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Abstract

Light provides a uniquely powerful stimulus to help visualize and/or perturb biological systems. 

The use of tissue penetrant near-IR wavelengths enables in vivo applications, however the design 

of molecules that function in this range remains a substantial challenge. Heptamethine cyanine 

fluorophores are already important tools for near-IR optical imaging. These molecules are 

susceptible to photobleaching through a photooxidative cleavage reaction. This review details 

efforts to define the mechanism of this reaction and two emerging fields closely tied to this 

process. In the first, efforts that slow photooxidation enable the creation of photobleaching 

resistant fluorophores. In the second, cyanine photooxidation has recently been employed as the 

cornerstone of a near-IR uncaging strategy. This review seeks to highlight the utility of 

mechanistic organic chemistry insights to help tailor cyanine scaffolds for new, and previously 

intractable, biological applications.

Introduction

Optical methods that probe and/or alter biological processes are central to biomedicine. 

Near-IR light (~650–900 nm) is dramatically more tissue penetrant than visible light, 

facilitating in vivo applications [1]. Nevertheless, improved chemical tools are required to 

fully realize the benefits of these wavelengths. In the context of imaging, there is a 

significant need for long wavelength fluorophores with enhanced chemical/photochemical 

stability and improved optical properties [2,3]. With regard to altering biology and treating 

disease, existing near-IR methods typically rely on the local generation of toxic levels of 

reactive oxygen species (ROS) through ‘photodynamic’ approaches [4]. By analogy to the 

significant utility of existing photocaging approaches for cell-based studies, many in vivo 
biomedical applications would be possible if diverse chemotypes could be site-specifically 

released with near-IR light [5•,6].

Indocyanine fluorophores, often referred to as ‘Cy’ dyes, are used for a variety of 

fluorescence-based applications. Heptamethine variants form the basis of many, if not most, 

clinical near-IR imaging efforts, as well as many preclinical studies. One example, 

indocyanine green (ICG, 1, Figure 1a), is an FDA-approved diagnostic agent used in a 

variety of clinical contexts [7,8]. Another example, the bioconjugatable IRDye-800CW (2), 

Corresponding author: Schnermann, Martin J, (martin.schnermann@nih.gov). 

HHS Public Access
Author manuscript
Curr Opin Chem Biol. Author manuscript; available in PMC 2020 July 27.

Published in final edited form as:
Curr Opin Chem Biol. 2016 August ; 33: 117–125. doi:10.1016/j.cbpa.2016.05.022.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



is in clinical trials as an optical beacon to guide the surgical resection of squamous cell 

carcinoma [9]. As with many fluorophores, cyanines are prone to light-dependent 

decomposition, or photobleaching. Somewhat unusually, cyanine photobleaching derives 

from a well-defined photooxidative cleavage reaction, which is exemplified by the 

conversion of ICG to carbonyls 3 to 6 in Figure 1b [10]. This review describes efforts to 

define the mechanism of this photooxidative reaction and two fields where this process plays 

a central role (Figure 1c). In the first, chemists seek to develop molecules with improved 

photochemical stability by blocking, or at least slowing, photooxidation. In the second, 

photooxidative reactions have been used to create near-IR photocaging strategies. In both 

cases, organic chemistry provides critical insights, and the molecular entities, to enable 

biological advances

Cyanine photooxidation: mechanistic studies

Building on seminal studies from the Kodak laboratories, various reports have described the 

oxidative cleavage products that derive from cyanine photolysis [11,12,13•]. Although the 

products are well defined, key mechanistic details have been described disparately. For 

example, the relevant ROS have been variably assigned as singlet oxygen (1O2), hydrogen 

peroxide (H2O2), or hydroxy radical (•OH) [13•]. In general, we have been guided by the 

notion — first suggested in the Kodak study and invoked elsewhere — that the formation of 

carbonyl products is best understood through the 1O2-mediated dioxetane formation/

cycloreversion mechanism shown in Figure 2a.

Seeking further insights for the complex and relatively minimally studied case of 

heptamethine cyanines, we recently carried out a set of mechanistic studies using compound 

7 [14•]. The major reaction pathway was analyzed following either photolysis or exposure to 

candidate ROS. These studies revealed that only 1O2 (generated either chemically or through 

independent photosensitization), and not other candidate ROS, is capable of inducing C-C 

cleavage at 2 of the 4 feasible reaction sites along the cyanine polyene. These results nearly 

match those obtained by direct photolysis (Figure 2b,c). Moreover, MS/MS fragmentation of 

a near-IR light-dependent [7 + O2]+ adduct — the putative dioxetane intermediate — 

provides ions corresponding to carbonyls 8-11. Finally, a quantum mechanical analysis of 

the photooxidative pathway indicated that the relative ground state energy of the 

intermediate dioxetanes correlates closely with the observed product distribution (Figure 

2d). Together, these studies provide strong evidence that the major photooxidation pathway 

of heptamethine cyanines entails 1O2-mediated cleavage of the polyene via dioxetane 

intermediates. Despite these insights, a number of questions remain. In particular, an 

understanding of the dramatic differences in photo-chemical stability between cyanines 

would be quite useful. For example, trimethine and pentamethine cyanines are substantially 

less susceptible to photodegradation than the heptamethine variants described above [15,16].

Slowing photooxidation to create stable fluorophores

The creation of photobleaching resistant fluorophores will broaden the time interval over 

which phenomena of interest can be observed [17,18]. For example, signal stability is crucial 

for single molecule microscopy [19••]. This is also true for fluorescence-guided surgical 
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interventions, where significant light exposure over long timeframes is inescapable [20,21]. 

Three different strategies have been pursued with cyanine derivatives: (1) altering electron 

density, (2) encapsulation, and (3) the use of triplet-state quenchers (TSQs).

As 1O2 is a highly electrophilic species, a reasonable strategy to reduce photooxidation 

involves removing electron density from the cyanine polyene. Two different strategies have 

been explored. In the first, a cyano functional group was attached directly to the polyene of a 

merocyanine derivative [22]. In the second, the aromatic rings of a bisbenzothiazole 

pentamethine cyanine were perfluorinated [23]. In both cases, the resulting fluorophores 

were significantly more photostable than the corresponding compounds lacking these 

modifications. Further efforts with this particularly direct approach are likely to be 

productive.

The concept of chromophore encapsulation garners inspiration from Green Fluorescent 

Protein (GFP), where the positioning of the chromophoric element inside a β-barrel motif 

provides needed rigidity and improved stability. Cyanine encapsulation was first explored by 

Anderson and coworkers using irreversibly rotaxane encapsulated hepta- and pentamethine 

cyanines [24,25,26]. Elegant work by Smith and coworkers has also explored this concept 

with squarine-based dyes [27,28]. In both instances, the encapsulated dyes are more resistant 

to photochemical and chemical degradation than the free molecules, and, in the case of the 

latter, the complexes have been applied in a variety of imaging contexts. An alternative 

approach to encapsulate chromophoric elements entails the combination of exogenously 

provided small molecules and genetically encoded protein hosts. Armitage and coworkers 

have realized this concept using single-chain variable fragment (scFv) antibodies that were 

evolved to bind a family of cyanines [29,30]. These molecules are nearly non-fluorescent 

initially, but, upon binding to the expressed protein host, become dramatically more 

fluorescent with significant improvements in photo-stability.

Another approach to slow photobleaching is to reduce the generation of 1O2 and other ROS. 

In principle, lowering the quantum yield of intersystem crossing (ΦISC) and/or shortening 

the triplet state lifetime (τT1) should achieve this goal. Efforts in this area draw from the 

development of antifade buffers for microscopy. These buffers often contain redox active 

small molecules, for example quinones, thiols, nitroaryls, or, most recently, Ni(0) salts, and 

are frequently used in combination with enzymatic oxygen exclusion [31,32,33,34•]. The 

requirement of high concentrations (mM) of the redox active molecule(s) imposes certain 

limitations, including rendering this approach incompatible with many live-cell and tissue 

imaging applications. Thus, intramolecular tethering is a reasonable tactic to increase the 

effective concentration of the redox partner. Recently, Blanchard and coworkers dramatically 

illustrated this concept through generation of Cy3, Cy5, and Cy7 modified with the putative 

TSQs nitrobenzene, trolox, and 1,3,5,7-cyclooctatetraene (COT) [35•,36]. These conjugates 

exhibit improvements in stability as measured in bulk solution and at the single molecule 

level. Recent mechanistic studies have shown that the impact on τT1 varies and is highly 

dependent on the identity of the TSQ and even the linker, although some of these issues may 

be solvent dependant [37•,38]. This concept has also been explored through recent studies by 

Cordes and coworkers using both DNA tethering strategies and direct covalent attachment 

[39,40,41]. In total, these studies reveal that various features of cyanine photooxidation, 
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including kinetic parameters, are subject to modification. Future efforts based on 

mechanistic insights may provide molecules functionally nearly immune to photobleaching.

Cyanine photooxidation for photocaging

Uncaging reactions that use near-IR light will enable the site-specific delivery of bioactive 

compounds in complex physiological settings. This is a challenging chemical problem 

because the modest photonic energy of these wavelengths is not easily translated into bond 

cleavage [42•]. While two-photon methods are useful, the scope of possible applications is 

somewhat limited because uncaging only occurs in the small focal volumes excited by 

pulsed laser sources (nanoliters to picoliters) [43,44]. The first single-photon uncaging 

methods used metallic nanoparticles through uncaging mechanisms that rely on localized 

heating or upconversion [45,46]. Recently, strategies that release payloads from custom-built 

liposomal formulations have also emerged [47••,48,49]. Also desirable are small molecule 

approaches, which, along with their bioconjugates, still comprise the vast majority of 

clinical modalities. Only recently have such methods started to appear. Exciting0 progress 

has been achieved with the use of 1O2-cleavable olefinic linkers in combination with 

porphyrin and phthalocyanine-based photo-sensitizers and with contact quenching-induced 

scission of Co-C bonds [50•,51,52,53,54,55•]. Long wavelength uncaging cleavage strategies 

using the BOPIDY scaffold have also recently appeared [56•,57,58,59].

Inspired by the well-defined photooxidation chemistry described above, we set out to 

employ the heptamethine cyanine scaffold as the chemical backbone of a near-IR uncaging 

strategy. We reasoned that this ubiquitous, albeit typically deleterious, photobleaching 

reaction could be adapted for this new use. Also motivating this effort was the long-standing 

observation that cyanines are quite non-toxic, even after protracted irradiation. The chemical 

design of our first cyanine photooxidation-dependent uncaging strategy is shown in Figure 

3a [60•]. The uncaging reaction sequence entails photooxidative cleavage of 12 at the 

C2/C1’ and C2’/C3’ bonds to afford 13 and 14, which then spontaneously hydrolyze to 

release 15. These steps liberate a secondary amine, which cyclizes onto a pendant carbamate 

to release phenol-containing payloads (16). The mechanistic premise of this strategy is that 

photooxidation products 13 and 14 are much more susceptible to hydrolysis under 

physiological conditions than starting 12 (perhaps due to increased iminium character in the 

key C4′-N bond).

Compound 17 (Figure 3b), which releases the absorbance reporter 4-nitrophenolate, was 

used to spectroscopically characterize the uncaging reaction. Irradiation with modest flux of 

690 nm light (1 mW/cm2 from an LED source) decreases the cyanine absorption (t1/2 = 8.5 

min) with concommitant appearance of the 4-nitrophenolate signal (t1/2 = 40 min) (Figure 

3c, left). The effect of intermittent irradiation was also examined. The profile of cyanine 

absorption decrease correlates directly with irradiation, while the nitrophenolate signal 

increases in interim periods (Figure 3c, right). Time course studies using mass spectrometry 

showed that intermediates corresponding to 13 and 14 accumulate upon irradiation and then 

decrease in a light-independent manner. In total, these results are consistent with the 

proposed mechanism; photooxidation of the cyanine initiates the process and subsequent 

light-independent steps, hydrolysis and cyclization, are needed prior to phenol uncaging. 
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Irradiation of compound 18 provides a useful yield of the estrogen receptor antagonist 4-

hydroxycyclofen (59%), while displaying excellent stability in the dark. Caged 18 was used 

to control gene expression in combination with a Cre-ERT transgenic cell line. In line with 

prior observations, we demonstrated that cyanines that release only non-toxic payloads have 

little effect on mammalian cell viability upon irradiation. This absence of significant 

phototoxicity may initially seem surprising, given that the photooxidative reaction described 

above involves 1O2. However, the modest toxicity is consistent with the observation that 

heptamethine cyanines are weak 1O2 generators (Φ∆ ≈ 0.01–0.001) [61,62]. Moreover, 

generated 1O2 rapidly destroys the chromophoric element through the photooxidation 

reaction, limiting the potential to accumulate toxic ROS levels.

Applications in drug delivery

Near-IR drug delivery strategies could complement, or improve upon, existing light-based 

therapeutic methods that rely on photosensitizer-dependent mechanisms. In particular, the 

ability to target highly potent molecules specifically to disease sites could enable novel 

therapeutic strategies. Our efforts to date have focused on antibodydrug conjugates (ADCs). 

ADCs provide numerous benefits, including excellent pharmacological properties Using 

cyanine photooxidation for near-IR uncaging. (a) General reaction sequence for uncaging of 

phenol-containing payloads from 12 using 690 nm light. Compound 12 is converted to 

hydrolytically labile 13 and 14 via 1O2-mediated photooxidation of the polyene. Subsequent 

hydrolysis at the C4′ position provides amine 15, which spontaneously cyclizes to uncage 

phenol 16. (b) Representative phenols successfully uncaged using the strategy shown in (a). 
(c) Spectroscopic characterization of uncaging using 17. Absorbance traces at 400 nm (blue) 

and 680 nm (red) with (solid line) or without (dashed line) 1 mW/cm2 690 nm irradiation of 

a 50 μM solution of 7 (HEPES buffer). Irradiation with 690 nm light leads to cyanine 

photooxidation (indicated by a decrease in cyanine absorption at (even with quite complex 

payloads) and antigen targeting. While the recent clinical progress of ADC strategies is 

remarkable, cleavage approaches using endogenous cellular processes, e.g. disulfide or 

peptidic linkers, have little inherent tumor selectivity [63,64]. As a consequence, undesirable 

release, either in circulation or in benign tissue, is often a significant issue [65,66,67].

Cyanine-based ADC linkers could enable small molecule delivery with high precision 

through the combination of antibody targeting and near-IR light mediated release. Light 

provides an external stimulus to precisely time and target the critical small molecule release 

event, in principle ameliorating dose-limiting toxicities arising from ‘off-target’ cleavage. 

We have prepared and characterized first generation cyanine photocaged conjugates of 

combretastatin A4 (CA4), a potent tubulin polymerization inhibitor, and panitumumab 

(Pan), a clinically used anti-EGFR antibody (Figure 4) [68•]. This approach appends a 

bioconjugatable linker to the carbamate functional group (Figure 4a). The key NHS ester 

was prepared through a 7-step sequence and conjugated to Pan through lysine labeling. Pan 

was chosen because several near-IR light-accessible tumor types, including head and neck, 

ovarian, and bladder, are often EGFR+. We validated that these conjugates efficiently release 

CA4 upon irradiation, display high dark stability, and maintain EGFR binding.
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This construct enabled in vitro and in vivo characterization, which was carried out partly 

through a collaboration with our colleague at the National Cancer Institute, Dr. Kobayashi. 

The growth inhibitory activity of the conjugate was highly light dependent (irradiated IC50 = 

16 nM vs. unirradiated IC50 = 1.1 μM, a ~70-fold window, Figure 4b). Furthermore, no 

inhibitory effects were observed using a version of the antibody conjugate that releases only 

biologically inactive phenol, indicating that the observed cytotoxicity is solely a 

consequence of drug release. We also evaluated the internalized and cell surface bound 

antibody fraction. A significant reduction in cell viability was observed only upon 

irradiation in the EGFR+ cell line, with little effect in either the EGFR– cell line or in the 

absence of irradiation (Figure 4c). Mouse imaging studies using the near-IR fluorescence of 

the cyanine conjugate were also carried out. Selective tumor accumulation was observed, 

with high tumor-to-background ratios obtained at 1 day post-injection. Moreover, significant 

signal is still observed 7 days post-injection, suggesting high stability of the cyanine 

component.

As a prelude to in vivo drug delivery studies, we assessed if tumor irradiation could be used 

to deplete the fluorescence signal. Encouragingly, the cyanine fluorescence signal, which 

was stable under typical imaging conditions, can be depleted using external irradiation from 

a 690 nm PDT laser (Figure 4d). Future efforts that investigate more potent payloads are 

likely needed to overcome the modest cell-surface concentrations of relevant tumor-

associated antigens, such as EGFR [69].

Conclusions

Indocyanines are already essential tools for a variety of fluorescence-based applications. 

Controlling the photo-chemical oxidative cleavage process of this privileged scaffold will 

enable currently intractable applications in imaging and drug delivery. Given the centrality 

of fluorescence imaging to biomedical research, the generation of photobleaching-resistant 

fluorophores will have a significant impact in many fields. In the context of drug delivery, 

cyanine-based approaches will allow bioactive molecules to be delivered to sites of interest 

in complex physiological settings. In this latter area, the development of novel, biologically 

useful bond cleavage strategies complements complements the significant progress in 

bioorthogonal bond forming reactions [70,71•]. Chemists’ capacity to create and then deploy 

precisely controlled molecular entities for imaging and drug delivery presents a variety of 

opportunities. The integration of mechanistic organic chemistry insights, complex molecule 

synthesis, and advanced imaging and biomedical techniques will be needed.
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Figure 1. 
Overview. (a) Heptamethine cyanines that have been used extensively for in vivo 
fluorescence imaging. (b) Photooxidation of ICG to carbonyl products 3-6. (c) 
Understanding the mechanism of cyanine photobleaching enables efforts to generate 

photochemically stable near-IR fluorophores and near-IR uncaging strategies.
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Figure 2. 
Probing the mechanism of cyanine photooxidation. (a) General reaction pathway. (b) 
Carbonyl products 8-11 resulting from regioselective formation and then cleavage of 

dioxetanes at the C2/C1′ and C2′/C3′ positions on the polyene. (c) Relative product mixture 

resulting from exposure of 7 to either 740 nm light or candidate ROS. Only 1O2 produces 

product ratios similar to those obtained with direct photolysis. (d) Energies of possible 

dioxetane intermediates en route to carbonyl products.
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Figure 3. 
Using cyanine photooxidation for near-IR uncaging. (a) General reaction sequence for 

uncaging of phenol-containing payloads from 12 using 690 nm light. Compound 12 is 

converted to hydrolytically labile 13 and 14 via 1O2-mediated photooxidation of the 

polyene. Subsequent hydrolysis at the C4′ position provides amine 15, which spontaneously 

cyclizes to uncage phenol 16. (b) Representative phenols successfully uncaged using the 

strategy shown in (a). (c) Spectroscopic characterization of uncaging using 17. Absorbance 

traces at 400 nm (blue) and 680 nm (red) with (solid line) or without (dashed line) 1 

mW/cm2 690 nm irradiation of a 50 μM solution of 7 (HEPES buffer). Irradiation with 690 

nm light leads to cyanine photooxidation (indicated by a decrease in cyanine absorption at 
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680 nm, left) and uncaging of 4-nitrophenolate (indicated by an increase in its absorption at 

400 nm). No such effects are observed in the absence of irradiation. In intermittent 

irradiation experiments (right), cyanine absorption decreases only upon exposure to 690 nm 

light, while 4-nitrophenolate absorption increases in interim dark periods due to 

accumulation and then release from intermediates 13 and 14.
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Figure 4. 
Cyanine uncaging applied to drug delivery. (a) Design of a near-IR light-cleavable ADC via 
conjugation of a cyanine-caged drug to a monoclonal antibody (CY-Pan-CA4). (b) Light-

dependent growth inhibition of EGFR+ cells is observed upon exposure to ADC and 690 nm 

irradiation. Significantly diminished (~70-fold) CA4 effects are observed in the absence of 

irradiation, indicating high dark stability. (c) Incubation of EGFR+ and EGFR− cells with 

conjugate followed by a media exchange prior to photolysis leads to CA4 effects only in the 

receptor-positive and irradiated cell line. (d) Selective tumor localization is obtained in an 

EGFR+ double xenograft model. Irradiation of one tumor with a 690 nm laser ablates the 

cyanine fluorescence signal after 100 J (~3 min), with no effect on the signal of the 

unirradiated tumor.
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