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ABSTRACT Emerging evidence implicates an interplay among multiple organs such as brain,
vasculature, gut and lung in the development of established pulmonary arterial hypertension (PAH). This
has led us to propose that activated microglia mediated-enhanced sympathetic activation contributes to
PAH pathophysiology. Since enhanced sympathetic activity is observed in human PAH and the gut is
highly innervated by sympathetic nerves that regulate its physiological functions, we hypothesized that
PAH would be associated with gut pathophysiology.

A monocrotaline rat model of PAH was utilized to investigate the link between gut pathology and PAH.
Haemodynamics, histology, immunocytochemistry and 16S RNA gene sequencing were used to assess
cardiopulmonary functions, gut pathology and gut microbial communities respectively.

Monocrotaline treatment caused increased right ventricular systolic pressure, haemodynamics and
pathological changes associated with PAH. PAH animals also showed profound gut pathology that
included increased intestinal permeability, increased muscularis layer, decreased villi length and goblet
cells. These changes in gut pathology were associated with alterations in microbial communities, some
unique to PAH animals. Furthermore, enhanced gut-neural communication involving the paraventricular
nucleus of the hypothalamus and increased sympathetic drive were observed.

In conclusion, our data show the presence of gut pathology and distinct changes in gut microbiota and
increased sympathetic activity in PAH. They suggest that dysfunctional gut-brain crosstalk could be
critical in PAH and considered a future therapeutic target for PAH.
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Introduction

Pulmonary arterial hypertension (PAH), primarily a disease of pulmonary vasculature, is characterised by
an increased pulmonary pressure that leads to right heart failure and death. PAH remains an incurable
disease despite persistent efforts to develop new therapeutic targets directed towards pulmonary
vasculature signalling. Our previous studies and those of others have challenged this central dogma and
suggested that PAH could be a systemic disease, where coordinated interactions of multiple organ systems
may be involved in the initiation and establishment of PAH pathophysiology [1, 3-]. For example, our
recent studies have demonstrated that microglia activation and neuroinflammation in autonomic brain
regions in association with enhanced sympathetic activity play key roles in the development of PAH [1, 3]
This led us to propose the concept of dysfunctional brain-lung communication in PAH, consistent with
evidence of increased sympathetic nerve activity (SNA) in PAH patients [4, 5] and involvement of
neuroinflammation in many pulmonary and hypoxic pathophysiological conditions [6, 7].

Sympathetic nerves innervate the gastrointestinal wall and have major influences on gut motility,
vasculature and microbiota thereby impacting host-microbiota cross-talk and physiological function [8]. In
fact, alterations in sympathetic activity to the gut have been associated with gut microbial dysbiosis, gut
pathology and overall metabolic change in many diseases, including systemic hypertension [8, 12-]. These
observations, together with evidence of enhanced SNA in PAH has led us to propose that PAH is
associated with alterations in gut pathology and microbiota. Therefore, the major objective of our study
was to investigate the hypothesis that enhanced sympathetic activity, altered gut wall pathology and
increased gut permeability, and unique alterations in gut microbial communities are associated with overall
PAH pathophysiology. A minor aim was to determine if any changes in gut microbial communities were
specific to PAH by comparison to systemic hypertension, a disease closely associated with alterations in
the gut microbiome [10, 13, 15-].

Methods

Animals

Eight-week-old male Sprague-Dawley (SD) rats (Charles River Laboratory) were housed in a
temperature-controlled room (22-25°C) with a 12:12-h light-dark cycle on autoclaved corn cob bedding.
The animals were housed under specific-pathogen-free conditions and fed irradiated standard commercial
rodent chow and water ad libitum. All experiments were approved by the University of Florida Institutional
Animal Care and Use Committee. PAH was induced by a single subcutaneous injection of monocrotaline
((MCT) Sigma-Aldrich, St. Louis, MO, USA) at a dose of 60 mg per kg of body weight, whereas rats from
the control group received the equivalent volume of saline. Another set of SD rats (6-7 per group) were
subcutaneously implanted with osmotic minipumps (model 2004; Durect Corporation, Cupertino, CA, USA)
to infuse angiotensin IT (Angll) at 200 ngkg™"-min~" (Bachem, Torrance, CA, USA) or vehicle as described
previously [16]. Faecal samples were collected after 4 weeks of MCT/AngII treatment. Full details of all
experimental protocols are presented in the Methods of the online “Data Supplement”.

Cardiopulmonary functions and autonomic evaluation

Measurements of right ventricular systolic pressure (RVSP), +dP/dt, —dP/dt and right ventricular end
diastolic pressure (RVEDP), tissue, blood sample collection and analysis were performed 28 days after
MCT treatment as described previously [1]. We performed power spectral analysis of heart rate variability
(HRV) data to determine the involvement of sympathetic activation in PAH using electrocardiogram
recordings as described previously [1]. Two spectral components were determined: low frequency ((LF)
0.25 to 0.75 Hz) and high frequency ((HF) 0.75 to 3.00 Hz) [17, 18]. The ratio between the LF and HF was
used as a representation of the balance between sympathetic and parasympathetic systems.

Tyrosine hydroxylase immunostaining

Formalin-fixed small intestine sections were incubated overnight with mouse anti-tyrosine hydroxylase
(TH) antibody (AB152; 1:500; Invitrogen, Carlsbad, CA, USA) followed by incubation with Alexa Fluor
488 labelled secondary antibody (1:600; Invitrogen, Carlsbad, CA, USA).

Retrograde tracing of the gut-brain neural connection

Retrograde tracing was performed using Pseudorabies virus (PRV) to evaluate neural connections of the
small intestine and the brain paraventricular nucleus (PVN) in a separate set of animals as described
previously [9]. PRV tagged with green fluorescent protein (GFP); 3 uL of 4.86x10® PFU-mL™" viral
recombinants; 10 uL) was applied to the external surface of the small intestine and spread with a soft,
sterile paintbrush. The intestine was re-positioned, abdominal muscles were sutured, and the skin was
sealed with surgical wound clips. At 4 days after GFP-PRV injection, all rats were perfused, and brains
were collected. Frozen 25-um sections were prepared and green fluorescence was examined in the PVN.
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ELISA

Plasma norepinephrine (NE), tissue inhibitor of metalloproteinases-1 (TIMP-1), intestinal fatty-acid
binding protein (I-FABP) and high mobility group box 1 (HMGB1) were quantitated using commercially
available ELISA kits. All assays were performed according to the manufacturers’ instructions.

Histological assessment of gut pathologies

Histological techniques were performed to evaluate the general morphology and collagen content of small
intestines as previously described [9]. Briefly, 5-um cross-sections of jejunum were stained to quantify
signs of intestinal pathologies, such as fibrosis, thickness of tunica muscularis externa, villi length and the
number of goblet cells per villus.

16S rRNA gene sequencing of faecal samples

Faeces were collected in sterile microfuge tubes, snap-frozen in liquid nitrogen and stored at —80°C until
analysis. DNA was extracted from approximately 0.25 g of faecal sample with a MoBio Powersoil DNA
Isolation kit following the manufacturer’s instructions (MoBio, Carlsbad, CA, USA). Briefly, total DNA
was quantified with a Qubit 2.0 fluorometer with the dsDNA high sensitivity option, and 10 ng of each
sample was amplified by PCR using the Illumina iTag kit. PCR products were pooled and purified with
the Qiagen Gel Purification Kit. Sequencing was conducted at California State University Northridge DNA
sequencing facility. Reads were analysed using the QIIME 1.9.0 software package and chimeric sequences
were identified using USEARCH61 [19]. Open reference operational taxonomic units (OTUs) were picked
using the USEARCHS61 algorithm [19], and taxonomy assignment was performed using the Greengenes
16S rRNA gene database (13-5 release, 97%) [20]. In taxonomic comparisons, OTUs unclassified at the
kingdom level were discarded. All beta diversity analyses were generated from a CSS normalised OTU
table within QIIME-1.9.0. A weighted UniFrac distance matrix was first generated and visualised in
three-dimensional space using Emperor. ANOSIM tests for significance were calculated within
QIIME-1.9.0, with the weighted UniFrac distance matrix serving as the input. Taxonomy was summarised
within QIIME-1.9.0 and uploaded to the Galaxy platform for linear discriminate analysis effective size
(LefSe)/cladogram enrichment plots considering significant enrichment at a p<0.05, Linear Discriminant
Analysis (LDA) score>2.5. Closed reference OTUs were picked within QIIME-1.9.0 in order to generate
functional predictions using PICRUSt [21]. Functions were summarised at level 3 and uploaded to the
Galaxy platform to generate LEfSe plots where p<0.05 and LDA>1.0 were the criteria used for selection of
enriched functions.

Statistical analysis

For all the parameters, group data were presented as mean+seM and responses of RVSP, right ventricular
hypertrophy (RVH) and RVEDP indices to MCT were expressed as percent changes from their control
groups. Comparisons among the groups were analysed using an unpaired t-test and p<0.05 was considered
as statistically significant. GraphPad Prism 8.0 (La Jolla, CA, USA) software was used to analyse the data
and for graph generation.

Results

MCT-induced PAH causes gut pathology

After 4 weeks of treatment with MCT SD rats had a robust increase in RVSP (230%, p<0.001, table 1) and
RVEDP (80%, p<0.01, table 1). This was associated with RVH (88%, p<0.001, table 1). These data are

TABLE 1 Changes in haemodynamic and plasma inflammatory and permeability markers in

MCT-treated rats

Parameters Control MCT p-value
RVSP mmHg 23+0.6 68+5.4 0.0002
RVEDP mmHg 2.7£0.1 5.0£0.6 0.002
RV/LV+S g 0.22+53 525481 0.0002
I-FABP ng-mL~" 229453 525481 0.012
TIMP-1 ng-mL~" 10+1.0 25+6.3 0.004
HMGB-1 ng-mL™" 11912 17216 0.029

Data are presented as mean+SEM (n=6-8 per group), unless otherwise stated. MCT: monocrotaline; RVSP:
right ventricular systolic pressure; RVEDP: right ventricular end-diastolic pressure; RV/LV+S: ratio of right
ventricle to left ventricle plus septum; I-FABP: intestinal fatty acid binding protein; TIMP-1: tissue inhibitor
of metalloproteinases-1; HMGB-1: high mobility group box-1
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consistent with established cardiopulmonary pathophysiology in the MCT rat model of PAH [1].
MCT-treated rats showed an eightfold increase in the ratio of LF to HF, a measure of autonomic function
(p<0.001, fig. 1a) and 2.3-fold increased plasma NE levels (p<0.01, fig. 1b). This indicated an increase in
sympathetic activity in PAH animals. Retrograde tracing with GFP-PRV was carried out to determine the
neural connections between the gut and autonomic brain regions and whether they are impaired in PAH
animals. GFP-PRV was preferentially transported to the PVN when applied to the small intestine (fig.
1d-g). GFP labelling was very pronounced in the PVN of MCT-treated animals compared with controls.
Finally, TH immunoreactivity increased ~2.8-fold (p<0.001, fig. lc, h and i) in the intestine of
MCT-treated animals.

Next, we determined whether increased sympathetic activity in PAH animals was associated with gut
permeability and pathology. Intestinal fatty acid binding protein (I-FABP), an epithelial protein, is released
into circulation as a result of mucosal damage and is used as marker for gut permeability [22]. We
observed a 2.3-fold elevation of plasma I-FABP in MCT-treated animals (p<0.05, table 1). We also
measured plasma tissue inhibitor of metalloproteinases-1 (TIMP-1) and high mobility group box-1
(HMGBI), two proteins increased in PAH [23, 24] to verify our MCT model. As expected, TIMP-1
increased 2.6-fold (p<0.001) and HMGBI1 increased 1.4-fold (p<0.05) in MCT-treated compared to
control animals.
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TH area in SI %

Control

a) Ratio of low frequency ([LF) reflecting sympathetic activity] and high frequency ((HF) reflecting
parasympathetic activity) heart rate variability and (b] Plasma norepinephrine [NE) shows autonomic
imbalance in monocrotaline (MCT)-treated rats. c) Cumulative tyrosine hydroxylase (TH]-positive staining,
an index of catecholamine synthesis, was significantly increased in small intestines of MCT-challenged rats.
d,e) Brain-gut neural connections are enhanced in MCT-induced pulmonary arterial hypertension (PAH).
A neural circuit between the gut and the brain paraventricular nucleus (PVN] was identified by retrograde
tracing using green fluorescent protein (GFP) Pseudorabies virus (GFP-PRV). Representative micrograph
showing GFP expression in the PVN of control and MCT rats (scale bar, 50 um). f,g] High-resolution
micrographs show increased GFP in PVN of MCT rats compared with controls (scale bar: 150 um).
h,i] Representative micrographs showing TH immunoreactivity in the small intestine (scale bar, 20 uM).
**%. p<0.001, **: p<0.01 versus control (n=5-7 rats per group). Data are represented as mean#sem.
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Finally, we examined the small intestine in MCT-treated animals for pathology. PAH animals showed
significantly increased intestinal fibrosis (143%, p<0,001, figure 2a, b and ¢) and muscularis thickness
(37%, p<0.001, figure 2d, e and f). Moreover, decreases in the number of goblet cells (15%, p<0.05, figure
2g, h, and i) and villus length 26%, p<0.001, figure 2j, k and 1) were observed in PAH animals.

Gut microbial communities are altered in PAH animals

Gut pathology is a major influence on gut microbiota with significant outcomes on host-microbiota
cross-talk and overall gut homeostasis. This, coupled with previous evidence of the involvement of
microbiota in various pulmonary diseases, led us to compare gut microbiota of PAH and control SD rats.
Three-dimensional principle coordinate analysis (PCoA) showed significant separation of microbiota of
MCT-treated animals from that of controls (p=0.031, figure 3a). The ratio of Firmicutes to Bacteroidetes
(F/B) was increased in MCT-treated rats compared with controls (p<0.05, figure 3b). A cladogram and
LEfSe demonstrated interesting differences between the groups (figure 3c and d), some of which are
summarised as follows: control rats demonstrated predominance of Enterobacteriaceae, a large family of
Gram-negative, benign, beneficial symbiotic bacteria. In contrast, numerous microbial genera were
observed in MCT-treated rats that are known to contain pathogenic species including a few associated with
pulmonary diseases [25, 26]. Among them are Gram-positive, aerobic, Corynebacteriaceae,
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FIGURE 2 Gut pathologies were determined histologically. a-c] Masson’s trichrome stain showed increased
fibrosis in small intestine (SI) of monocrotaline (MCT) rats. d-f) Haematoxylin and eosin staining revealed
increased muscularis layer thickness of Sl in these rats, whereas villi length (g-i) and number of goblet cells
[j-1) were decreased in MCT rats compared to control. ***: p<0.001, *: p<0.05 versus control (n=6 rats per
group). Data are represented as mean#sem.
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FIGURE 3 Effects of monocrotaline (MCT)-induced PAH on microbial communities. Bacterial 165 rRNA genes were analysed from faecal samples
to characterise gut microbiomes. a) Three-dimensional principal coordinate analysis (PCoA) showed that control and MCT-treated cohorts have
significantly distinct bacterial populations. b) Firmicutes (F) to Bacteroidetes (B) ratio (F/B) was increased in MCT rats, indicating gut dysbiosis.
c) A cladogram showing family- and genus-level changes of bacteria in each group. d Linear discriminant analysis effect size (LEfSe) was used to
determine the bacteria most likely to explain differences between cohorts. *: p<0.05 versus control (n=5-6 rats per group).

Corynebacterium. The class Erysipelotrichaceae, in the Firmicutes phylum, which includes the Clostridium,
Turicibacter, and Mollicutes genera. Erysipelotrichaceae are involved in gut dysbiosis in diseases such as
inflammatory bowel disease (IBD), obesity, and metabolic disease [27, 29-].

Distinct microbial communities in MCT-treated versus chronic angiotensin II-treated SD rats

We compared changes in gut bacterial communities in SD rats with PAH (MCT treatment) and with
systemic hypertension (chronic Angll infusion). First, we performed network analysis of genera in PAH
and hypertensive animals in comparison to their respective normotensive controls. We observed a cluster
of bacterial genera enriched in the MCT-treated group (blue circle) that was distinct from control animals
(red circles, figure 4a). Similarly, hypertensive animals showed distinct clustering from their controls
(figure 4g). Next, we compared relative levels of bacterial genera and observed differences between the
hypertensive and PAH animals. For example, we observed profoundly increased Bifidobacterium and
Streptococcus in hypertensive animals, while Oscillospira, Roseburia and Akkermansia were increased in
PAH animals (figure 4c, d and f). These data indicate several genera unique to each disease.

Discussion

This study provided three novel observations: 1) Enhanced sympathetic nervous system activity and gut to
brain (PVN) connections in PAH animals; 2) Altered gut pathology, microbial communities and increased
gut permeability in PAH animals; and 3) significant differences in disease-associated bacterial genera
between PAH animals and animals with systemic hypertension.

Evidence for impaired sympathetic gut communication includes: 1) GFP-PRV applied to the small intestine was
rapidly retrogradely transported to the neurons of the PVN to a greater degree in PAH animals than in control
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FIGURE 4 Comparison of the microbial community in monocrotaline (MCT)-induced pulmonary arterial hypertension (PAH) rats and angiotensin Il
(Angll)-induced hypertensive rats. Network analysis and interaction of bacterial abundance showed that the bacterial groups enriched in
Angll-induced hypertensive rats were: (a) Bifidobacterium and (b) Streptococcus, in contrast to MCT-PAH rats, whereas, the bacterial group
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animals. This may reflect alterations in neuronal activity, cellular metabolism, or polysynaptic transmission in
PAH, as all are known modulators of PRV transport. Involvement of activated microglia and
neuroinflammation, known to alter neuronal activity, in the development of PAH pathophysiology is consistent
with this view [1]. 2) Increased LF/HF ratio, reflecting greater sympathetic tone, together with higher plasma
NE suggests raised sympathetic drive in these animals as we reported previously [1]. This finding is also
consistent with increased SNA observed in PAH patients that independently predicts severity of disease [30]. 3)
Increased TH in the intestines of PAH animals, together with enhanced sympathetic innervation of the gut in
PAH animals, support our contention of an impaired gut-brain-lung axis in the pathophysiology of PAH.

Our data, for the first time, demonstrate that MCT-induced PAH is associated with profound gut wall
pathology. This includes increased fibrosis and muscular tissue in the gut wall, stunted villi and decreased
goblet cells. These changes have significant implications for host-microbiome interactions that potentially
influence brain-gut-lung homeostasis. For example, intestinal villi increase surface area for absorption of
nutrients in addition to harbouring digestive enzymes. Thus, their shortening in PAH animals is likely to
compromise metabolism and nutrient absorption. Furthermore, such impaired absorption may provide an
altered milieu allowing adverse microbial communities to bloom (discussed below). Goblet cells produce
mucin that principally protects the gut from pathogenic microbiota and thus regulates the immune
response of the gut [31]. Thus, decreases in goblet cells in PAH animals may decrease mucin production,
contracting mucin-degrading bacterial communities and expanding harmful ones. There are many
examples of flawed mucin and gut microbiota relationships in diseased states to support this concept [32,
33]. However, further experiments are warranted to confirm this in PAH. Nonetheless, it is evident from
our and others’ data that gut pathology increased gut permeability [9, 34, 35].

Our data are in general agreement with an earlier study of gut microbiota in a different rat model of PAH
[36]. There was little difference in alpha diversity between the control and PAH animals, whereas the F/B
ratio was significantly increased. A significantly different clustering of microbial genera from control and
MCT-treated PAH animals was observed. Importantly, Bacteroidetes were depleted in MCT rats
consistently with the previous observation [36], resulting in increased F/B ratios in both PAH models.
Bacteroidetes, Gram-negative bacteria, enriched in healthy rats, are indicative of a balanced gut. Depletion
of this phylum may have major mechanistic implications in PAH and repopulating them by
probiotic-based delivery may be therapeutic via the brain-gut-lung axis. Furthermore, PAH rats had
increased Clostridiales and Aerococcaceae bacteria of the Firmicutes phylum. Clostridiales, a potential
respiratory pathogen, was reported to be enriched in individuals exposed to agricultural dust high in
endotoxin and muramic acid [37]. Similarly, Aerococcaceae were enriched in Crohn’s disease patients [38].
These microbial communities were not prominent in gut microbiota of control animals.

Gut microbial dysbiosis and changes in gut permeability have recently been linked to multiple diseases
and pathophysiological conditions including cardiopulmonary disease, hypertension, obesity, diabetes, and
metabolic disorders, implicating a role for altered gut microbiota in pathogenesis of diverse diseases [9, 15,
36, 39-42]. However, there is a paucity of data identifying disease-specific changes in gut microbial
communities. Our study addresses this issue by comparing two related diseases, PAH and systemic
hypertension. In addition to PAH- and systemic hypertension-specific clustering of microbial communities
at the genus level, we demonstrate significant differences between the two pathological states. First, alpha
diversity in hypertensive animals was significantly decreased [15, 43]. No significant change in this
parameter was observed in PAH animals, an observation consistent with a previous study [36]. Second,
hypertensive animals showed significant depletion of bacterial communities of the genera Roseburia,
Oscillospira and Akkermansia while PAH animals showed depletion of Bifidobacterium and Streptococcus.
In contrast, Oscillospira and Roseburia are enriched in PAH. These genera are associated with short chain
fatty acid production and lean body mass and are generally considered to be beneficial bacterial
communities [44, 45]. The relevance of this observation needs further investigation. However, it is
reasonable to postulate that changes in one or more bacterial genera may precipitate a cascade of intricate
microbiota changes altering overall host-microbiota cross-talk in PAH. Therefore, metagenomic analysis
and expansion of knowledge about functional aspects of microbial communities would provide critical
information in this regard as pointed out recently [46]. We used the well accepted MCT rat model of PAH
in this study; it represents a complex multiorgan disease process that culminates in PAH and associated
right heart failure. MCT has been used in PAH research for over 40 years even though its mechanism of
action remains poorly understood. We acknowledge that the effect of MCT observed in this study may not
be direct. However, this is unlikely as a result of other supporting observations. 1) Gut dysbiosis has been
observed in a Sugen-hypoxia rat model of PAH [36]. 2) We demonstrated the presence of gut dysbiosis
and leakiness in patients with PAH [37]. 3) Hypoxia-induced PAH in mice is associated with
neuroinflammation, increased sympathetic activity, gut microbial dysbiosis and gut pathology [47].
Therefore, this concept awaits further validation by utilisation of other animal models of PAH.
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In summary, these observations indicate that sympathetic overactivation, gut leakiness, pathology and
specific changes in gut microbial communities are associated with MCT-induced PAH pathophysiology. It
also provides evidence of differences in microbial communities between hypertensive and PAH animals.
Obviously, these observations need to be confirmed in another animal model of PAH and with
metagenomic studies to validate this concept of dysfunctional brain-gut-lung communication in PAH.

Conclusions

Accumulating evidence suggest that PAH could be considered a systemic disease rather than a disease of
the pulmonary vasculatures and a coordinated interaction among multiple organs may be critical in the
development of this disease. Our study was designed to test the hypothesis that altered communication
among the autonomic brain region-gut and lungs is important in the development of PAH. Evidence show
that PAH is associated with increased gut-hypothalamic paraventricular nucleus trafficking, altered gut
wall pathology and imbalanced gut microbiota. This provides support for an impaired gut-brain-lung
cross-talk in PAH. This evidence open a new avenue for therapeutic interventions for PAH therapy.
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