virus
spread through mucosa. It is
also used against tissue culture
whose function is still
unknown

[29, 30]
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condition about 7 to 14 days after onset. The median time
from the onset of disease to the most serious clinical outcome,
death, has been demonstrated to be 14 days [44]. The system-
atic comparison and outbreak of common coronavirus in
terms of cases and deaths in 1960 to COVID-19 is shown in
Fig. 4.

Detection Techniques

The symptomatic presentation of COVID-19 patients is non-
specific and does not warrant precise diagnosis of patients.
This is mainly attributed to the clinical symptoms which
may be a manifestation of respiratory infections. This is sup-
ported by findings from the study which mentioned that 89%
of patients presented with fever later when hospitalized in

comparison with 44% of patients who presented with fever
upon entering hospital [50]. In view of the limitations of
symptomatic diagnosis, CT scans and nucleic acid testing
are currently being used widely for COVID-19 screening
and diagnosis. The strength of molecular techniques for pre-
cise diagnosis is attributed to their capability of identifying
target specific pathogens.

Nucleic Acid Test (RT-PCR)

The primary method for diagnosis of COVID-19 is nucleic
acid testing technique which is based on RT-PCR. In this
method, according to laboratory testing for COVID-19, the
suspected human samples are taken from upper respiratory
tract (nasopharyngeal swab, nasal aspirate, or pharyngeal
swab) or the lower respiratory tract (sputum, tracheal aspirate)
for RNA extraction followed by reverse transcription and
cDNA amplification of a specific region [51]. The primers
for RT-PCR are designed against the conserved sequence of
SARS-CoV-2 viral genome with RdRP in the ORF1ab, envel-
op protein gene (E) with high analytical sensitivity with a
detection limit of as low as 3.6 and 3.9 copies/reaction, re-
spectively, in both primers and nucleocapsid protein gene (N)
with detection limit as 8.3 copies/reaction with poor analytical
sensitivity [52]. The RT-PCR method is a two-step method in
which the single-step RT-PCR is quick, currently being used
by the USA for screening COVID-19 patients with cycling
conditions and recommended by CDC, Atlanta, GA, 2020,
and also provides the positive control nCoVPC sequence for
reference and adequate to address the increased need for quick
and timely COVID-19 detection. On the other hand, the two-
step assay is more sensitive than one-step assay; however, its
main limitation is the requirement of standardization of

Fig. 3 Illustrations of reservoirs
and TransmissionCoV Strain

Fig. 2 Structure of coronavirus: (1) spike (S), (2) membrane protein (M),
(3) envelope protein (E), (4) lipid bilayer, (5) nucleocaspid (N), (6) RNA
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additional experimental parameters and also it is more time
consuming [53]. A number of different SARS-CoV-2 RT-
PCR detection kits have been marketed from different com-
panies and research groups and are summarized in Table 3.

The other method of nucleic acid testing is isothermal am-
plification test because of its high specificity [77] and is con-
ducted at a single temperature, i.e., reverse transcription-loop-
mediated isothermal amplification (RT-LAMP) [66, 78–80].
The major limitation of RT-LAMP is optimization of specific
reaction condition and primer combination to be used in view
of which other isothermal techniques for amplification are
being looked into [81]. In addition, SHERLOCK, a Cas13a
ribonuclease based RNA sensing detection strategy, is also
being used with SARS-CoV-2 detection protocol [67, 79]
This is further being explored for other Cas13a-based detec-
tion tests for SARS-CoV-2 detection [82].

CT Scan

In view of short supply of COVID-19 detection kits and false-
negative rate of RT-PCR, CT scans are also temporarily being
used for COVID-19 clinical diagnosis. The non-invasive chest
CT scans are cross-sectional images captured based on mea-
surement of X-rays at different angles across the patient’s
chest and analyzed by radiologists for abnormal presentation
[83, 84]. Imaging studies using CT scans in COVID-19 pa-
tients presented with diverse features in scans which mainly
varied depending on the time of onset of symptoms and stage
of infection [85, 86]. It has been reported that patients

presenting with early stage of COVID-19 were diagnosed
with normal findings in CT scan in 56% of the COVID-19
patients [85] and had lung involvement after 10 days of infec-
tion or onset of symptoms [86]. Themost commonly observed
hallmark of COVID-19 manifestation included consolidation
of lungs and peripheral and bilateral ground-glass opacity [85,
86]. It was reported that the ground-glass opacity was more
evident 0–4 days after onset of symptoms. As the infection
progressed, it led to irregular paved stone pattern followed by
lung consolidation (solid or fluid in compressible lung tissue)
[85, 86]. Interestingly, CT scans have also been the method of
choice in view of false-negative rate of RT-PCR and 86–98%
sensitivity [54, 87, 88]. A major limitation of using CT scans
extensively for COVID-19 diagnosis is its low specificity
which overlaps with viral presentations like pneumonia [54].

Protein Testing

According to WHO (2020), the primary priority is to improve
patient screening with integration of nucleic acid testing and
serological testing based on protein quantification. The main
advantage of protein testing is time-point-based screening
from diagnosis to recovery which is not possible with nucleic
acid testing; it is cost-effective and can be implemented in
rural areas without instrumental infrastructure facilities [89].
For protein testing, the levels of viral protein antibodies are
used for detection which provides a larger window for detec-
tion in comparison with viral load with fluctuates from initial
weeks to later [90]. However, a major challenge with

Fig. 4 Systematic comparison
and outbreak of common
coronavirus (1960) with COVID
(2019)
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development of serological tests was to address the issue of
SARS-CoV-2 antibody cross-reactivity against other known
strains of coronavirus. High cross-reactivity frequency was
observed when 15 COVID-19 plasma samples were tested
against S protein of SARS-CoV and SARS-CoV-2 [91].
Different serological tests are being developed for viral spe-
cific testing [79, 92–94]. Zhang et al. used the nucleocapsid
protein SARS-CoV-2 Rp3 and used ELISA for detection of
immunoglobulin M (IgM) and immunoglobulin G (IgG) in
serum of COVID-19 patients [79]. Xian et al. also detected

SARS-CoV-2 IgM and IgG antibody levels [94]. In an inter-
esting study, COVID-19-infected patients were reported to
have high D-dimer and C-reactive protein (CRP) levels and
low levels of blood platelets, leukocytes, and lymphocytes
[88].

Challenges with Nucleic Acid Testing and CT Scan

COVID-19 is presently being screened using CT scans and
diagnosed with RT-PCR worldwide. However, both

Table 3 Number of SARS-Cov-2 RT-PCR detection kits from companies and research groups

Detection
platform

Sample type Number of
samples

Technology Detection technology Reference

Nucleic acid testing

RT-PCR Throat swabs 1014 RT-PCR Reverse-transcription amplification and fluorescent
signal detection

[54]

RT-PCR Oropharyngeal/nasopharyngeal
swabs

176 RT-PCR Reverse-transcription amplification and fluorescent
signal detection

[55]

RT-PCR Oro-nasopharyngeal swabs or
endotracheal aspirate

32 RT-PCR Reverse-transcription amplification and fluorescent
signal detection

[56]

RT-PCR Placental and fetal membrane
samples

11 RT-PCR Reverse-transcription amplification and fluorescent
signal detection

[57]

RT-PCR Nasopharyngeal, throat swab,
sputum, saliva

59 RT-PCR Reverse-transcription amplification and fluorescent
signal detection

[58]

RCA Serum 7 Rolling circle
amplification

Circular primer repeated amplification [59]

RPA Fecal and nasal swabs 30 RPA DNA blinded with forward and reverse primers and
amplified

[60]

NASBA Nasal swabs 138 REAL
TIME-NASB-
A

RNA target—transcription amplification [61]

RT-LAMP Nasopharyngeal aspirates 59 LAMP Reverse transcriptase isothermal cDNA amplification [62]

RT-LAMP Throat swabs 16 LAMP Reverse transcriptase isothermal cDNA amplification [63]

RT-LAMP Throat swabs 56 LAMP Reverse transcriptase isothermal cDNA amplification [64]

LAMP Throat swabs 53 LAMP Isothermal DNA amplification [65]

iLACO Not specified 248 LAMP Isothermal LAMP [66]

CRISPR Nasopharyngeal swabs 384 RT-RPA SHERLOCK fluorescence multiplexed signal
detection

[67]

CRISPR Serum 110 RPA CRISPR/Ca9-mediated lateral flow nucleic assay
(CASLFA)-PCR

[68]

Magnetic
bead

Stool 17 Magnetic Magnetic bead isolation for PCR detection [69]

Quantum dot
barcode

Serum 72 Barcode RPA detection of viral DNA captured using
multiplexed quantum beads

[70]

Paramagnetic
bead

Serum 12 Magnetic
biosensor

Protein targets—magnetic separation [71]

Smartphone
dongle

Blood 96 ELISA ELISA operated through microfluidic-based cassette [72]

Protein testing

Rapid antigen
test

Serum 117 Lateral flow Colorimetric signal produced by gold-coated particles
if SARS-CoV-2 positive on paper

[73]

ELISA Serum 30 ELISA Colored product from enzymatic reaction [74]

Biobarcode
assay

Serum 18 DNA-assisted
immunoassay

Gold nanoparticle conjugated DNA is amplified
followed by signal detection

[75]

SIMOA Serum 30 Digital ELISA Digital readout of colored product from enzymatic
reaction

[76]
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techniques have shortfalls. A major limitation of CT scan is
the requirement of technical expertise to perform and analyze
scans; it is expensive and cannot precisely diagnose COVID-
19. With RT-PCR, the major challenge at this time is the
development and availability of COVID-19 detection kits
which is falling short in view of the exponential increase in
patient infection rate. Second, lack of appropriate infrastruc-
ture and RT-PCR instruments in medical hospitals in sub-
urban and rural areas are to comprehend high sample through-
put. Next, as RT-PCR is based on detection of SARS-CoV-2
RNA, there have been cases reported where an asymptomatic
patient recovered from SARS-CoV-2 infections and hence
RT-PCR was not able to detect previous infection or cases
where patients were in incubation state when samples were
taken for screening and developed symptoms later on. Hence,
using these two techniques simultaneously may help to
achieve a more accurate diagnosis of COVID-19 patients.
Besides these techniques, other rapid detection technologies
are also being investigated to address these limitations of
SARS-CoV-2 detection.

Drugs and Treatment Therapy for COVID-19

As COVID-19 pandemic has entered a dangerous new phase
and wreaking havoc, the world is trying to discover ap-
proaches to slow the spread of the novel coronavirus and to
discover viable medications. It will prompt the decrease of
burden on the healthcare system of the nation by restricting
the number of individuals who are seriously sick by COVID-
19 and will diminish the span of infection carriage so as to
confine the transmission in the network [95••, 96]. So, there is
an earnest requirement for therapeutics focusing on SARS-
CoV-2. Shockingly, there are no FDA-approved drugs for
COVID-19 yet; however, they have made a unique crisis pro-
gram for potential treatments, the coronavirus treatment accel-
eration program (CTAP). It utilizes each accessible strategy to
move newmedications to patients as fast as could be expected
under the circumstances while simultaneously seeing if they
are useful or harmful (FDA 2020). At present, treatment pro-
vided to the affected people is mostly symptomatic and the
critically ill individuals are provided with organ support [97].
Utilization of old antiviral medications will be an intriguing
technique on account of information on security profile, reac-
tions, and phonology, and medication communications are
notable [98]. Here, we investigate a portion of the significant
medications that may help in the fight against COVID-19.

A recent paper revealed an inhibitory impact of remdesivir
(a new antiviral medication) and chloroquine (an old antima-
larial medicate) on the development of SARS-CoV-2 in vitro
[99••]. Thus, following the in vitro outcomes, 20 clinical ex-
aminations were propelled in a few Chinese emergency clinics
[100]. Results demonstrated the predominance of chloroquine
(500 mg chloroquine two times per day for 10 days)

contrasted with treatment of the control group as far as de-
crease of pneumonia, length of indications, and deferral of
viral freedom, all without extreme reactions [101]. Similarly,
hydroxychloroquine (an analogue of chloroquine) has been
shown to have an inhibitory effect on SARS-CoV activity
in vitro [102]. A few other pre-clinical in vitro examinations
propose that both chloroquine and hydroxychloroquine have
activity against SARSCoV-2 [95, 102, 103], despite the fact
t h a t on e i n v i t r o i nve s t i g a t i o n p r opo s e s t h a t
hydroxychloroquine might be stronger than chloroquine and
displayed a higher in vitro antiviral impact as compared with
chloroquine [102, 104]. Further, hydroxychloroquine clinical
welfare profile is better than that of chloroquine (during long
haul use) and permits higher daily dose and has fewer appre-
hensions about drug–drug interactions [105]. Both medica-
tions are accounted for to hinder significant viral replicating
enzymes like viral DNA and RNA polymerase and processes,
such as viral protein glycosylation, virus assembly, new infec-
tionmolecule transport, and infection discharge. A few reports
proposed that these medications may lead to inhibition of
angiotensin-converting enzyme 2 (ACE2) cell receptor, acid-
ification at the surface of the cell membrane impeding fusion
of the virus, and immunomodulation of cytokine release [106,
107].

A nucleoside (adenosine) analogue remdesivir is a broad-
spectrum antiviral agent. It was produced by Gilead Sciences
in 2017 as a treatment for Ebola infection. In vitro studies
demonstrated that remdesivir can repress coronaviruses, for
example, SARS-CoV and MERS-CoV replication [108•].
Information propose remdesivir represses movement of
SARS-CoV, MERS-CoV, and bat CoV strains that can repli-
cate in human epithelial cells and acts as an intermediate chan-
nel by means of human CoV receptors. Remdesivir has indi-
cated prophylactic and remedial adequacy against 2002
SARS-CoV in a mouse model [108, 109]. It had been recom-
mended that remdesivir may be a possibility for the treatment
of patients with COVID-19 [110]. In pre-clinical trials,
remdesivir has demonstrated noteworthy activity against co-
ronavirus and a high genetic barrier to resistance [108•].
In vitro studies have also shown that remdesivir exerts intense
antiviral action against a clinical isolate of SARS-CoV-2, giv-
en the broad-spectrum anti-COV action of remdesivir that
were shown in pre-clinical investigations. A randomized, con-
trolled, twofold visually impaired clinical preliminary study is
planned to assess the safety and efficacy of remdesivir in
hospitalized patients with mild or moderate COVID-19 respi-
ratory disease [111]. In a case report, remdesivir treatment was
begun intravenously on day 7 of a patient with COVID-19. It
was observed that 68% of patients demonstrated clinical im-
provement when treated with remdesivir [112]. Remdesivir
acts as an inhibitor of RNA-dependent RNA polymerases. It
is reported to compete with adenosine triphosphate for incor-
poration into nascent viral RNA chains. When fused into the
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viral RNA at position i, it ends RNA amalgamation at position
i + 3. Since RDV-TP does not cause quick chain end (i.e.,
three extra nucleotides are joined after RDV-TP), the drug
appears to evade proof-reading by viral exoribonuclease (a
catalyst thought to extract nucleotide simple inhibitors) [99,
108, 113–115].

A randomized, controlled, open-label trial on hospitalized
patients with affirmed SARS-CoV-2 disease was directed to
check the adequacy of two HIV Protease Inhibitor medicines,
i.e., lopinavir and ritonavir, toward SARS-CoV-2 infection
[116]. Based on prior in vitro and animal model examinations,
both these medications have indicated action against
coronaviruses (SARS-CoVand MERS-CoV) [54, 104].
Clinical improvement was seen in patients treated with
lopinavir and ritonavir; however, no distinction was noted in
the duration of viral shedding after treatment [116]. Both these
medications are reported to bind to Mpro, a key enzyme for
coronavirus replication and help in suppression of coronavirus
action [117]. Another broad-range antiviral medicine,
favipiravir, with known in vitro action against RNA viruses
is clinically under scrutiny for treatment against SARS-CoV-2
disease (Peking University 2020) [118]. Favipiravir is a RNA-
dependent RNA polymerase inhibitor that represses viral
RNA synthesis [118].

In a clinical trial, azithromycin was also used in combina-
tion with hydroxychloroquine to prevent bacterial contamina-
tion in patients suffering from COVID-19 [119••]. Initial re-
sults show the potential advantage of azithromycin as an ad-
junct therapy. Previously, azithromycin has also been utilized
as an adjunct therapy in patients with MERS-CoV in combi-
nation with antiviral treatment [120]. Azithromycin may stop
bacterial infection; furthermore, macrolides have immuno-
modulatory properties to be used as adjunct therapy [119,
121]. Macrolides have demonstrated immunomodulatory
properties in pneumonic inflammatory disorders, which may
down control provocative reactions and lessen the over-the-
top cytokine production related with respiratory viral contam-
inations. Azithromycin may help in lessening chemotaxis of
neutrophils (PMNs) to the lungs by hindering cytokines (i.e.,
IL-8) [121, 122]. Another glycopeptide antibiotic, teicoplanin,
a routinely utilized anti-microbial to treat bacterial contamina-
tion, was seen as dynamic in vitro against SARS-CoV and has
joined the rundown of particles that could be utilized as re-
storative agent against COVID-19 [123]. This antibiotic, as of
now utilized in the treatment of Gram-positive bacterial dis-
ease, particularly in Staphylococcal infections, has just dem-
onstrated adequacy against different infections, for example,
Ebola, flu virus, flavivirus, hepatitis C virus, HIV virus, and
on coronavirus (MERS-CoV and SARS-CoV) [98].

Patients with COVID-19 have demonstrated expanded
plasma convergences of inflammatory cytokines, for example,
TNF-α and IL-2, 7, and 10, particularly in ICU patients,
which suggested that a cytokine storm happened [124••]. In

light of these discoveries, an interleukin-6 (IL-6) receptor-
inhibiting monoclonal antibody named tocilizumab may
prove to be successful for COVID-19. In this way, patients
analyzed as critical COVID-19 were given tocilizumab treat-
ment. Patients received standard treatment as per treatment
protocol for COVID-19 in combination with tocilizumab.
The results with tocilizumab treatment were promising. The
temperature of the considerable number of patients came back
to normal rapidly. The respiratory capacity and every other
manifestation improved amazingly. Among these 21 patients,
20 patients have been recouped and released within 14 days
post-tocilizumab treatment [125]. Additional information with
respect to clinical viability for COVID-19 is being assessed
[99, 114]. Tocilizumab hinders IL-6-interceded motioning by
competitively binding to both solvent and film bound IL-6
receptors (sIL-6R and mIL-6R) [126]. Thus, another
interleukin-6 (IL-6) receptor-inhibiting monoclonal antibod-
ies, namely, sarilumab and siltuximab, are recommended for
COVID-19, as it has been accounted for to help in charge of
cytokine discharge disorder which is a segment of extreme
cases in COVID-19 patients [93, 127]. An investigation of
21 patients with COVID-19 prompted pneumonia/ARDS
was being examined who received treatment with siltuximab
[128].

Recombinant human interleukin-1 (IL-1) receptor antago-
nist anakinra and januskinase (JAK) inhibitor baricitinib an-
swered to work in cytokine discharge condition are being
assessed for its adequacy against COVID-19 (Swedish
Orphan Biovitrum 2020) [93]. Anakinra also acts to the local
interleukin-1 receptor adversary (IL-1Ra) by seriously hinder-
ing the authoritative IL-1, explicitly IL-1alpha and IL-1beta,
to the interleukin-1 sort 1 receptor (IL-1R1). IL-1 is a genius
incendiary cytokine that intervenes different fiery and immu-
nological reactions, including actuation of IL-6 (Swedish
Orphan Biovitrum 2018), while Janus kinases are intracellular
chemicals that transmit signals emerging from cytokine or
development factor receptor communications on the cellular
membrane to impact cell procedures of invulnerable cell ca-
pacity and hematopoiesis (Olumiant 2019). Another monoclo-
nal antibody, namely, leronlimab, answered to improve insus-
ceptible reactionwhile relieving cytokine storm is additionally
assessed for potential treatment of COVID-19 (CytoDyn.
Public statement 2020) [129].

Clinical trials are being directed to assess the utilization of
COVID-19 convalescent plasma to treat patients with extreme
or immediately life-threatening COVID-19 diseases. COVID-
19 convalescent plasma is not expected for prevention of the
disease. Clinical patients are treated with plasma gathered
from people who have recuperated from COVID-19 that
may contain antibodies to SARS-CoV-2 for clinical prelimi-
naries (FDA 2020). Rousing outcomes were achieved in pa-
tients whowere administered convalescent plasma. After plas-
ma imbuement, body temperature normalized inside 3 days in
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four of five patients. Sequential organ failure assessment score
diminished and PAO2/FIO2 increased inside 12 days [130••].

The FDA continues to explore the utilization of NSAIDs in
patients with COVID-19 (FDA 2020). Worry for potential
worsening of COVID-19 symptoms has been proposed, yet
corroborative clinical information is missing as of now [131].
The job of healthful enhancements for the treatment or pre-
vention of COVID-19 is obscure. A few enhancements are
under scrutiny in combination with other treatment modalities
(e.g., zinc, nutrient C, nutrient D) for both treatment and pro-
phylaxis (Progena Biome 2020).

As there is no approved drug for COVID-19 disease and it
will require some investment for potential immunization im-
provement, along these lines, it is the ideal opportunity for all
the residents to hold hands together to battle against corona-
virus by rehearsing self-cleanliness and social distancing.

Global Impact of Season on Coronavirus

COVID-19, caused by SARS-CoV-2, subsequently spreads
to many other regions in the world through global travel
[124, 132]. Because of geographical proximity and signifi-
cant travel connections, epidemiological modeling of the
epicenter predicted that regions in Europe, America, and
Southeast Asia would follow Wuhan and China in the epi-
demic [133, 134]. Temperature and humidity are known
factors in SARS-CoV, MERS-CoV, and influenza survival,
new outbreaks, and the increase in the risk of infection [21,
135, 136, 137•, 138]. Besides potentially prolonging half-
life and viability of the virus, other potential mechanisms
associated with cold temperature and low humidity include
stabilization of the droplet and enhanced propagation in
nasal mucosa, as has been demonstrated with other respira-
tory viruses [139, 140]. Althoughmost studies have focused
on relative humidity that can be affected by temperature,
few focused on specific humidity to assess the effect of
humidity as variable. The researchers have found that low
specific humidity is a key factor in laboratory transmission
of influenza as well as the onset of seasonal influenza in the
USA [139]. It was reported that high temperature and rela-
tive humidity reduce the transmission of COVID-19 with
1% significance levels of evidence that high temperature
and high humidity reduce the transmission of influenza
[141–145]. This suggested that the arrival of summer and
rainy season in the northern hemisphere can effectively re-
duce the transmission of the COVID-19, and it is unlikely
that the COVID-19 pandemic diminishes by summer since
the central US, northwest China, and countries in the south-
ern hemisphere (e.g. Australia and South Africa) still have a
high coronavirus transmission. Therefore, other measures
such as social distancing are still important for blocking
the COVID-19 transmission.

Role ofMass Media in Prevention andManagement of
COVID-19

The COVID-19 pandemic has created a worldwide challenging
emergency that has deeply affected the regular life of every
individual and their existence. The COVID-19 pandemic is to
be known as a more serious public health risk than influenza
pandemic of the early twentieth century that killed over 50
million people worldwide. The number of infected patients
and lethalities of COVID-19 augmenting exponentially and its
ultimate global impacts are still mysterious. The countries fac-
ing novel corona pandemic worldwide have implemented var-
ious forms of social distancing to reduce the virus spread until
specific medicines and vaccines will be available in the market
[146, 147]. Most of the countries face unique challenges to
combat the COVID-19 pandemic. More specifically, develop-
ing countries have poor healthcare resources, limited state ca-
pacity, a large population below the poverty line, and monetary
issues that are posing a challenge to save life against this pan-
demic. Therefore, countrywide lockdown by keeping in mind
the physical danger, and social and physical distancing policy
has forced huge stress on the population below the poverty line.
Meanwhile, the media came in front in qualitative and quanti-
tative means and play a remarkable role in providing the latest
updates to people by spreading awareness among them. The
effect of social distancing are apparent in India through data and
“individual-based simulation model” comparative account with
China, Italy, America, etc. [148, 149]. The data which have
been combinedwith data on the early and swift commencement
of COVID-19 associated to demographic pattern, rate of infec-
tion and dispersal, frequency of hospitalization with critical care
facility, and mortality might be highly influential in the policy
arena. The improvement suggested by Ferguson et al. (2020) in
moderate form of social distancing includes a 7-day isolation of
anyone suspected with coronavirus symptoms and a 14-day
entirely voluntary household quarantine to spectacularly reduce
social contact is fabulously helpful in lowering COVID-19 sig-
nificantly. All these measures that began in India since late
February 2020 may flatten the curve of infection but unable
to stop exclusively. This suppression scenario makes projec-
tions for strict and repeated imposition of social distancing
throughout the year until a vaccine will be developed for drastic
reduction in cases and rebound epidemic. In every step of this
pandemic, the media always came with the latest updates and
safety measures, multiple stories, progressive headlines, and
politicians’ addresses to nation across the past few months. In
any case, this consistent blast of new data, new cases, and new
counsel has been trying to increase awareness. It not just makes
the story hard to stay aware of from a columnist’s viewpoint, it
makes it prone to misunderstanding for anybody attempting to
follow the story. A news piece you read one day could be totally
obsolete by the following morning, and this has implied that
there have been numerous inquiries from the general society
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encompassing the flare-up and the infection. Furthermore, as
supplementary data have risen over the previous weeks, spe-
cialists and general well-being authorities have reconsidered
their conclusions, exhortation, and proposals in accordance
with this, and it has been concluded that these updates have
made it difficult to construct trust.

Effect of COVID-19 on the Economy and Supply Chain

The influence of novel coronavirus disease alongwithmortality
andmorbidity has become apparent since the outbreak in highly
interconnected global capita. The worldwide act of lockdown
was associated with interruptions to production amidst the
slowing down of global economy. Consecutively, the global
supply chain has also been discomfited which leads to great
socioeconomic hike. The discoveries uncover that the
expanding number of lockdown days, fiscal arrangement
choices, and travel limitations seriously influenced the degree
of financial growth and the end, opening, most minimal, and
most noteworthy stock cost of significant securities exchange
records. Conversely, the forced limitation on inward develop-
ment and higher monetary approach spending positively affect-
ed the degree of financial growth despite the fact that the
expanding number of affirmed coronavirus cases did not sig-
nificantly affect the degree of financial growth [150].
Companies worldwide, irrespective of size, have started
experiencing reductions in production and export because
bounded transport in restricted countries further slowed down
global economic exchange activities. The economic stock mar-
kets have also been approachable to changes and global stock
indices through various direct and indirect economic costs since
novel corona outbreak, disease burden, and associated illness.
The time, income, and direct financial loss of bearer on medical
care and associated services are extra in quantitative asset esti-
mate of the economic loss because of COVID-19. The con-
formist comes up with underestimation of the true economic
costs of infectious pandemic diseases for which there is no
vaccine until today so far (e.g., COVID-19, HIV/AIDS, pan-
demic influenza) [151, 152••, 153–156]. The exercises of the
earlier reported pandemics might be helpful in the assessment
of valuable information for reducing and combating current
pandemic outbreak implications. The horror and psycholog-
ical effects of this unknown deadly virus are quite more
like biological terrorism threats which cause a high level
of stress, with longer-term consequences [157]. Social
distancing, travel restrictions, and self-isolation not only
decrease economic sectors across the world but also
caused loss to many educational institutions which have
locked down also. On the contrary, the demand for med-
ical supplies and food resources increases due to panic-
buying and stockpiling of medical supplements and food
products, which is also a big challenge [158].

Conclusion

In 2002, SARS CoV-1 epidemic created havoc in Guangdong
region of China, but in December 2019, SARS-Cov-2, novel
coronavirus had emerged in Wuhan, China, which caused an
epidemic in the whole world. This virus transmitted so quickly
that it affected more than hundreds of thousands of people over
the world. Although the source, origin, and transmission mech-
anism of this virus are not yet clear, there are preventive mea-
sures like social distancing, washing of hands, and sanitization
of hands in public places accepted worldwide. Scientists and
researchers are rapidly studying on this topic and helping peo-
ple to overcome this pandemic. Also, the doctors, border secu-
rity officers, army men, police officers, nurses, and municipal
workers are trying their level best to save the world from this
disease. Until now, there is no vaccine for coronavirus, but
scientists are hopefully finding and managing an effective vac-
cine for this virus. In the meantime, various antiviral drugs
mainly in combination with azithromycin are used for short-
term benefits. So, in the end, it is a lesson to be learned on the
basis of this viral disaster in terms of global and public health
for any future pandemic like this.
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