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Telomeres comprise specialized nucleic acid–protein
complexes that help protect chromosome ends from DNA
damage. Moreover, telomeres associate with subtelomeric
regions through looping. This results in altered expression
of subtelomeric genes. Recent observations further reveal
telomere length–dependent gene regulation and epigenetic
modifications at sites spread across the genome and distant
from telomeres. This regulation is mediated through the
telomere-binding protein telomeric repeat–binding factor 2
(TRF2). These observations suggest a role of telomeres in
extra-telomeric functions. Most notably, telomeres have a
broad impact on pluripotency and differentiation. For exam-
ple, cardiomyocytes differentiate with higher efficacy from
induced pluripotent stem cells having long telomeres, and
differentiated cells obtained from human embryonic stem
cells with relatively long telomeres have a longer lifespan.
Here, we first highlight reports on these two seemingly dis-
tinct research areas: the extra-telomeric role of telomere-
binding factors and the role of telomeres in pluripotency/
stemness. On the basis of the observations reported in these
studies, we draw attention to potential molecular connec-
tions between extra-telomeric biology and pluripotency.
Finally, in the context of the nonlocal influence of telomeres
on pluripotency and stemness, we discuss major opportuni-
ties for progress in molecular understanding of aging-related
disorders and neurodegenerative diseases.

The ends of eukaryotic chromosomes have specialized nu-
cleotide-protein complexes called telomeres. In mammalian
cells, they are capped by a complex of six proteins, TRF1,
TRF2, POT1, RAP1, TIN2, and TPP1, known as shelterin
(1–3). The shelterin proteins have distinct roles. TRF1 and
TRF2 bind to double-stranded telomeric DNA, whereas
POT1 binds to single-stranded telomeric DNA. RAP1 associ-
ates with TRF2, whereas TPP1 and TIN2 primarily associate
with POT1 (4) (Table 1). Together the shelterin proteins
form subcomplexes that vary in ssDNA and dsDNA binding.
These result in two broad functions: first, protection of telo-
meres to evade DNA damage repair at chromosome ends
(which, when affected, results in chromosome end fusions
and genomic instability (5, 6)) and, second, regulation of the
recruitment of telomerase (the catalytic reverse transcriptase
that synthesizes telomeres) to telomere ends to maintain the

length of telomeres (7–9). The involvement of telomeres in
cellular homeostasis, aging, and disease risk (10–12); initia-
tion and progression of cancer (13–15); and variation of telo-
mere length, during evolution and in different species
(16–18), have been extensively reviewed (12).
Relatively recent work shows association of shelterin pro-

teins outside telomeres across the genome (19–21), suggesting
functions that are extra-telomeric, or beyond telomeres. Extra-
telomeric functions include how telomeres influence gene
expression in the subtelomeric regions (;10 Mb from telo-
meres (22, 23)), telomere length–dependent transcriptional ac-
tivity, and epigenetic modifications at sites distant from telo-
meres (24). In addition, a large body of work suggests a role of
telomeres, particularly telomere length, in self-renewal or pluri-
potency (25–28) (Table 1). Herein, we discuss literature that
potentially bridges these two developing aspects, keeping in
mind aging-related disorders that involve premature differen-
tiation of stem cells (29).

Telomeres: Gene regulation, epigenetics, and genome
organization

The role of telomeres in gene regulation first came to light in
1990. Gottschling et al. (30) noted heritable silencing of trans-
genes inserted within 4 kb from telomeric ends in yeast cells
and reported this to be due to telomere position effect (TPE).
Several years later, TPE was observed at chromosome 22 telo-
mere in human lymphoblastoid cell lines (31). Extensive
research followed to understand the TPE-related silencing of
genes in subtelomeric regions of fungi and other organisms,
such as Trypanosoma brucei, Plasmodium falciparum, Schizo-
saccharomyces pombe, Drosophila melanogaster, Pneumocystis
carinii, and Candida glabrata (32). It was also observed that
genes (e.g. ISG15, DSP, and C1S) positioned ;10 Mb further
from telomeres than found in TPE were down-regulated
through physical association of telomeres. This was denoted as
TPE-over long distance (TPE-OLD), which involves the long
telomeres looping back to the chromatin, causing gene repres-
sion and shortening of telomeres, dissociating the loop leading
to gene activation (Fig. 1) (22). Recent work shows telomerase
reverse transcriptase gene hTERT is also regulated by TPE-
OLD (33). TPE or TPE-OLD has been implicated in disorders
such as idiopathic mental retardation, ring chromosome 17,
and facio-scapulo-humeral dystrophy (32–34).
Recent findings show that telomere length influences tran-
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demonstrated that this was because TRF2 binding across the
genome (i.e. extra-telomeric sites) depended on telomere
length—and TRF2 occupancy at promoters affected expression
of target genes (24). TRF2 is known to bind to the G-rich
TTAGGG motif present as repeats at the telomeres (35).
Therefore, in human cells with elongated telomeres (i.e.
increased number of TTAGGG repeats), telomeric TRF2 bind-
ing was enhanced as expected. On the other hand, extra-telo-
meric TRF2 binding was reduced relative to cells with shorter
telomeres (with isogenic background) (24). TRF2 levels in the
nucleus, however, remained unaltered in cells with long or
short telomeres, consistent with a previous report showing rel-
atively unchanged abundance of nuclear TRF2 in different
types of cells with short/long telomeres (36). Based on this, it
was postulated that redistribution of TRF2 binding between
telomeric and extra-telomeric sites occurs as telomeres elon-
gate (24). This is denoted as the telomere sequestration and
partitioning (TSP) model, which describes altered extra-telo-
meric TRF2 binding in long/short telomeres resulting in differ-
ential expression of TRF2-target promoters (Fig. 2). Moreover,
altered epigenetic state of the TRF2-target promoters (e.g.
modification of histone activation (H3K4Me1 and H3K4Me3)
and suppression (H3K27Me3) marks) was evident (24).
Notable in this context are observations of extra-telomeric

binding of TRF2 and/or TRF1 constituting 50 TRF2 (20) and 68
sites common to TRF1/TRF2, respectively (21). A majority of
the extra-telomeric sites constituted telomere-like TTAGGG
sequences and are therefore called interstitial telomeric se-
quence. Recent work, however, has revealed more extensive
binding of TRF2 across the genome, with more than 20,000

sites fromTRF2 ChIP-Seq in HT1080 fibrosarcoma cells. These
interstitial TRF2 binding sites comprised G-rich repeat sequen-
ces, including interstitial telomeric sequence (37). In addition,
;12,500 TRF2 peaks mapped within 20 kb of transcription
start sites. Several of these promoters were tested and found to
be epigenetically modified, and transcriptionally regulated, in a
TRF2-dependent way (37).
Nucleosomes, the basic units of chromatin packaging in cells,

comprise a complex of H2A, H2B, H3, and H4 histone proteins.
Modifications (e.g. methylation or acetylation) of histone pro-
teins are therefore closely related to how chromatin is pack-
aged. These are known as epigenetic modifications that can
impact gene regulation. Short telomeres, and consequent DNA
damage, were noted to result in reduced histone biosynthesis
(38, 39), affecting the state of chromatin.
Several studies further show shortened telomeres to be

associated with genome-wide altered DNA methylation, nu-
cleosome positioning, and histone modifications (reviewed in
Ref. 40). Similar observations were also made during stem
cell pluripotency, cell senescence, and cancer cell differentia-
tion (41, 42).
Another line of investigation implicated the shelterin fac-

tor RAP1 more directly. On telomere shortening RAP1 was
found to affect nucleosome occupancy, down-regulate his-
tone genes, and increase expression of senescence-associated
genes (40, 41, 43, 44). Together, these suggest a broader role
of telomeres, particularly short telomeres, in the epigenetic
state of the genome.

Figure 1. TPE-OLD. Physical association of relatively long telomeres by loop-
ing to the subtelomeric regions results in transcriptional repression of genes
located in the subtelomeres. In relatively short telomeres, the looping is lost,
and genes become transcriptionally active. Figure 2. TSP. The model implies partitioning of TRF2 between telomeric

and extra-telomeric sites. Longer telomeres sequester more TRF2, thereby
depleting TRF2 binding at extra-telomeric sites. Conversely, when telomeres
shorten, an increase in TRF2 binding at promoters influences TRF2-mediated
chromatinmodifications and transcription.

Table 1
Diverse functions of shelterin proteins

Shelterins
Telomeric DNA

binding
Chromatin
organization

Gene
regulation

Maintenance of the
dedifferentiated state

Cancer stem
cell References

TRF1 dsDNA � � � � 4, 55–57, 86, 96, 97
TRF2 dsDNA � � � � 4, 24, 58–62, 76, 77, 98–106
RAP1 � � � � � 4, 19, 46–52
POT1 ssDNA � � � � 4, 109, 110
TIN2 � � � � � 4, 53, 54
TPP1 � � � � � 4, 107, 108
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Functions of shelterin proteins independent of
chromosome-end protection

In 2010,Martinez et al. (19) found extra-telomeric binding of
RAP1 to the TTAGGGTTAGGG consensusmotif in mice; 70%
of RAP1 binding was intragenic or proximal to coding regions.
Based on this, they described potential RAP1 target genes in
the mouse genome. In RAP1-deficient mice, about one-third of
the deregulated genes were noted to be RAP1 target genes,
implicating RAP1-mediated gene regulation. In a later report,
genome-wide RAP1 ChIP-Seq in telomerase-deficient mice
showed altered RAP1 binding on telomere shortening (45).
Further, 63 genes in the human genome were reported to have
RAP1 occupancy (20).
It was reported that RAP1 interacted with the IkB kinase,

a function not expected of shelterin. This resulted in activa-
tion of NF-kB, leading to up-regulation of NF-kB target
genes (46). It was therefore postulated that expression of
NF-kB targets might be telomere length–dependent (Fig. 3)
(47) (Table 1).
Extra-telomeric function of RAP1 was also noted in positive

regulation of PPARa and PGC1a genes in mice, which affected
cellular metabolism related to obesity (48, 49). RAP1 interac-
tion with other co-factors was also reported in mesenchymal
stem cell–based therapy for myocardial infarction and inflam-
mation-dependent disorders (50, 51). Recently, Zhang et al.
(52) observed another key function of RAP1 in epigenetic regu-
lation of the RELN promoter in hematopoiesis (Table 1). To-
gether, these show RAP1 functions that are clearly independent
of its canonical role in the protection of telomeres.
Noncanonical extra-telomeric function was also observed

for another shelterin protein, TIN2. A truncated isoform of
TIN2, hTIN2S, was found to localize outside telomeres and
affect heterochromatin organization (53). However, in cells
with elongated telomeres, the dual localization was lost, such
that hTIN2S redistributed from nontelomeric chromatin to
telomeres exclusively. This is consistent with the TSP model
described above (Fig. 2), where redistribution of a shelterin pro-
tein with change in telomere length would be expected. TIN2
was also shown to localize to mitochondria and regulate oxi-

dative phosphorylation and glucose metabolism (Fig. 3) (54)
(Table 1).
Noncanonical function of TRF1 was noted in phosphoryla-

tion of nontelomeric TRF1 by Aurora-A, which resulted in mi-
totic abnormality (55). This was also suggested by the role of
TRF1 in chromosome segregation by positively regulating Au-
rora-B’s centromeric function (56). Further, a crystallographic
study showed that TRF1 interacts with TERB1, crucial for X-Y
chromosome pairing, duringmeiosis (57) (Table 1).
A telomere-independent role(s) was also reported for TRF2

in the transcriptional activation of HS3ST4 (58) and PDGFRb
(59) and repression of the cell cycle–dependent kinase inhibi-
tor CDKN1A (p21) (60). TRF2 was further found to associate
with core histone proteins (61, 62), including the RE-1–
silencing factor (REST) repressor complex (60). In addition
to these, a role of telomere-independent TRF2 was reported
in natural killer cell activation, angiogenesis, and intrinsic
aspects like nucleosome formation and chromatin compac-
tion (63) (Table 1).
As discussed above, recent work also showed TRF2-medi-

ated regulation of genes spread across the genome. This
involved interaction of TRF2 with DNA secondary structures
called G-quadruplexes within promoters (37). It is important to
mention here that sequences with potential to form G-quadru-
plex structures are enriched in regulatory regions throughout
the genome across genera (64–69), and evidence suggests that
G-quadruplexes might influence local epigenetic modifications
(70–72).

Telomeres in 3D—correlation of telomere architecture and
cell state

Telomeres are known to be organized within the nuclear ma-
trix through interactions with lamin. Further telomeric associa-
tion with distant parts of chromatin by looping are also known.
Several studies show that these three-dimensional associations
(i.e. nonlocal or extra-telomeric interactions) can impact cellu-
lar functions.
Early work from the Blackburn group (73) found telomeres

to be motile with rapid motions of the telomere ends within the

Figure 3. Extra-telomeric functions of shelterin proteins independent of telomeres. Examples of noncanonical function(s) of shelterin proteins are
shown. Extra-telomeric binding of TRF2 to G-quadruplex–forming sequences across the genome induces epigenetic and transcriptional changes. NF-kB sig-
naling is modulated through the shelterin factor RAP1: telomere-independent interaction of RAP1 with the IKK complex results in phosphorylation of the NF-
kB p65 subunit, leading to activation of NF-kB target gene(s). Mitochondrial localization of TIN2, another shelterin protein, was reported to negatively regulate
oxidative phosphorylation.
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nucleus.Moreover, individual telomeres in a nucleus showed het-
erogeneity in motility. Relatively short uncapped telomeres in
cancer cells had more motility than cells with long telomeres,
possibly due to untethering of telomeres from the nuclear matrix
(73–75). Furthermore, TRF2 association with lamin A/C proteins
was observed to promote physical association of telomeres with
interstitial chromatin through looping (76, 77) (Table 1).
Telomere-associated change in chromatin organization was

noticed in other cell types also. A study in 2014 reported altered
3D telomeric architecture in buccal cells derived from Alzhei-
mer’s disease (AD) patients of mild, moderate, and extreme pa-
thology using three-dimensional (3D) microscopy and quanti-
tative fluorescence in situ hybridization. Telomere aggregates
and overall numbers increased in mild to severe AD along with
a decrease in telomere length (78). A follow-up study of the
same parameters between AD and control group buccal cell
samples found similar results (79).
Tichy et al. (80) reported altered telomere length and incon-

sistency in telomeric foci in the muscle stem cells of Duchenne
muscular dystrophy patients when compared with the control
group. On the other hand, muscle-stem cell telomere length
remained unchanged between young and old healthy mice (80).
This was similar to what was previously noted for humans and
macaques (81), although mouse somatic tissues have longer
telomeres and higher telomerase activity than humans and
other primates.
Similar observations were noted in other cases. For example,

esophageal squamous cell carcinoma cells have altered 3D telo-
mere organization compared with normal epithelial cells from
the same patient with relatively long telomeres (82), and thyro-
spheres constituting stem cells from four subgroups of papillary
thyroid carcinoma patients were found to have telomeric local-
ization that was unique for each subgroup (83).
These data, describing studies of telomere-dependent gene

expression and chromatin folding mediated through telomeres
or telomere-associated factors, provide a clear view of how
extra-telomeric functions may contribute to the role of telo-
meres in basic biological processes. Now we turn to the func-
tions and implications of telomeres in integrated systems dur-
ing health and disease.

Telomeres in cellular pluripotency and “stemness”—
emerging observations

Induced pluripotent stem cells (iPSCs) have rapidly gained
significance in basic and applied biological sciences (84) and
serve as a facile model system for cellular differentiation and de-
velopment. The important role of telomere elongation and ho-
meostasis in formation/maintenance of iPSCs, including their
implications in aging, is known (25, 85). In the following sections,
we discuss the importance of telomeres in self-renewal and chro-
mosome stability in iPSCs and consider emerging literature on
how extra-telomeric function of telomere-associated factors
might influence pluripotency.

Telomere elongation and pluripotency

The presence of relatively long telomeres has been generally
observed in pluripotent cells. For example, reprogramed iPSCs

obtained from mice showed elongated telomeres in the pluri-
potent cells (86); iPSCs generated from dyskeratosis congenita
patient samples had relatively long telomeres (87), and human
fibroblast TIG-1 cells reprogrammed to iPSCs, telomeres
increased from 6 to 8 Kb (88). Similarly, in many cancers like
liposarcoma, hepatocellular carcinoma, and in pliocytic astro-
cytoma, elongated telomeres were noted in the dedifferentiated
or pluripotent cells (89–91).
Consistent with this, shortening of telomeres was associated

with differentiation. Telomere attrition was associated with
loss of stemness markers in cardiac progenitor cells isolated
from adult human heart failure cases (92); unstable differentia-
tion was observed in ESCs with telomere dysfunction because
of critically shorter telomeres (41); regenerative capacity of
stem cells declined because of progressive telomere attrition in
aging cells (93); and reduced proliferation and differentiation to
osteoblasts was observed in mesenchymal stromal cells isolated
from adults compared with those isolated from children, sug-
gesting the impact of telomere attrition (94). On the other
hand, longer life span was observed in cells that differentiated
from human ESCs possessing relatively long telomeres (28) and
cardiomyocytes differentiated with improved efficacy from
iPSCs that had relatively long telomeres (26).
Furthermore, impaired differentiation due to poor telomere

maintenance was observed in keratinocytes (27), and telomere
elongation was found to be key for telomere length homeostasis
in mouse embryonic stem cells (95). Together, these studies
show the importance of telomere length maintenance in stem
cells and how telomere shortening or attrition (with aging)
impacts differentiation (Fig. 4).

Role of telomere-associated factors in pluripotency or
“stemness” and disease

The pluripotency factor Oct3/4 was reported to positively
regulate TRF1 during the induction and maintenance of pluri-
potency (96). Consistent with this, TRF1 was observed to be
up-regulated in ESCs and iPSCs (82, 92), and in the presence
of the small molecule ETP-47037, which inhibits TRF1,

Figure 4. Role of telomeres in stem cell homeostasis. Importance of telo-
mere length in maintaining stemness. Stem cells with relatively long telo-
meres are reported to retain stemness, whereas reduction of telomere length
is generally observed during differentiation and/or in differentiated cells.
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reprograming efficiency in mice was reduced (86). Moreover,
increase in TRF1 expression was observed during in vitro deri-
vation of ESCs from the inner cell mass (97) (Table 1).
Several reports implicated TRF2 in pluripotency. Self-

renewal and maintenance potential was perturbed when TRF2
was deleted in alveolar stem cells (98), and human mesenchy-
mal stem cells showed increased sensitivity to irradiation when
TRF2 was knocked down (99, 100). Further, in TRF2-null mice,
terminal differentiation was triggered during skin carcinogene-
sis (101), and increase in TRF2 was implicated in aggressive
proliferation of liver cancer stem cells (102).
In the above studies, it was not clear whether the function of

TRF2 was involved as a telomeric and/or extra-telomeric fac-
tor. However, we noted further work suggesting extra-telo-
meric function of TRF2 in stemness. This includes nuclear
interaction of TRF2 with REST, which was reported to be im-
portant in maintenance of the neural stem cell population (103,
104). Further, TRF2 depletion resulted in reduced proliferation
and enhanced differentiation of glioblastoma stem cells due to
both telomeric dysfunction and loss of REST-mediated repres-
sion (105), and silencing of TRF2 resulted in the reduction of
the Yamanaka factors in oral cancer stem cells (106) (Table 1).
In addition to these, computational modeling indicated high
binding affinity of TRF2 to the stem-cell factor KLF4 (106).
TPP1-mediated recruitment of the reverse transcriptase

telomerase (TERT) for telomere elongation was observed.
Here, abrogation of TPP1 affected the reprograming of mouse
embryonic fibroblasts (107). Later TPP1 was also shown to be
important in maintaining the length of telomeres in human
ESCs (108).
Depletion of POT1, on the other hand, triggered DNA dam-

age response and thereby telomeric dysfunction, resulting in
reduced survival of hematopoietic stem cells (HSCs) and bone
marrow failure that mimicked the phenotypes of dyskeratosis
congenita (109). Exogenous expression of POT1 induced self-
renewal of humanHSCs by inhibiting generation of reactive ox-
ygen species (Table 1) (110). In addition, POT1-mediated met-
abolic control and transcriptional regulation in HSCs was
shown (111). Together, these implicate extra-telomeric func-
tions of POT1 in pluripotency.
Furthermore, mutations within shelterin genes were found

to be associated with hematological malignancies due to telo-
mere deprotection, showing the importance of the shelterin
factors in hematopoiesis and self-renewal (111).
The role of the noncoding RNA transcribed from telomeres

called telomeric repeat–containing RNA (TERRA) in pluripo-
tency is also notable. TERRA was found to be overexpressed
and contributed to the self-renewal of mesenchymal stem cells
(112). In addition, decline in TERRA resulted in differentiation,
and overexpression resulted in rescue of the self-renewal activ-
ity (112). TERRA foci formation (i.e. clustered presence of
TERRA molecules as seen in microscopy) due to elevated
expression and aggregation of TERRA was reported to occur in
both developing cerebellar neural progenitors and medullo-
blastoma (113). A more recent study showed how TERRA
through a TRF1-dependent mode regulates the transcriptional
state of ESCs such that a naive state is maintained (114).

Decrease in telomere length with age and associated telo-
mere dysfunction contributes to initiation and progress of can-
cer (10, 115). It is also widely known that in more than 90% of
human cancers, telomerase (hTERT)—the enzyme necessary
for telomere synthesis—is reactivated, and as a result telomeres
are maintained, unlike in normal adult somatic cells (12). How-
ever, despite reactivation, most cancer cells and cancer stem
cells have shorter telomeres than surrounding normal cells (12,
116, 117).
Expression of hTERT was shown to involve TPE-OLD (33).

In normal cells, the chromosome 5p telomere folds backs and
associates with the hTERT loci ;1.3 Mb away. Kim et al. (33)
concluded that through this interaction telomeric TRF2 associ-
ates with the hTERT promoter. Further, the TRF2 interaction
was lost in cells with relatively short telomeres where the telo-
meric loop was unable to form (33). Loss of TRF2 from the
hTERT promoter correlated with increased hTERT expression.
However, it was not clear whether this involved TRF2-medi-
ated regulation or was a result of telomere-induced gene silenc-
ing as noted for several genes in earlier studies (22, 30).
More recent work, on the other hand, suggested that hTERT

regulation is under direct transcriptional control of TRF2
(118). Here, TRF2 presence on the hTERT promoter was inde-
pendent of telomeres (i.e. there was involvement of extra-telo-
meric TRF2). This was also clear from TRF2 occupancy at the
exogenously inserted hTERT promoter ;46 Mb away from
telomeres (118)—where looping due to physical proximity like
the 5p telomere end was unlikely. Together, these leads suggest
the involvement of the TSP model discussed above in hTERT
regulation, where the presence of extra-telomeric TRF2 on the
hTERT promoter is of interest and depends on how much
TRF2 is free or sequestered at the telomere ends.
How might aspects of extra-telomeric biology impact stem

cells? Stem cells, that replenish “worn out” cells, undergo telo-
mere shortening, as reviewed earlier (112, 113), suggesting that
many of the mechanisms described above could be in play. It
must be mentioned here that although the literature suggests a
potential role of extra-telomeric function(s) in pluripotency/
stemness, evidence supporting direct causal links remains to be
established to the best of our knowledge.
The platelet-derived growth factor receptor (PDGFR) was

found to be significantly abrogated in the myocardium of peo-
ple with increasing age, suggesting the role of PDGFR signaling
in cardiomyocyte regeneration and proliferation (119). This
was consistent with the telomere length–dependent differen-
tiation of cardiomyocytes observed frequently (reviewed in Ref.
26). As mentioned above, PDGFR-b is a transcriptional target
of extra-telomeric TRF2 (59). Furthermore, it was demon-
strated that PDGFR-b is regulated epigenetically by TRF2 in a
telomere length-dependent fashion (24). Therefore, it is likely
that regulation of PDGFR-b by extra-telomeric TRF2, which
depends on telomere length (24) (described above as TSP),
plays a more direct role in telomere-dependent cardiomyocyte
differentiation described above.
A recent study demonstrated the increased expression of

genes related to neurogenesis and neuronal maturation in spo-
radic Alzheimer’s disease, suggesting a potential link between
neuronal differentiation and this debilitating neurodegenerative
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disease (29). Telomere shortening, a hallmark of aging, is also
widely observed in neurodegenerative diseases like AD (119,
120, 122). Like the other cell types discussed above, short telo-
meres affect the proliferative capacity of neural stem cells and
reduce the self-renewal potential of progenitors required for
normal adult neurogenesis (123). Could a telomere function,
and particularly an extra-telomeric function, serve as a molecu-
lar trigger underlying the pathophysiology of the disease (124)?
The recent study on pathophysiology in AD also showed that

accelerated differentiation of neural stem cells in AD was asso-
ciated with deregulated levels of REST (29). Notably, earlier
work had reported that extra-telomeric TRF2-mediated stabili-
zation of REST was critical for neuronal differentiation (125).
Furthermore, recent findings showed that REST binding to
nontelomeric chromatin was also dependent on extra-telo-
meric TRF2 (60). As described above, in TSP (Fig. 2), the pres-
ence of extra-telomeric TRF2 depends on telomere length.
Therefore, these findings suggest a direct causal link between
telomere length, extra-telomeric TRF2, and REST in neural
stem cells, which might be key to neuronal differentiation. It
will be fascinating to determine whether cellular renewal,
rather than the more canonical aggregation hypothesis, might
play a driving role in this and other degenerative diseases.

Conclusions and future perspectives

The notion that telomeres influence function beyond chro-
mosome ends is relatively recent. Findings from many research
groups, including ours, reveal this to be through two primary
modes: (a) physical looping of telomeres (mostly within subte-
lomeric regions) (22) or (b) extra-telomeric function of shel-
terin factor(s) (37, 47, 54), which in the case of TRF2 depends
on telomere length, as described above in the TSP model (Fig.
2) (24). The role of telomeres, particularly telomere length, has
been observed closely during both pluripotency and stem cell
differentiation. However, the underlying molecular processes
that link telomeres to pluripotency are only beginning to
emerge.
Notably, recent work has shown that TRF2 binding through-

out the genome results in epigenetic modifications. Further,
this depends on telomere length (24). Together, these findings
contribute to a new understanding of telomeric factors. More-
over, these data suggest that a novel set of protein-protein
interactions are possibly induced instead of the canonical shel-
terin complex at telomeres. It will be interesting to explore how
these interactions with TRF2 and other telomeric factors are
regulated (e.g. with distinct post-translational modifications
that direct nontelomeric binding).
Based on RAP1 and NF-kB interactions (46), association of

telomeric factors with proteins independent of DNA binding is
another molecular aspect that might be worthwhile to study.
Contextually, whether other telomeric factors associate with
nuclear or cytoplasmic factors—and how such interactions are
affected as telomere length changes—would be of interest.
Telomerase—the only protein that synthesizes telomeres—is

overexpressed in most cancers. Recent findings suggest that
telomeres exert control over telomerase through telomeric or
extra-telomeric mechanisms (33, 118). Teasing out molecular

details of these controls, including whether and how the TSP
model might be involved in telomere-dependent control of
telomerase, remains to be studied in further detail, considering
its broad and significant implications.
Taken together, these new aspects of extra-telomeric biol-

ogy—dependent on telomere length (and thereby aging)—
may reveal a novel understanding of the molecular processes
underlying pluripotency. Moreover, whether and how, par-
ticularly in what context, premature differentiation is linked
to aging through telomeres would be of interest in improving
our understanding of diseases associated with aging.
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