
Research Article
High-Resolution Radar Target Recognition via Inception-Based
VGG (IVGG) Networks

Wei Wang,1 Chengwen Zhang,1 Jinge Tian,1 Xin Wang,1 Jianping Ou,2 Jun Zhang ,2

and Ji Li 1

1School of Computer and Communication Engineering, Changsha University of Science and Technology, Changsha 410114, China
2ATR Key Laboratory, National University of Defense Technology, Changsha 410073, China

Correspondence should be addressed to Jun Zhang; zhj64068@sina.com and Ji Li; hangliji@163.com

Received 13 June 2020; Revised 21 June 2020; Accepted 1 July 2020; Published 18 July 2020

Academic Editor: Nian Zhang

Copyright © 2020 Wei Wang et al. +is is an open access article distributed under the Creative Commons Attribution License,
which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Aiming at high-resolution radar target recognition, new convolutional neural networks, namely, Inception-based VGG (IVGG)
networks, are proposed to classify and recognize different targets in high range resolution profile (HRRP) and synthetic aperture
radar (SAR) signals. +e IVGG networks have been improved in two aspects. One is to adjust the connection mode of the full
connection layer. +e other is to introduce the Inception module into the visual geometry group (VGG) network to make the
network structure more suik / for radar target recognition. After the Inception module, we also add a point convolutional layer to
strengthen the nonlinearity of the network. Compared with the VGG network, IVGG networks are simpler and have fewer
parameters. +e experiments are compared with GoogLeNet, ResNet18, DenseNet121, and VGG on 4 datasets. +e experimental
results show that the IVGG networks have better accuracies than the existing convolutional neural networks.

1. Introduction

Radar automatic target recognition (RATR) technology can
provide inherent characteristics of the target, such as the
attributes, categories, and models, and these characteristics
can provide richer information for battlefield command
decisions. +e high-resolution radar echo signal obtained
from the wide bandwidth signal transmitted by the broad-
band radar provides more detailed features of the target,
which makes it possible to identify the target type. +erefore,
more and more research studies focus on RATR technology.

Traditional methods of radar target automatic recognition
include k-nearest neighbor classifier (KNN) and support vector
machine learning (SVM) and so on. Zhao and Principe [1]
applied support vectormachine to automatic target recognition
of SAR image. Obozinski et al. [2] proposed the Trace-norm
Regularized multitask learning method (TRACE) to solve the
problem of recovering a set of common covariates related to
several classification problems at the same time. It assumes that
all models share a common low-dimensional subspace, but the
method cannot be extended to the nonlinear field well.

Regularized multitask learning (RMTL) proposed by Evgeniou
and Pontil [3] extends the existing kernel-based learning
methods of single-task learning, such as SVM. Zhou et al. [4]
proposed the clustered multitask learning (CMTL) method to
replace multitask learning (MTL). It assumes that multiple
tasks follow the cluster structure and achieves high recognition
accuracy of SAR image. Zhang and Yeung [5] proposed the
multitask relationship learning (MTRL) method, which can
learn the correlation between positive and negative tasks au-
tonomously, and the recognition accuracy is higher than that of
CMTL. Cong et al. [6] proposed a new classificationmethod by
improving MTRL, which can autonomously learn multitask
relationship and cluster information of different tasks and be
easily expanded to the nonlinear domain. He et al. [7] used the
principal component analysis (PCA) method to realize the fast
target recognition of SAR image.

With the development of artificial intelligence, more and
more applications based on neural networks are used for
target recognition [8]. In the field of image target recog-
nition, convolutional neural network (CNN) has achieved
great success, which is widely used in object detection and
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localization, semantic segmentation, target recognition, and
so on [9]. Visual geometry group networks (VGGNets) [10]
proposed by Simonyan and Zisserman have significantly
improved image recognition accuracy by deepening the
network depth to 19 layers. In the same year, GoogLeNet
[11] proposed by Christian Szegedy used the Inception
module to have several parallel convolution routes for
extracting input features, which widened the network
structure horizontally and deepened the network depth to a
certain extent while the network parameters are reduced.
Studies have shown that deeper networks have better per-
formance, but deepening the network is faced with the
problem of gradient disappearance, and the complex net-
works also have the risk of overfitting. Residual networks
(ResNets) [12] and dense convolutional network (DenseNet)
[13, 14] solve the above problems by using skip connections
and significantly increase the depth of the network. Recently
proposed highway networks, ResNets, and DenseNet have
deepened the network structure to more than 100 layers and
demonstrated outstanding performance in the field of image
recognition.

Different from image data, radar data are sparse and
have a little amount. +erefore, the network should be able
to extract multidimensional features, and the depth could
not be too deep. So, we considered using the Inception
module and VGG network for training. VGG networks have
limited depth and been proven to have excellent feature
extraction capabilities. +e Inception module has multipath
convolution, which can extract radar multidimensional
information for learning, and its internal large-scale con-
volution kernels are also more effective to extract the in-
formation with sparse characteristics. +erefore, we
proposed a method to fuse the Inception module with the
VGG network.

+is paper focuses on target recognition based on 1D
HRRP and SAR images and proposes the IVGG convolu-
tional neural network structure which is most suitable for
high-resolution radar target recognition. +e parameters of
IVGG can also be greatly reduced.

2. Target Recognition Model: IVGG Networks

2.1. VGGNets. VGGNets [10] adopted the convolution fil-
ters with a small local receptive field and proposed 6 different
network configurations. In VGGNets, the convolution filters
are set to 3× 3 and the max-pooling is 2× 2, with stride 2.

+e contribution of the VGGNet is the application of the
3× 3 small convolution filters. By stacking small convolution
filters, the depth of the network is increased, and the
nonlinearity of the convolutional layers is strengthened too
[15]. +erefore, the nonlinear function can be better fitted
(but the overfitting phenomenon needs to be prevented) and
the parameters of the network are reduced.

Before the VGG network was proposed, An et al. also
used small convolution filters, but the network was not as
deep as VGGNet [16]. +e VGGNet has better performance
than other convolutional networks in extracting target
features.

In the structure of VGGNet, the convolutional layers and
pooling layers alternately appear. After two to four con-
volutional layers, a max-pooling layer is followed. In order to
keep the computational complexity of the constituent
structures at each feature layer roughly consistent, the
number of convolution kernels at the next layer is doubled
when the size of the feature map is reduced by half through
the max-pooling layer. VGGNet ends with three fully
connected layers, which are also the classifier for the system.

2.2. *e Improved Model: IVGG Network. Because SAR
images and HRRP data are sparse, it is difficult to fully
represent all the feature information of the targets by using
all 3× 3 convolution filters. GoogLeNet, proposed by
Christian Szegedy [11], uses the Inception modules with
larger convolution filters, which can extract radar multidi-
mensional information for learning. As shown in Figure 1,
there are several parallel convolutional lines in the Inception
module, and the large convolution filters in parallel lines
increase the width and the depth of the network structure.
So, the Inception module is used to modify the VGG
module.+e new network is specially designed for radar data
analysis and has a high recognition rate of radar target
models. +e principle of improvement will be introduced in
the next section.

In this paper, the “Conv” module includes convolution,
batch standardization, and activation functions, as shown in
Figure 2.

Based on the above structures, we propose 4 new IVGG
networks. In this structure, a certain number of Inception
modules are used to replace “Conv3” module in the original
VGGNets. Note that we add a very deep point convolutional
layer after the Inception module, and it is important. Many
traditional algorithms show poor performance for radar
target recognition is because they cannot effectively fit the
nonlinear structure in the radar signal [6]. Drawing on this
point of view, we have strengthened the nonlinear capa-
bilities of IVGG by adding a point convolutional layer.
Immediately following the Inception module, the layer
contains activation function, which increases the nonline-
arity of the network. Further, we set the input number of
channels is same with output. In other words, the point
convolutional layer does not compress the output feature
maps. It also strengthens the nonlinearity of the network.
Table 1 shows the specific configuration of the IVGG net-
works, where the Inception module and Conv1 module
which are used to replace Conv3 modules in the original
network are identified in italics.

+e fully connected layers of VGGNets are shown in
Table 2. Since there have 3 layers, we use “3FC” to refer to the
structure in Table 2.

+e classifier of the VGG networks is fully connected
layers, containing most of the parameters of the whole
network. In order to reduce the parameters, we improved the
FC layers, reducing the 3-layer FC to a single-layer “FC-4/
10”, which is represented by “1FC”.

In the experiment, the network we proposed relates to
the above two classifiers, which can be represented by
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“IVGGx-1FC” and “IVGGx-3FC,” respectively, where x is
the network depth.

+e IVGG11 network is shown in Figure 3, the structure
shows how conv3 modules are replaced, and the other
networks with different depths (IVGG13/16/19) in Table 1
also follow this rule.

3. Characteristic Analysis of IVGG Networks

3.1. Relationship between Data Sparsity and Network
Structure. In this section, we perform theoretical analysis to
demonstrate the sparse characteristics of 3 × 3 filters and 5 ×

5 filters. It can further explain that the IVGG network can
overcome the target recognition difficulties caused by sparse
radar data to some extent.

Assume that in the convolution layers, the weight tensor
is s W ∈ RCin×Cout×(k1k2), where Cin is the number of input
channels, Cout is the number of output channels, and
k1 and k2 are the convolutional kernel size. Considering the
calculation process of convolution filters and feature map in
each channel, the weight matrix of the filter is
Wfilter ∈ Rk1×k2 . We unfold the weight matrix into a vector
w ∈ Rk1k2 . Each local receptive field in the input (considering
a certain channel) is expanded into a vector x, and then wTX
represents the output, where the matrix
X � (x1, x2, . . . , xN), and the number of elements in the
output feature map is represented by N.

If the kernel size of a convolution layer is (k1, k2), weight
tensor wT � (w1, w2, . . . , wk1×k2

)T, the output feature map
can be represented as follows:
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Assume the elements in matrix X are set to zero in
probability P1(P1 < 1), the weight vector w element values
wi are set to zero in probability P2, that is, P wi􏼈 􏼉 � P2. When
P1⟶ 1, X0⟶ 0,∀n � (1, 2, . . . , N), the probability
when the neuron is activated is as follows:
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Base

Conv1

Conv5

Conv1

Conv3

MaxPool(3)

Conv1

Depth concat

Conv1

Figure 1: +e Inception module, where Conv1 means the con-
volutional filter is 1× 1, Conv3 means the convolutional filter is
3× 3, and Conv5 means the convolutional filter is 5× 5.

Convolution

Batch
normalization

ReLU/Tanh

Figure 2: “Conv” module.

Table 1: IVGG network configuration.

IVGG11 IVGG13 IVGG16 IVGG19
11 weight
layers

13 weight
layers

16 weight
layers

19 weight
layers

Input (HRRP OR SAR)

conv3-64 conv3-64 conv3-64 conv3-64
conv3-64 conv3-64 conv3-64

MaxPool

conv3-128 conv3-128 conv3-128 conv3-128
conv3-128 conv3-128 conv3-128

MaxPool
Inception-256 conv3-256 conv3-256 conv3-256
conv1-256 Inception-256 Inception-256 Inception-256
conv3-256 conv1-256 conv1-256 conv1-256

conv3-256 conv3-256
conv3-256

MaxPool
Inception-512 conv3-512 conv3-512 Inception-512
conv1-512 conv3-512 Inception-512 conv1-512
Inception-512 conv1-512 conv3-512
conv1-512 Inception-512 conv3-512

conv1-512 Inception-512
conv1-512

MaxPool
conv3-512 Inception-512 conv3-512 conv3-512
conv3-512 conv1-512 conv3-512 conv3-512

Inception-512 conv3-512 conv3-512
conv1-512 conv3-512

MaxPool
Fully connected layers
Soft-max

Table 2: +ree fully connected layers (3FC).
FC-4096
FC-4096
FC-4/10
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Input

MaxPool

MaxPool
Base

Conv1–16

Conv5–32

Conv1–96

Conv3–128

MaxPool(3)

Conv1–32

Conv1–64

Depth concat

ReplaceDelete

MaxPool Base

Conv1–24

Conv5–64

Conv1–112

Conv3–224

MaxPool(3)

Conv1–64

Conv1–160
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MaxPool

MaxPool Fully connected 
layers Soft-max

ReplaceDelete

Inception

Deep point conv.

Inception

Deep point conv.

×2

Conv3–
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Conv3–
128

Conv3–
256

Conv3–
256

Conv1–
256

Conv3–
512
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512
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512
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512
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Figure 3: IVGG11 network architecture.
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Similarly, we can get the following expression:
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When k1 � 3, k2 � 3, we use a0 and a1 to denote wTX0
and wTX1. When k1 � 5, k2 � 5, we use b0 and b1 to denote
wTX0 and wTX1. +en,
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For the convenience of calculations, we assume that
input feature vector/tensor does zero padding. Because
P1⟶ 1, this does not affect the calculation result. +en, we
have
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It is easy to prove a1 < b1. +erefore, the large-scale
convolution kernel can effectively extract the target features
if the input data are too sparse.

+e sparsity of the convolutional layer can bring many
benefits, such as better robustness and higher feature ex-
traction efficiency. However, if the input data are excessive
sparse, feature extraction will become more difficult.
+erefore, after repeated experiments, we finally chose the
Inception module instead of the larger convolution kernel.
We just added an appropriate number of Inception module
to the network, and they are not all composed of Inception
modules like GoogLeNet. In order to improve the network’s
ability to fit nonlinear structures in radar data (such as SAR
images), we add a very deep point convolutional layer be-
hind the Inception module. It should be noted that the point
convolutional layer introduces an activation function, and
the channels of input and output channels are the same,
which improves the nonlinearity of the new network.

3.2. *e Parameter Number of the Networks. As shown in
Figure 4, our method has about 3 million parameters less
than the VGG network at the same depth. +e number of
parameters of networks connected to the above two clas-
sifiers is shown in Table 3. By improving the classifier, our
network can further reduce the parameter amount by 86%–
92%.

+e comparisons of floating points of operations
(FLOPs) are shown in Figure 5. According to Figure 5, the
computation cost is most affected by the network depth.

IVGG16 and IVGG19 are very computation-intensive. It can
be seen from Figure 4 that at the same number of network
layers, the FLOPs of IVGG are significantly less than those of
the VGG networks. For example, IVGG16-3FC saves 23.61%
FLOPs compared to VGG19. So, our methods not only save
parameter storage space, but also reduce computation cost.

4. Experiment and Results Analysis

4.1. Dataset. +e SAR image dataset used in this paper is a
public dataset released by MSTAR. +ere are many research
studies on radar automatic target recognition based on the
MATAR SAR dataset, such as references [1–4, 17–20]. +e
experimental results in this paper are compared with the
above methods. +e MSTAR dataset and the HRRP dataset
are used for experiments. Published by MSTAR [6, 21], the
SAR dataset includes ground-based military targets. +e
acquisition conditions of the MSTAR dataset are classified
into standard operating condition (SOC) and extended
operating condition (EOC). +ere are 10 kinds of targets
under SOC conditions, each of which contains omnidi-
rectional SAR image data at 15° and 17° pitch angles. In the
experiments, observation data at 17° were used for training,
and the observation data at 15° pitch angle were used for
testing. +e optical image of the targets in the MSTAR SAR
dataset collected under SOC conditions is shown in Figure 6.
In the EOC-1 dataset, there are 4 kinds of ground targets, in
which the targets with a side view angle of 17° are used for
the training set and the targets with a side view angle of 30°
are used for the test set.

+e test set and training set are the samemodel targets in
different pitch angles. In fact, this is one of the differences
between high-resolution radar target recognition and image
recognition. +e purpose of this paper is to accurately
recognize the target model through high-resolution radar
data. In academia, there is only a difference in pitch angle
between the test set and the training set, which is feasible and
in line with reality [6, 21–23].

Because SAR images are extremely sensitive to changes
in pitch angle, it is more difficult to identify the targets under
EOC-1 conditions. +e pitch angle difference between the
SOC training set and the test set is 2°, while the difference
under the EOC-1 is increased to 13°. +is may lead to a big
deviation of the same target in SAR images under the same
posture, which increases the difficulty of recognition.
+erefore, the experimental conclusions based on the SAR-
EOC dataset are more valuable.

As shown in Table 4, the two vectors are two samples in
the dataset HRRP-1, which reflects the scattering charac-
teristics of the armored transport vehicle and the heavy
transport vehicle, respectively.

+e HRRP-1 dataset [22] is target electromagnetic
scattering data obtained by high-frequency electromagnetic
calculation software. HRRP provides the distribution of
target scattering points along the distance and is an im-
portant structural feature of the target. HRRP has the
characteristics of stable resolution, easy acquisition and
realization, and short imaging period. +e simulation da-
tabase contains 4 kinds of ground vehicle targets: armored
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transport vehicles, heavy transport vehicles, heavy trucks,
and vans. Acting on the stepped frequency echo signal at the
same observation angle of the target, Inverse fast Fourier
transform (IFFT) is used to synthesize the HRRP. Since the
electromagnetic simulation data are turntable-like data, it is
not necessary to translate and align. In the experiment, the
target electromagnetic scattering echo under the HH po-
larization mode is selected as the basic dataset. +e targets
with a pitch angle of 27° are used for training, and the targets
with a pitch angle of 30° are used for test. Both the training
set and the test set have 14400 samples, each of which is a
128×1 array with complex data type. +e training set is the
same as the test set except for the pitch angle. In addition, the
HRRP data generated by inversion of the MSTAR SAR
dataset are used as the second HRRP dataset (HRRP-2).

4.2. Preprocessing and Experimental Setup. For the MSTAR
SAR images, each sample is resized to 128×128, and then,
the center cut and random horizontal rotation are

performed. After this preprocessing, the number of SAR
images has been expanded by 3 times, which compensates
for the shortage of SAR images and alleviates the overfitting
problem of the network to some extent.

+e phase profile of the complex high-resolution echo of
the target can be divided into two parts: the initial phase that
is sensitive to the distance and the remaining phase reflecting
the scattering characteristics of the target. +erefore, like the
amplitude profiles (real HRRP), phase profiles in the
complex HRRP also represent a certain information of the
scattering point distribution of the target, and it should be
valuable in recognition. +e complex HRRP contains all the
phase information of the target scatter point subecho, in-
cluding the initial phase and the remaining phase of the
scatter point subecho. +erefore, although the complex
HRRP has a sensitivity to the initial phase, which is not
conducive to HRRP target recognition, it retains other
phases information that is helpful for recognition [24]. +e
traditional RATR uses the amplitude image of HRRP and
loses the phase information. Phase information is especially
useful for target recognition, but most convolution network
models cannot deal with complex data types. At present, the
main processing method of complex HRRP is modulus
operation, which can keep the amplitude information of
range profile and get relatively high recognition accuracy.

Unlike images that can use superresolution method to
improve recognition accuracy [25], HRRP is made up of
one-dimensional data points, so we propose a new way to
preprocess HRRP data. +e real part and the imaginary part
of each data are extracted and arranged in an orderly way, so
that the length of each sample is expanded from 128 to 256.
In this way, the differential phase information between the
distance units in each HRRP sample can be preserved, and
the amount of data in each sample can be expanded.

To compare the test results of different models, the
experiments are carried out on the same platform and en-
vironment, as shown in Table 5.

Considering that the radar data are sparse, the activation
function Rectified Linear Unit (ReLU) [26] will undoubtedly
increase this sparseness and reduce the useful information of
the target, which is unfavorable for recognition. So, we
introduce another activation function, Hyperbolic Tangent
function (Tanh). +e resulting impact will be further ana-
lyzed in the experiments.

+e learning rate attenuation method is also introduced
in the training processing. As the number of iterations in-
creases, the learning rate gradually decreases. +is can en-
sure that the model does not fluctuate greatly in the later
period of training and closer to the optimal solution.

We adjust the parameters according to the results of
many experiments and get the final parameters. We use
VGGNet pretrained by ImageNet in PyTorch to initialize the
parameters of IVGG networks. In the training stage, the
batch size of the training set is set to 16 and that of the test set
is set to 32. For MSTAR SAR dataset recognition, the initial
learning rate is set as 0.01, and 200 epochs are used for
training.+e learning rate decreases by 2 times since the first
50 epochs and then decreases by 2 times every 20 epochs.+e
average recognition accuracy of the last 100 epochs was
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Figure 4: +e number of parameters (in millions) of VGG net-
works and our methods.

Table 3: +e number of parameters (in millions) of our networks
with different classifiers.

Network 1FC 3FC
IVGG11 7.19 125
IVGG13 5.96 125
IVGG16 11.27 130.6
IVGG19 17.67 136

11 13 16 19
IVGG-1FC 1805.74 3094.09 3809.84 5447.95
IVGG-3FC 1925.19 3213.55 3929.3 5567.4
VGG 2571.08 3783.76 5143.99 6504.23
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Figure 5: Comparison of floating points of operations (FLOPs).
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calculated as the final results. For HRRP dataset recognition,
the initial learning rate is set as 0.1 and 100 epochs are used
for training. +e learning rate decreases by 2 times since the
first 50 epochs and then decreases by 2 times every 10
epochs. +e average recognition accuracy of the last 10
epochs was calculated as the final results.

4.3. Recognition Results of the MSTAR SAR Dataset. +e
recognition accuracy on the MSTAR SAR dataset is shown
in Table 6. On SAR-SOC, the results of IVGG networks and
VGG networks are better than those of GoogLeNet,
ResNet18, and DenseNet121. It can be seen from Table 6 that
on the SAR-SOC, IVGG networks with both 1FC and 3FC
have good recognition performance. It shows that our
methods have better robustness. +e recognition rates of
IVGG networks are similar to those of VGGNets, but each of

them reduces about 3 million parameters compared with the
latter.

GoogLeNet achieves high recognition accuracies on
SAR-SOC, but its recognition accuracies on SAR-EOC-1 are
poor, which are only 90.62% and 90.19%. +is shows that its
generalization ability is not so ideal. Based on the horizontal
comparison of the recognition accuracies of the activation
functions, Tanh and ReLU in Table 6, we can see the per-
formance of Tanh on SAR-EOC-1 is generally stronger,
indicating that Tanh has a better effect on sparse data
processing.

On SAR-SOC, IVGG16-3FC with “Tanh” achieves a
maximum accuracy of 99.51%. On SAR-EOC-1, IVGG19-
3FC achieves the highest accuracy of 99.27%, and IVGG13-
3/1FC also achieves the accuracy of 99.22%. +e classifi-
cation on SAR-EOC is more difficult, and it requires that
CNNs have higher performance. So, we especially focus on
analyzing the experimental results on SAR-EOC.

+e accuracy rate of IVGG13 on SAR-EOC is signifi-
cantly higher than those of GoogLeNet, ResNet18, Dense-
Net121, VGG11, and VGG13. It is still 0.12% higher than
VGG16 and VGG19. But the parameter number of IVGG13
is only 4.45% of VGG16 and 4.29% of VGG19, and the
FLOPs are significantly lower than those of VGG16 and
VGG19. Specifically, IVGG13-1FC saves 39.85% FLOPs
than VGG16 and 52.43% than VGG19. +e accuracy rate of
IVGG13-1/3FC is only 0.05% lower than that of IVGG19-

Table 4: +e samples of complex HRRP vector.

Sample 1 of HRRP Sample 2 of HRRP
5.947548139439314e− 04–7.029982346588466e− 04i −0.001741710511154 + 0.005854695561424i
5.973508449729275e− 04–7.301167648045039e− 04i −0.001602329272711 + 0.005996485005943i
5.998884995750467e− 04–7.586149497061626e− 04i −0.001459788439038 + 0.006143776077643i
6.023640017197894e− 04–7.885879483632503e− 04i −0.001313674253423 + 0.006297298858010i
6.047727981516010e− 04–8.201413412111810e− 04i −0.001163535049426 + 0.006457875798999i
. . . . . .

(a) (b) (c) (d) (e)

(f ) (g) (h) (i) (j)

Figure 6: Images of the MSTAR SAR dataset under SOC.

Table 5: Experimental platform configuration.

Attribute Configuration information
OS Ubuntu 14.04.5 LTS
CPU Intel (R) Xeon (R) CPU E5-2670 v3 @ 2.30GHz
GPU GeForce GTX TITAN X
CUDNN CUDNN 6.0.21
CUDA CUDA 8.0.61
Framework PyTorch
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3FC, but the parameter of IVGG13-1FC is only 4.77% of that
of IVGG19-3FC and the FLOPs of IVGG13-1/3FC are only
about 56% of those of IVGG19-3FC.

+e experiments show that the IVGG networks can
work well on the SAR image public dataset and have good
robustness and recognition performance. +e important
point is that IVGG uses a significantly shallower network
to achieve better accuracy than other CNNs. It greatly
improves the computational efficiency and can save great
parameter space. In fact, IVGG13-1FC relies on relatively
less parameters and FLPOs to achieve quite good results.
In contrast, although IVGG16 and IVGG19 networks can
slightly improve the recognition accuracy, they have paid
a high price (increase in parameters and computational
cost). We further compare the experimental results of the
IVGG13-1FC network with other deep learning methods,
proposed by Wang et al. [17], Pei et al. [18], and Chen
et al. [19], as shown in Table 7. +ese literature studies use
the same SAR image dataset with this paper. Wang et al.
[17] proposed a method for SAR images target recog-
nition by combining two-dimensional principal com-
ponent analysis (2DPCA) and L2 regularization
constraint stochastic configuration network (SCN). +ey
applied the 2DPCA method to extract the features of SAR
images. By combining 2DPCA and SCN (random
learning model with a single hidden layer), the 2DPCA-
SCN algorithm achieved good performance. Due to the
limited original SAR images, it is difficult to effectively
train the neural networks. To solve this problem, Pei et al.
[18] proposed a multiview deep neural network.+is deep
neural network includes a parallel network topology with
multiple inputs, which can learn the features of SAR
images with different views layer by layer. Chen et al. [19]
used all convolutional neural networks (A-CNNs) [27] to
the target recognition of SAR images. Under the standard
operating condition, the recognition accuracy on the
SAR-SOC image dataset is remarkably high, but the
recognition accuracy has declined under extended op-
erating condition.

Although some methods such as A-CNN can achieve
accuracy of 99.41% on the SAR-SOC, it is difficult to
achieve satisfactory results on SAR-EOC-1 data which
have a greater difference in pitch angles. +e 2DPCA-
SCN method achieves 98.49% accuracy on SAR-EOC-1,
but only 95.80% on SAR-SOC. Other methods on the
SAR-EOC-1 also achieve lower recognition accuracies
than our methods. It can be found from Table 6 that
IVGG networks achieve exceedingly high accuracies on
both SAR-SOC and SAR-EOC-1 datasets. In particular,
on the SAR-EOC-1 dataset, IVGG13 can achieve higher
accuracy and more stable performance, which shows that
our network has stronger generalization ability and better
robustness.

IVGG13-1FC is also compared with traditional rec-
ognition methods such as KNN, SVM, and SRC [6, 23],
and the results are shown in Table 8. +e method pro-
posed in reference [6] is a new classification approach of
clustering multitask learning theory (I-CMTL), and SRC
is a recognition method based on sparse representation-
based classifier (SRC) proposed in 2016 [23]. From Ta-
ble 8, we can see that our network is better than those of
all the traditional recognition methods.

Table 8 shows that some traditional approaches are not
so effective, such as KNN and SVM methods. Although
many complex classifiers have been designed, they cannot
fully utilize the potential correlation between multiple radar
categories. On the other hand, large-scale and complete SAR
datasets are difficult to collect, so the samples obtained are
usually limited or unbalanced.

+e classification algorithm approaches under the
multitask framework have higher recognition accuracies,
such as CMTL, MTRL, and I-MTRL. +e multitask re-
lational learning (MTRL) method proposed in [6] can
autonomously learn the correlation between positive and
negative tasks, and it can be easily extended to the
nonlinear field. +e MTRL is further improved by adding
a projection regularization term to the objective function
[7], which can independently learn multitask relation-
ships and cluster information of different tasks and can
also be easily extended to the nonlinear field. However,
the Trace-norm Regularized multitask learning (TRACE),
which is also under the multitask framework, has the
lowest recognition accuracy because the TRACE method
learns the linear prediction function and cannot accu-
rately describe the nonlinear structure of SAR image,
which also proves the importance of extending the
multitask learning method to the nonlinear field.

+e IVGG networks proposed in this paper can
adaptively learn the nonlinear structure of SAR images
and reduce the difficulty in redesigning the classifier
when the SAR image conditions change. In contrast, the
artificially designed feature extraction approach is
complex, and sometimes, it can only be effective for
certain fixed problems. Its generalization ability is not so
ideal. +erefore, our networks enhance the feature ex-
traction capability of sparse data.

Table 6: Accuracy rates (%) on the MSTAR SAR dataset.

Method
SAR-SOC SAR-EOC-1

Tanh ReLU Tanh ReLU
GoogLeNet 98.87 98.65 90.62 90.19
ResNet18 97.20 97.90 78.45 82.25
DenseNet121 (k� 32) 98.66 98.93 96.41 98.66
VGG11 99.31 99.32 98.61 97.60
VGG13 99.22 99.48 98.22 97.54
VGG16 99.14 99.50 99.10 96.75
VGG19 99.26 99.21 99.10 97.91
IVGG11-3FC 99.21 98.98 97.97 98.05
IVGG11-1FC 99.23 99.13 97.02 97.73
IVGG13-3FC 99.04 99.31 99.22 98.04
IVGG13-1FC 99.34 99.14 99.22 98.24
IVGG16-3FC 99.51 99.34 98.84 98.70
IVGG16-1FC 99.42 99.19 97.62 97.68
IVGG19-3FC 99.42 99.23 99.27 97.71
IVGG19-1FC 99.23 99.37 97.15 98.47
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4.4. Recognition Result of theHRRPDataset. +e recognition
accuracy rates on the HRRP dataset are shown in Table 9

On the HRRP-1 dataset, the optimal recognition accu-
racies of GoogLeNet, ResNet18, and DenseNet121 are
98.7132%, 98.5234%, and 98.7299%, respectively, and the
performance of the activation function Tanh is slightly better
than that of ReLU. +e best recognition results (accu-
racy> 99.05%) are all obtained by the activation function
Tanh. +e networks with recognition rate higher than
99.05% are VGG13 (Tanh), IVGG16-3FC (Tanh), and
IVGG19-3FC (Tanh). Among them, the recognition rate of
IVGG16-3FC (Tanh) is the highest, reaching 99.24%.

In the identification of the HRRP-1 dataset, the networks
which are deeper have better recognition results. IVGG16
and IVGG19 can achieve better recognition effects.

+e network with the best recognition accuracy on the
HRRP-2 dataset is IVGG19-3FC (ReLU). +e VGGNet and
IVGG-3FC have higher recognition accuracies. +e recog-
nition results of IVGG networks and VGGNets have no
obvious difference, among which IVGG19-3FC (ReLU)
achieves the best recognition accuracy of 98.98%.

On the HRRP-1 dataset, our method is also compared
with other methods such as SVM, Maximum Correlation
Criterion-Template Matching Method (MCC-TMM) [28],
Bayesian Compressive Sensing (BCS) [29], Joint Sparse
Representation (JSR) [30], and a CNN method with SVM as
its classifier [20], as shown in Table 10.

4.5. Comprehensive Analysis of Results. In conclusion, we
find that DenseNet121 also has high performance in the SAR
dataset (still slightly inferior to our method), but its rec-
ognition performance for HRRP is obviously reduced. In

HRRP recognition, ResNet18 has a high performance (still
slightly inferior to our method), but the performance of SAR
image recognition is exceptionally low (only 80%). Different
from the above two methods, our method has high recog-
nition performance for SAR andHRRP signals, whichmeans
that the method in this paper is efficient and stable. VGG
network achieves good performance for radar target rec-
ognition, but IVGG reduces the parameters significantly and
improves the computation and recognition efficiency.

+e performances of IVGG networks are better than
those of VGGNets on the HRRP-1 dataset and SAR-EOC-1
dataset and better than those of other neural networks and
traditional algorithms on all the experimental datasets.

In fact, the SAR image dataset used in this paper is a
public dataset published by MSTAR, and the HRRP
dataset also has been published in other papers. +e radar is
sensitive to the pitch angles, and the radar echo data of the
same target at different pitch angles are quite different. +is
is also the difficulty of radar target recognition. On the SAR-
EOC dataset, the difference of pitch angles between the test
set and the training set is greater than that on SAR-SOC, and
the recognition accuracy on the SAR-EOC test set is slightly
lower than that on SAR-SOC.

In addition, we also found a problem in the experiment.
When the network comes very deep, the recognition algo-
rithmmay be invalid. For example, when we use ResNet50, it
will cause themethod loss efficacy.+e reason is that the data
amount of each sample is small (especially HRRP is one-
dimensional data), and the downsampling layers in the
ResNet50 are too many for HRRP. +is problem may also
occur in SAR images. But overall, SAR images will be slightly
better. Solving this problem has two points, one feasible
method is to reduce the downsampling layers, but it will
undoubtedly weaken the robustness of the network, which
may lead to insufficient results and waste in computing costs.
Another effective solution is to design shallow convolutional
neural networks for radar target recognition, such as the
IVGG networks proposed in this paper.

For target recognition in radar signals, the IVGG net-
works and VGGNets perform better than several convolu-
tional neural networks recently proposed. +e main reasons
are as follows.

+e noise of the optical image is usually additive noise,
while the noise of the SAR image is mostly speckled mul-
tiplicative noise. HRRP data are a one-dimensional array,
which is the vector sum of projection of the target scattering
point echoes in the radar ray direction. Neither of them has
obvious edge features and texture information like the
traditional optical image. SAR image is sensitive to the
azimuth of the target when it is imaged.When the azimuth is
different, even for the same target, there are still excessively
big differences in SAR images.

+e data amount of HRRP and SAR images is less than
that of traditional optical images. In this paper, only 256 data
per HRRP target and 128×128�16384 data per SAR image
are sent into the networks. However, a slightly larger optical
image can often reach 256 × 256 � 65536 pixels. For this
reason, the CNN models for radar target recognition cannot
be too deep. Otherwise, they may fall into overfitting. So,

Table 7: Accuracy rates (%) on theMSTAR SAR dataset of different
CNNs.

Method SAR-SOC SAR-EOC-1
2DPCA-SCN [17] 95.80 98.49
2-view DCNNs [18] 97.81 93.29
3-view DCNNs [18] 98.17 94.34
4-view DCNNs [18] 98.52 94.61
A-CNN [19] 99.41 97.13
IVGG13-1FC 99.34 99.22

Table 8: Accuracy rates (%) of different methods on the SAR
dataset.

Method SAR-SOC SAR-EOC-1
KNN [1] 92.71 91.42
SVM [1] 90.17 86.73
SRC [23] 89.76 —
TRACE [2] 75.04 67.42
RMTL [3] 92.09 92.03
CMTL [4] 93.91 94.72
MTRL [5] 95.84 95.46
I-CMTL [6] 97.34 98.24
IVGG13-1FC 99.34 99.22
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compared with ResNet and DenseNet, IVGG networks and
VGGNets with fewer network layers have better recognition
ability.

In the experiment, the activation function Tanh has
excellent performance on the SAR-EOC-1 and HRRP
datasets. +e radar data itself have sparsity, which is en-
hanced by the activation function ReLU, while too sparse
data will weaken the ability of the convolution layer to
extract target features. Activation function Tanh has better
nonlinearity and works better when the feature difference is
obvious.

5. Conclusion

In this paper, we propose the IVGG networks and use
them for target recognition on HRRP data and SAR
images. +e first improvement in this paper is to propose
the IVGG networks. +en we simplify the fully connected
layers which can significantly reduce parameters. Ex-
periments show that our methods have the best recog-
nition effect. At the same time, with the improvement of
the networks, there are fewer parameters in the networks,
which can improve the processing efficiency of target
recognition and make the method more suitable for the
real-time requirements.

In addition, we also find that for radar target recognition,
Tanh’s performance is generally better than that of ReLU,
which is different from image recognition.
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