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Objective. Several clinical studies have proposed the infusion of adipose mesenchymal stem cells (AMSCs) as an alternative therapy for
joint diseases with inflammatory components, such as osteoarthritis. Indeed, AMSCs are able to stimulate tissue repair through a
paracrine activity and the interaction with the inflammatory microenvironment seems to have a critical role. Design. To reproduce
the inflammatory microenvironment, AMSCs were exposed to osteoarthritic synovial fluid (SF) for 48h and the effect of their
secretome on differentiation of monocytes (MO) into macrophages M1-like and mature dendritic cells (mDCs) was evaluated.
Furthermore, the effect of the secretome of AMSCs exposed to SF was evaluated on the T cell population in terms of T cell
proliferation and expansion of T regulatory cells (T reg). Results. Our data show that the exposure of AMSCs to SF activates cells
and promotes the release of immunosuppressive factors, which induce macrophage polarization of M0 into the M2-like phenotype
and inhibit differentiation of monocytes into mature dendritic cells (mDCs). Only the secretome of exposed AMSCs was able to
inhibit T cell proliferation and promote T reg expansion. Conclusions. Our results suggest that the microenvironment plays a

fundamental role for the development of anti-inflammatory and immunomodulatory properties of AMSCs.

1. Introduction

Mesenchymal stem cells (MSCs) are multipotent stem cells
with self-renewal capability [1], which are widely distributed
in a great number of adult and perinatal tissues, including
bone marrow, adipose tissue, umbilical cord, placenta, amni-
otic fluid, liver, thymus, spleen, and gingiva [2]. Furthermore,
MSCs possess strong genomic stability and can be isolated
from their resident tissue and expanded in culture over several
generations. Mesenchymal stem cells are able to differentiate
into various lineages, both mesodermal and nonmesodermal

cells [1, 3], a feature that contributes to their potential use in
regenerative medicine [2]. A large number of clinical trials
have been conducted or are ongoing to investigate MSCs as
a potential therapy for a wide range of diseases [3], including
acute myocardial infarction [4], spinal cord injury [5], and
bone and joint diseases [6-8].

The main mechanisms associated with the therapeutic
effects of MSCs include their ability to differentiate and replace
damaged cells [9], and their paracrine [10, 11] and immuno-
modulatory activity on adjacent cells promoting tissue renewal
[12]. However, several studies reported that MSCs disappear
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from the target tissue quickly after administration; therefore,
the possibility that these cells exert their regenerative effects
through differentiation to replace damaged cells appears to
be a rare event in vivo [2]. Therefore, it is possible to hypoth-
esize that soluble factors secreted by MSCs can help recover
tissue homeostasis [10-12].

The immunomodulatory properties of MSCs were first
described in 2002: Di Nicola et al. demonstrated that MSCs
were able to inhibit the proliferation of T cells [13]. Subse-
quently, an increasing number of studies have demonstrated
that MSCs have the ability to modulate both innate and adap-
tive immunity by suppressing dendritic cell maturation,
inhibiting the proliferation of Natural Killer (NK) cells, pro-
moting the generation of regulatory T cells, reducing the
activation and proliferation of B cells, shifting macrophage
differentiation from M1 to M2 macrophages, and suppress-
ing T cell activity [14, 15].

The exact mechanisms by which MSCs are able to mod-
ulate the immune response are still not fully understood, but
it is clear that cell-to-cell contact and the release of soluble
factors, such as indoleamine-2,3-dioxygenase (IDO), nitric
oxide (NO), prostaglandin-E2 (PGE-2), interleukine-10
(IL-10), and transforming growth factor-f (TGF-p) [1, 16]
are involved.

It should be noted that the immunosuppressive capacity
of MSCs is influenced by the inflammatory microenviron-
ment [8, 17]. MSCs cultured in the presence of interferon-y
(IEN-vy), tumor necrosis factor-a (TNF-«), and IL-6 have
been shown to increase their immunosuppressive capacity
by releasing soluble factors [16]. Németh et al., using a mouse
model of sepsis, demonstrated that bone marrow stromal
cells (BMSCs) preactivated with lipopolysaccharides (LPS)
or TNF-a are able to stimulate the production of IL-10 (the
cytokine responsible for increasing animal survival rates in
this model) by host macrophages [14]. On the other hand,
an inflammatory environment is more tolerated by MSCs
than priming with proinflammatory cytokines: equine bone
marrow MSCs maintained their ability to proliferate and
differentiate when exposed to inflammatory synovial fluid,
while treatment with specific cytokines negatively affected
their viability and ability to differentiate [18].

Moreover, Bustos et al. showed that the anti-inflammatory
characteristics of MSCs improved after in vitro activation with
serum from patients with acute respiratory distress syndrome
(ARDS), demonstrating that activated MSCs increased the
production of IL-10 and IL-1RN (interleukin-1 receptor
antagonist) [19].

Osteoarthritis (OA) is the most common form of degen-
erative arthritis, causing pain and long-term disability [20].
Osteoarthritis is characterized by progressive destruction of
articular cartilage, subchondral bone lesions, and synovial
changes. In patients with OA, chronic and low-grade inflam-
mation also contributes to disease progression through the
release of many inflammatory molecules into synovial fluid
[7,8,18,21,22]. The proinflammatory cytokines and chemo-
kines present in osteoarthritic synovial fluid activate mono-
cytes/macrophages (M®s) and dendritic cells (DCs) that
commonly infiltrate the OA joint [23-25]. Furthermore, acti-
vation of the T cells present in OA-affected joints by M®s
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and DCs leads to a worsening of inflammation [23-25].
Conventional OA treatments focus on inflammation reduc-
tion and pain control [20, 26], but in recent years, the MSC
injection has been proposed as an alternative approach [7].

Several clinical trials have shown that intra-articular
injection of MSCs has improved clinical outcomes, reducing
pain and improving joint function [6, 27, 28].

Although it is well known that the use of stem cells
contributes to better clinical outcomes in OA patients, the
molecular mechanisms responsible for the clinical findings
have not been clarified. Recently, it has been reported that
the exposure of MSCs to the articular microenvironment,
represented by the osteoarthritic synovial fluid, could modu-
late some of the stem cells’ properties such as proliferation,
migration, cytokine receptor expression, cytokine secretion,
and inhibition of lymphocyte proliferation [29-31].

To better understand the impact of the articular microen-
vironment on the immunomodulatory properties of MSCs
after injection into the joint where the inflammatory process
takes place, we have exposed adipose mesenchymal stem cells
(AMSCs) to synovial fluid taken from osteoarthritic joints
and studied the immunomodulatory effect of their secretome
on immune cells involved in disease progression: macro-
phages (M1-like and M2-like), dendritic cells, and T cells.

2. Methods

2.1. Adipose Mesenchymal Stem Cell Isolation and Culture.
Adipose mesenchymal stem cells (AMSCs) were isolated from
adipose tissue obtained by lipoaspirates from subcutaneous
abdominal fat and characterized as previously described [32].
One lipoaspirate from each donor, for a total of three female
donors who underwent mammary reconstruction (mean age
43.7 +7.5), was collected (after informed consent and after
approval by the Regional Bioethics Committee of the Friuli
Venezia Giulia Region: consent no. CRO-2016-30).

Briefly, lipoaspirates were first enzymatically dissociated
with 0.05% collagenase II (Worthington) for 20 minutes at
37°C, centrifuged at 500 x g for 5 minutes, and filtered
through a 70 ym nylon mesh (Merck Millipore). Cells were
maintained under 5vol% CO, at 37°C in minimum essential
medium-o (MEM-«) supplemented with 10% FBS (Gibco),
penicillin/streptomycin solution (10 ml/l), alanine/glutamine
solution (2 mM), human epidermal growth factor (10 ng/ml),
insulin solution (10 pg/ml), 2-fosfo-L-ascorbic acid, triso-
dium salt (100 uM), and dexamethasone (0.01 M) (all from
Sigma-Aldrich) [33]. AMSCs were characterized by flow
cytometry using hematopoietic negative markers (CD34
and CD45) and mesenchymal stem cell positive markers
(CD29, CD73, CDY0, and CD105) as described previously
(data not shown) [34].

Cells from between passages 2 and 4 were used for the
experiment. AMSCs were isolated according to Good
Manufacturing Practice (GMP) [35].

2.2. Adipose Mesenchymal Stem Cell Exposure to Osteoarthritic
Synovial Fluid. Osteoarthritic synovial fluid was obtained by
needle aspiration from »n =15 patients (8 males 65.4 + 8.8
years of age and 7 females 75.5+ 5.6 years of age). Patients
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scheduled for primary-intention knee replacement surgery
due to end-stage knee osteoarthrosis were recruited at the
Orthopaedic Units of the Hospital of Tolmezzo. All patients
gave written informed consent.

To clean samples, SFs were treated with 2 mg/ml bovine
testicular hyaluronidase type I-S (Sigma-Aldrich) for 30
minutes, then centrifuged at 14,000xg for 20 minutes.
Supernatants (SF) were pooled, aliquoted, and stored at
-80°C until use [31].

The concentration of cytokines and chemokines present in
osteoarthritic synovial fluid were quantified with a magnetic
bead-based multiplex assay (Bio-Plex Pro™ Human Chemo-
kine Panel, 40-Plex #171AK99MR?2, Bio-Rad Laboratories).

AMSCs of each donor were seeded in triplicate at a
density of 15,000 cells/cm? and the day after, pooled SFs
were added to the media in 20% or 50% ratio for 24h and
48h. After the incubation, AMSCs were collected and cell
viability was determined using the trypan blue exclusion
method. No differences were observed in cell viability among
these different conditions (data not shown), then we chose to
expose AMSCs to 50% of SFs for 48h. The conditioned
medium used for functional experiments with immune cells
was also collected after 48h, centrifuged for 10 minutes at
14,000 x g, and stored at -80°C until use.

For flow cytometry analysis, AMSCs were fixed and
permeabilized with the intracellular Fix/Perm solution kit
(#88-8824-00, eBiosciences), incubated with 5ng/ul of FITC-
conjugated indoleamine-pyrrole 2,3-dioxygenase (IDO) anti-
body (clone: eyedio; eBiosciences) for 15 min, and then rinsed
twice with PBS. Flow cytometry was performed with FACSCa-
libur (Becton Dickinson), and the data was analysed using the
Flowing Software.

To evaluate the effect of SFs on AMSCs’ production of
cytokines and chemokines, after 48h of SF-exposure, cells
were rinsed with PBS and the culture medium was replaced
for 24 h. Supernatants were collected and stored at -80°C
until use. The concentrations of cytokines and chemokines
secreted by AMSCs were quantified in the cellular superna-
tants collected after 24 hours with a magnetic bead-based
multiplex assay (Bio-Plex Pro™ Human Chemokine Panel,
40-Plex #171AK99MR2, Bio-Rad Laboratories). The concen-
tration of TGF- 51 was measured in the cellular supernatants
with a magnetic bead-based single-plex assay (R&D Systems
#LTGM100) according to the manufacturers’ instructions.

2.3. Monocyte Differentiation into MI-like and M2-like
Macrophages or Dendritic Cells. Human PBMCs (peripheral
blood mononuclear cells) were isolated from EDTA-
uncoagulated blood of three anonymous blood donors (with
ages ranging from 18 to 65 years) by gradient centrifugation
(Ficoll-Paque Plus, GE Healthcare), and monocytes were
purified by negative selection using a commercial kit (Easy-
Sep™ Human Monocyte Enrichment Kit, Negative Selection
#19059, Stemcell Technologies) according to the manufac-
turers’ instructions. Purity was over 90% as assessed by stain-
ing with anti-CD14-FITC (5ng/yl, clone 61D3, eBioscience)
and flow cytometric analysis (FACSCalibur). All blood donors
gave written informed consent.

For macrophage differentiation, CD14+ monocytes (M0)
were seeded in triplicate for nine days in multiwell plates at
5x 10°/cm? in RPMI medium supplemented with 10% heat-
inactivated fetal bovine serum (FBS), 1% glutamine, 1% pyru-
vate, 1% nonessential amino acid, 1% penicillin/streptomycin,
1% HEPES (all from EuroClone), and 100 ng/ml macrophage
colony-stimulating factor (M-CSF, Peprotech) for M2-like
differentiation or 100 ng/ml granulocyte-macrophage colony-
stimulating factor (GM-CSF, Peprotech) for M1-like differen-
tiation. The complete media were changed every 3 days.

For dendritic cell (DC) differentiation, CD14+ monocytes
were seeded in triplicate in multiwell plates at 5 x 10°/cm? in
RPMI medium supplemented for six days with 50ng/ml
granulocyte-macrophage colony-stimulating factor (GM-
CSF, Peprotech) and 50ng/ml IL-4 (Peprotech) obtaining
immature DCs (iDCs). The complete media were changed
every 3 days. To obtain mature DCs (mDCs), on the seventh
day, 40 ng/ml of lipopolysaccharide (LPS from Escherichia coli
055:B5, Sigma-Aldrich) was added for 48 hours to the iDCs.

To evaluate the influence of AMSCs’ secretome on the
differentiation of monocytes into M1-like or mDC cells,
each conditioned medium of SF-exposed AMSCs (CM+SF)
was added separately to the differentiation media of mono-
cytes obtained from each donor at a 50% ratio (technical
replicates n = 3).

As a control for the effect of SF present in the condi-
tioned medium, SF alone, at a similar ratio as CM+SF, was
added to parallel cultures. The complete media were chan-
ged every 3 days.

Differentiated M1-like and M2-like macrophages were
collected with TrypLE™ Express detachment solution (Gibco)
and characterized by flow cytometry for the expression of
macrophage markers: cells were incubated for 15min with
anti-CD80-PE (clone 2D10.4, eBiosciences), anti-CD163-
APC (clone eBioGHI/61, eBiosciences), and anti-HLA-DR-
FITC (clone L1243, BD Pharmingen™) and then rinsed two
times with PBS. To detect the expression of intracellular Argi-
nase I, cells were fixed and permeabilized with the Fix/Perm
solution kit (#88-8824-00, eBiosciences), incubated with
anti-Arginase [-FITC (clone P05089, R&D Systems) for
15 min and then rinsed twice with PBS.

To evaluate the concentration of TNF-« secreted by M1-
like cells, on the ninth day, after treatment with AMSC-
derived CM and SF, cells were rinsed with PBS and the culture
medium was replaced with RMPI medium. Supernatants were
collected after 24 h and stored at -80°C until use. The concen-
tration of TNF-«a was measured with a magnetic bead-based
simplex assay (TNF-alpha Human ProcartaPlex™ Simplex
Kit #EXP01A-10223-901, Thermo Fisher Scientific).

As for macrophages, differentiated DCs were collected
with TrypLE™ Express detachment solution (Gibco) and char-
acterized by flow cytometry for the expression of DC markers
using anti-CD14-FITC (clone 61D3, eBiosciences), anti-
CD83-APC (clone HB15e, eBiosciences), anti-CD123 (clone
7G3, BD Pharmingen™), anti-CD80-PE (clone 2D10.4, eBios-
ciences), and anti-HLA-DR-FITC (clone L243 BD).

All antibodies for flow cytometry were used at final con-
centration of 5ng/ul.



Flow cytometry was performed with the FACSCalibur
(Becton Dickinson), and the data were analysed using the
Flowing Software.

To evaluate the concentration of IL-10 secreted by mDCs,
on the ninth day, after treatment with AMSC-derived CM and
SF, cells were rinsed with PBS and the culture medium was
replaced with RMPI medium. Supernatants were collected
after 24 h and stored at -80°C until use. The concentration of
IL-10 was measured with a magnetic bead-based simplex assay
(IL-10 Human ProcartaPlex™ Simplex Kit #EXP01A-10215-
901-901, Thermo Fisher Scientific).

In all experiments with immune cells, the control was
represented by cells cultured in differentiation medium only.

2.4. T Cell Proliferation Assay. PBMCs, isolated from three
anonymous blood donors (with ages ranging from 18 to 65
years), were labelled with 5uM CFSE (carboxyfluorescein
succinimidyl ester, Invitrogen) in PBS with 0.1% bovine
serum albumin for 10 minutes at 37°C, followed by immedi-
ate quenching with cold culture medium.

To evaluate the effect of AMSCs’ secretome on PBMCs,
2 x 10° cells resuspended in RPMI medium were preincubated
for 24 hours with 50% of AMSC-derived CM and SF, then
seeded in triplicate into 96-well plates with prebound
0.5 pg/ml anti-CD3 (clone OKT?3, eBiosciences) and 0.5 yug/ml
anti-CD28 (clone CD28.6, eBiosciences). After 3 days, in vitro-
stimulated PBMCs were stained with 5ng/ul of anti-CD3-
APC (clone HIT3a, BioLegend) and cell proliferation was
tested with flow cytometry (FACSCalibur, Becton Dickinson).
Data were analysed using the Flowing Software.

The percentage of proliferating cells was calculated on the
peak measured in unstimulated T cells. Proliferation was
expressed as fold change of the proliferating cells over stimu-
lated control cells.

2.5. T Reg Proliferation Assay. CD4+ T lymphocytes were
purified from PBMCs isolated from three anonymous blood
donors (with ages ranging from 18 to 65 years) by negative
selection using the Human CD4+ T Cell Enrichment Kit
(#19052, Stemcell Technologies) according to the manufac-
turers’ instructions. Purification was over 90% as assessed
by staining with 5ng/ul of anti-CD4-FITC (clone RPA-T4,
eBioscience) and flow cytometric analysis (FACSCalibur).

Isolated CD4+ T lymphocytes (2 x 10°) were resuspended
in RPMI medium (control) or preincubated for 24 hours with
50% of AMSC-derived CM and SF, then seeded in triplicate
into 96-well plates with prebound 0.5 yg/ml anti-CD3 (clone
OKTS3, eBiosciences), 0.5ug/ml anti-CD28 (clone CD28.6,
eBiosciences), and recombinant IL-2 at a concentration of
250 U/ml (Peprotech). After 3 days, in vitro-stimulated CD4
+ T cells were stained with 5ng/ul of anti-CD25-APC (clone
BC96, eBiosciences) and 5ng/ul of anti-FoxP3-PE (clone
PCHI101, eBioscience) and T reg proliferation was tested with
flow cytometry (FACSCalibur, Becton Dickinson). The data
were analysed using the Flowing Software.

2.6. Statistical Analysis. Data are reported as mean of three
experiments + standard deviation (SD). Statistical analysis
has been performed using GraphPad Software (version 7).
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Data were tested for normal distribution using the
Kolmogorov-Smirnov test. For the data on AMSCs and
AMSCH+SF, paired t-test or nonparametric paired Wilcoxon’s
test, as appropriate, was used to compare continuous vari-
ables between two groups.

For all other experiments, repeated measurements were
analysed by one-way ANOVA analysis of variance followed
by the Bonferroni posttest. P values < 0.05 was considered
significant.

3. Results

3.1. Effect of Osteoarthritic Synovial Fluid on Adipose
Mesenchymal Stem Cells (AMSCs). Osteoarthritic synovial
fluids were characterized in terms of cytokines and chemo-
kines by multilplex assay (Table 1).

The presence of cytokines and chemokines has been
evaluated in the osteoarthritic synovial fluids by a mag-
netic bead-based 40-plex assay. Data are presented as the
mean + S.D. (n=3). CCL: chemokine C-C motif ligand;
CXCL: chemokine C-X-C motif ligand; CX3CL1: chemokine
C-X3-C motif ligand 1; IL: interleukin; IFN-y: interferon y;
GM-CSEF: granulocyte-macrophage colony-stimulating fac-
tor; MIF: macrophage migration inhibitor factor; TNF-a:
tumor necrosis factor a.

To evaluate the effect of SF on AMSCs, cells were cultured
in medium containing 50% SF. The addition of SF induced
morphological changes in AMSCs, which became more elon-
gated with an irregular shape (Figure 1(a)), and increased the
number of viable cells (Figure 1(b)); however, the percentage
of viable cells was not affected (Figure 1(c)). To study the effect
of osteoarthritic SF on cytokine and chemokine production by
AMSCs, cell supernatant was collected and analysed by a mag-
netic bead-based 40-multiplex assay. Concentrations of cytoki-
ne/chemokines secreted from untreated cells are reported in
Table 2 (supplementary material). Exposure to osteoarthritic
SF significantly upregulated (P < 0.05) the release of several
cytokines/chemokines by AMSCs (Figure 1(d)). It should be
noted that the production of CCL21, CCL27, CXCL15, and
CXCL16 chemokines was more strongly influenced by the
exposure of cells to SF (P < 0.001). Finally, the expression of
the IDO immunosuppressive factor by AMSCs was not
significantly affected by exposure to SF (Figure 1(e)).

3.2. Effect of Conditioned Medium of SF-Exposed AMSCs on
Differentiation of Macrophages. The CD14+ monocytes were
induced for 9 days to differentiate into M1-like or M2-like
macrophages with GM-CSF or M-CSF, respectively, and
the expression of Ml1-like markers (CD80 and HLA-DR)
and M2-like markers (intracellular Arginase I and CD163)
was evaluated by flow cytometry. As expected, compared to
monocytes (MO), the percentage of CD80-positive cells, as
well as the mean fluorescence intensity (MFI) (data not
shown), was increased after differentiation of macrophages
towards the M1-like phenotype and was reduced in M2-like
macrophages (Figure 2(a)l). The percentage of HLA-DR
compared to M2-like cells was significantly higher both in
MO and in M1-like cells, and no difference was observed in
MFI among M1-like and M2-like cells (Figure 2(b)1).
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TaBLE 1: Cytokines and chemokines in SF.

Analyte pg/ml Analyte pg/ml
CCL1 41.6+8.8 CXCL5 145.5+34.4
CCL2 338.3+£276.7 CXCL6 6.5+04
CCL3 6.8+2.6 CXCL9 171.2 £50.4
CCL7 44.4+2.7 CXCL10 246.6 £51.3
CCL8 19.1+6.7 CXCL11 6.5+1.5
CCL11 20.7+4.9 CXCL12 833.8£58.7
CCL13 6.8+1.2 CXCL13 11.3+2.3
CCL15 4762.5+501.3 CXCL16 925+ 36.5
CCL17 12+£3.1 CX3CL1 42.1£7.9
CCL19 92.8+19.5 IL-18 1.4£0.5
CCL20 56+0.7 IL-2 64+1.5
CCL21 3333.1+£22.9 IL-4 151+3.3
CCL22 183.3£43 IL-6 68.2+31.8
CCL23 390.2+12.7 CXCL8 21.6 £ 10
CCL24 191.2£61.6 IL-10 13.5+1.6
CCL25 353+£54.3 IL-16 506.4 + 34.1
CCL26 28.9+8.3 IEN-y 279+6
CCL27 499.6 £211.2 GM-CSF 38.3+4.9
CXCL1 87+13 MIF 7846 + 106.5
CXCL2 21.1+5.8 TNF-« 22.6+8.2

The expression, as well as the MFI (data not shown), of
intracellular Arginase I was higher in MO and in M2-like
cells, while it was significantly reduced in MIl-like cells
(Figure 2(c)1). Finally, the percentage of CD163-positive cells
was higher both in M0 and in M2-like cells and no difference
was observed between these cells. However, MFI allows dis-
tinguishing the M2-like population from the M0 population
(Figure 2(d)1); therefore, we chose to report the expression
of CD163 as MFI.

To study the ability of AMSCs’ secretome to induce an
anti-inflammatory phenotype in macrophages, monocytes
were differentiated in M1-like macrophages in the presence
of AMSC-conditioned medium of unstimulated (CM) or SF-
exposed AMSCs (CM+SF) or synovial fluid only (SF). Com-
pared to M1-like cells, the expression of HLA-DR was signifi-
cantly reduced (P <0.05) only in Ml1-like cells treated with
conditioned medium of SF-exposed AMSCs (Figure 2(b)2),
while the expression of CD80 was not affected by treatment
with AMSC-conditioned medium (Figure 2(a)2).

Furthermore, M1-like cells treated with CM+SF showed
an increase of M2-like markers: Arginase I (Figure 2(c)2)
and CD163 (Figure 2(d)2). A slight, but not significant
effect was observed for conditioned medium of unstimu-
lated AMSCs.

To confirm the ability of CM+SF to reverse the M1-like
phenotype and promote the polarization of macrophages
into M2-like cells, we evaluated the secretion of TNF-« in
M1-like macrophages treated with conditioned medium of
AMSCs: compared to M1-like cells, treatment with CM+SF

and SF reduced the amount of this cytokine. No difference
was observed among these two treatments.

3.3. Effect of Conditioned Medium of SF-Exposed AMSCs on
Differentiation of Dendritic Cells. Monocytes were induced
to differentiate into immature dendritic cells (iDCs) by stim-
ulation with GM-CSF and IL-4, and to complete maturation
(mDCs) with the addition of LPS.

To distinguish M0 from iDCs and mDCs, several
markers were evaluated by flow cytometry.

Both iDCs and mDCs expressed a low level of CD14
(Figure 3(a)l) and a high level of CD83 (Figure 3(b)l).
The expression of CD123 was significantly higher only in
iDCs (Figure 3(c)1). No difference was observed in HLA-
DR expression among M0, iDCs, and mDCs. Finally, CD80
was differently expressed in all three cell populations
(Figure 3(e)1).

Then, we examined the effect of the conditioned medium
of unstimulated (CM) or SF-exposed AMSCs (CM+SF) or
synovial fluid alone (SF) on DC differentiation. Our data
showed that the conditioned medium of SF-exposed AMSCs
inhibited differentiation of monocytes into mDCs: the treat-
ment with CM+SF induced an increment of CD14 and
CD123 expression (P <0.05). Both CM+SF and SF treat-
ments reduced the expression of HLA-DR and CD80. Nei-
ther treatment influenced the expression of CD83.

We evaluated the secretion of IL-10, a typically cytokine
secreted by tolerogenic dendritic cells, in mDCs treated with
conditioned medium. Compared to untreated mDCs, CM
+SF induced an increase of IL-10 secretion (P < 0.05). No
effect was observed in mDCs treated with CM or SF
(Figure 3(f)).

3.4. Effect of Conditioned Medium of SF-Exposed AMSCs
on T Cell Proliferation. Unstimulated cells show a single,
bright CFSE fluorescence peak, indicating no proliferation
while stimulated cells show multiple CFSE fluorescence
peaks, indicating multiple generations of proliferating cells
(Figure 4(a)).

Conditioned medium collected after culturing AMSCs in
50% SF was used to analyse the effect of AMSCs’ secretome
on the proliferation of T cells (Figure 4). Conditioned
medium of untreated AMSCs did not affected the prolifera-
tion of CD3+ T cells, while the conditioned medium of SF-
exposed AMSCs, as shown above, caused significant inhibi-
tion. Treatment of PBMCs with synovial fluid (SF) alone
had no effect on cell proliferation (Figures 4(b) and 4(c)).

3.5. Effect of Conditioned Medium of SF-Exposed AMSCs on
T Reg Proliferation. Conditioned medium collected after
culturing AMSCs in 50% SF was used to analyse the effect
of AMSCs’ secretome on the expansion of T reg (Figure 5).
Compared to untreated CD4+ cells (control), treatment
of CD4+ with SF and CM+SF promoted the expansion of
T reg cells, but only in the presence of CM+SF did the
expansion of T reg increase significantly (P < 0.05). Condi-
tioned medium of untreated AMSCs did not affected the
proliferation of T reg.
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FIGURE 1: Exposure to osteoarthritic synovial fluid increases cell proliferation and promotes the release of cytokines and chemokines by
AMSCs. (a) Representative phase contrast images (10x and 20x magnification) of AMSCs incubated without (CTRL) or with osteoarthritic
synovial fluid (SF) for 48 hours. (b and ¢) Number of viable cells and viability were determined by the trypan blue exclusion assay. (d) The

release of cytokines and chemokines of AMSCs after incubation w
plex assay. (e) IDO expression was determined by flow cytometry

ith SF was measured in cell supernatants by a magnetic bead-based 40-
and reported as mean fluorescence intensity (MFI); histogram overlay

shows isotype control staining (grey) versus specific antibody staining profile (green for control and red for AMSCs exposed to SF).
Data are shown as mean (n = 3) + S.D. *Difference with untreated cells (P < 0.05). **Difference with untreated cells (P < 0.01). ***Difference

with untreated cells (P < 0.001).

4. Discussion

The ability of AMSCs to secrete a variety of trophic factors
with different functions has motivated interest in evaluating
their local or systemic injection to stimulate tissue repair in
various diseases, including joint inflammatory diseases [36].
Clinical trials have shown that local injection of AMSCs into
an osteoarthritic joint has improved function and is likely to

play several roles, such as inhibiting osteophyte formation
and reducing cartilage degeneration [7, 37].

The anti-inflammatory properties of AMSCs have been
linked to their cell-cell-mediated immunosuppressive poten-
tial in collaboration with the secretion of soluble immune
factors [38]. These modulators included a multitude of solu-
ble immunomodulating factors, such as cytokines and
growth factors, and extracellular vesicles [32, 39].
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F1Gure 2: Conditioned medium of SF-exposed AMSCs reverts the M1 phenotype and promotes the polarization of macrophages into the M2
phenotype. Monocytes (M0) were differentiated into macrophages in the presence of GM-CSF (Ml-like) or M-CSF (M2-like). The
expression of CD80 ((a)1), HLA-DR ((b)1), Arginase I ((c)1), and CD163 ((d)1) was evaluated by flow cytometry. Conditioned medium of
unstimulated (CM) or SF-exposed AMSCs (CM+SF) or synovial fluid only (SF) was added during M1-like differentiation. The expression
levels of M1-like ((a)2 and (b)2) and M2-like markers ((c)2 and (d)2) are presented as fold increase compared to untreated M1-like cells. The
secretion of TNF-a in M1-like macrophages treated with CM, CM+SF, and SF is expressed as fold increase with respect to the secretion of
TNF-a in untreated M1-like cells. Data are shown as mean (n = 3) + S.D.*Difference with untreated cells (P < 0.05). **Difference with

CM+SF
(e)

untreated cells (P < 0.01). ***Difference with untreated cells (P < 0.001).
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Ficure 3: The conditioned medium of SF-exposed AMSCs inhibits differentiation of monocytes into DCs. Monocytes (MO0) were
differentiated into dendritic cells (DCs) in the presence of GM-CSF/IL-4 and LPS. To characterize dendritic cells, the expression of CD14
((a)1), CD83 ((b)1), CD123 ((c)1), HLA-DR ((d)1), and CD80 ((e)1) was evaluated by flow cytometry. Conditioned medium of
unstimulated (CM) or SF-exposed AMSCs (CM+SF) or synovial fluid only (SF) was added during DC differentiation. The expression
levels of dendritic cells’ markers are presented as fold increase compared to untreated mDCs ((a)2, (b)2, (c)2, (d)2, and (e)2). The
secretion of IL-10 in mDCs treated with CM, CM+SF, and SF is expressed as fold increase with respect to the secretion of IL-10 in
untreated mDCs. Data are shown as mean (n=3) +S.D. *Difference with untreated cells (P <0.05). **Difference with untreated cells
(P <0.01). ***Difference with untreated cells (P < 0.001).



Stem Cells International

Unstimulated
g E h Proliferative
cells J
o= =
5 [
)
SSC-H 1024 FL1-H 1000
SSC CFSE
Stimulated
3
3 g ) \
2 — "
f
O = = | /
% 3 & t
118
av ]
i N
SSC-H 1024 FL1-H 1000
ESC SSC CFSE
(a)
. CM CM+SF +SF
5] - 5 N 15
i o
Q —~~
| ‘( ‘ &; ©%F 104 _—
S =
} i f ESE _—
| « ] H J £2 5 05- -
W \ ] I m\‘/ "g = g '
J‘J\ h ] M \ M\«/ \u E
FLl H " '1'(')'80 I 2 . VO - SAA . N & 0.0 T T
) FL1-H 1000 FL1-H 1000 CM CM+SF SE
CFSE CFSE CFSE

(b

(c)

FiGure 4: The conditioned medium of SF-exposed AMSCs inhibits the proliferation of CD3+ T cells. Gating strategies of T cells in
proliferation assay—physical parameters, i.e., forward scatter (FSC) and side scatter (SSC), were used to select PBMCs. T cells were
recognized by evaluating in PBMCs the expression of CD3. Proliferation was expressed as fold change of the proliferative cells with
respect to stimulated control cells (a). CFSE-labelled PBMCs isolated from healthy donors were incubated in the presence of conditioned
medium of unstimulated (CM) or SF-exposed AMSCs (CM+SF) or synovial fluid only (SF). (b) Representative CESE cytometry
histograms. (c) The histograms show the proliferation of CD3+ cells, expressed as fold increase compared to untreated cells. Data are
shown as mean (n = 3) + S.D.**Difference with untreated cells (P < 0.01).

Recent studies have revealed that the immunomodula-
tory properties of AMSCs are not constitutive, but rather
activated by signals derived from a proinflammatory micro-
environment. In particular, AMSCs require “licensing” by
proinflammatory cytokines to acquire an immunosuppres-
sive phenotype [40]. Indeed, AMSCs’ secretome is influenced
by mutual interaction with immune cells [41] and is affected
by specific disease-related tissue microenvironments. How-
ever, so far, AMSCs’ secretome has been analysed after cyto-
kine treatment, in order to make the stimulus more
reproducible. IFN-y in combination with one of the proin-
flammatory cytokines, TNF-a, IL-1a, or IL-1f3, can stimulate
MSCs to release high concentrations of immunosuppressive
factors, as well as a burst of chemokine and adhesion molecule
expression [42]. In this context, recent studies are aimed at
developing strategies to guide the MSC secretome towards a
more anti-inflammatory and regenerative phenotype [43, 44].

The osteoarthritic synovial fluid best represents the
microenvironment of an inflamed joint. Indeed, our data
demonstrated and confirmed [22, 45] the presence of proin-
flammatory molecules in osteoarthritic synovial fluid. As
already reported [29-31], osteoarthritic synovial fluid influ-
ences the expression of molecules involved in immunomodu-
lation. Furthermore, Sayegh et al. recently demonstrated that
coculture of AMSCs exposed to SF of patients affected by
rheumatoid arthritis (RA), with activated monocyte or CD4
+ cells, can inhibit the expression of CD40 and CD80
(monocyte’s proinflammatory markers) and promote T reg
expansion [46].

In our study, we analysed the effect of osteoarthritic
synovial fluid on AMSCs; in particular, we have verified the
hypothesis that osteoarthritic synovial fluid alters the thera-
peutic efficacy of AMSCs, influencing their immunomodula-
tory properties.
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F1GURE 5: The conditioned medium of SF-exposed AMSCs increased the expansion of T reg. CD4+ T cells, isolated from PBMCs by negative
selection, were stimulated with anti-CD3, anti-CD28, and IL-2 in the presence of conditioned medium of untreated cells (CM), conditioned
medium of AMSCs exposed to synovial fluid (CM+SF), and synovial fluid only (SF). The percentage of regulatory T cells (CD4+/CD25
+/FoxP3+) was determined by fluorescence-activated flow cytometry (FACS) on day 4. Representative plots for CD25 and FoxP3 staining
are shown (a), and histograms represent the percentage of regulatory T cells expressed as fold increase over untreated cells (CTRL). Data
are shown as mean (n = 3) + S.D. *Difference with the untreated cells, P < 0.05.

Osteoarthritic synovial fluid is well tolerated by equine
bone-marrow-derived MSCs, which have maintained their
viability, proliferation, and differentiation abilities [18, 47,
48], and have increased the expansion of human MSCs in tis-
sue culture of the synovium from osteoarthritic patients as
measured by cell migration [49]. In addition, we confirmed
that exposure to osteoarthritic SF significantly upregulated
the release of several chemokines (CCL21, CCL27, CXCL15,
and CXCL16) involved in the homing of various immune
cells such as T cells and neutrophils [50-53].

AMSCs constitutively secrete a multitude of different
members of the chemokine family, leading to an accumula-
tion of immune cells near MSCs, thus creating a microenvi-
ronment in which the effects of locally acting factors
produced by MSCs are amplified [42].

Moreover, we reported that exposure to osteoarthritic SF
modifies the secretome of AMSCs, making it capable of
reversing the M1-like phenotype by promoting macrophage
polarization into M2-like cells, inhibiting differentiation of
monocytes into DCs, and reducing proliferation of T cells.
Moreover, the increase of T reg cells that we showed may
explain the inhibitory effect on CD3+ cells.

In agreement with our results, it has been reported that
the coculture of macrophages with MSCs induces differenti-
ation in M2 macrophages and prevents differentiation of
monocytes treated with GM-CSF/IL-4- in DCs by metabolic
reprogramming through lactate secretion [54].

It has also been reported that the maturation of DCs
induced by LPS treatment was inhibited by MSCs in
coculture but not by cell supernatants, even if MSCs were
preactivated with inflammatory cytokines. The authors
suggested that IFN-y treatment is not sufficient to induce
the release of immunomodulatory molecules from MSCs,
which probably requires a more complex stimulation,
comparable to that present in the inflammatory microen-
vironment [55, 56].

In our experiments, only the secretome obtained from
MSCs exposed to osteoarthritic SF induces a significant effect
on the immune cells used for the experiments. Our data
suggest that the inflammatory molecules present in the oste-
oarthritic synovial fluid, such as TNF-a, IL-1a, IL-13, IL-6,
MMP-3, and MMP-9 (metalloproteinases 3 and 9) [21, 57]
are all essential to induce stem cells to secrete immunomod-
ulatory factors. Indeed, as demonstrated, T cell proliferation
has been inhibited by MSCs only in the presence or proin-
flammatory cytokines [58]. Moreover, MSCs were activated
only by strongly stimulated T cells [59].

In conclusion, our study suggests that exposure to osteo-
arthritic synovial fluid enhances the immunomodulatory
properties of the AMSCs’ secretome and promotes the anti-
inflammatory profile of immune cells, further supporting
the hypothesis that communication with the inflammatory
microenvironment plays an essential role in determining
the ability of AMSCs to suppress the immune response.
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