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Abstract In this paper, we study the dynamics of
an infectious disease in the presence of a continuous-
imperfect vaccine and latent period.We consider a gen-
eral incidence rate function with a non-monotonicity
property to interpret the psychological effect in the sus-
ceptible population. After we propose the model, we
provide the well-posedness property and calculate the
effective reproduction number RE . Then, we obtain
the threshold dynamics of the system with respect to
RE by studying the global stability of the disease-free
equilibrium when RE < 1 and the system persistence
whenRE > 1. For the endemic equilibrium,we use the
semi-discretization method to analyze its linear stabil-
ity. Then, we discuss the critical vaccination coverage
rate that is required to eliminate the disease. Numeri-
cal simulations are provided to implement a case study
regarding data of influenza patients, study the local and
global sensitivity of RE < 1, construct approximate
stability charts for the endemic equilibrium over dif-
ferent parameter spaces and explore the sensitivity of
the proposed model solutions.
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1 Introduction

In 1979, Cooke introduced a “time delay” to rep-
resent the disease incubation period in studying the
spread of an infectious disease transmitted by a vec-
tor in [1]. Since then, many authors have incorporated
time delays in epidemic models in different scenarios,
such as vaccination period [2], asymptomatic carriage
period [3], immune period [4] and incubation period
or latent period [3–7]. More precisely, in [3], a disease
transmission model with two delays in incubation and
asymptomatic carriage periods is investigated. In [4],
the authors study an SEIRS epidemic model with con-
stant latent and immune periods. In [5], a latent period
and relapse are considered in a general mathemati-
cal model for disease transmission. In [7], the authors
studied a time-delayed SIR model with nonlinear inci-
dence rate and Holling functional type II treatment rate
for epidemic transmission. Also, many authors stud-
ied time-delayed epidemicmodelswith vaccination [8–
11]. For example, the authors in [9] study a vaccination
model with a time delay to represent the time that an
unaware susceptible individual takes to become aware
of the infection. Due to the inherent complexity of
epidemiological transmission, other works studied epi-
demic complex network models. For example, in [12],
the authors studied a semi-random epidemic network
and discussed the relationship between its topological
structure and the optimal control of the epidemic. In
[13], the authors used the concept of epidemiology to
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analyze data from real computer virus epidemics by
using complex network models. They studied an SIS
model on scale-free graphs by largescale simulations
and analytical methods.

Vaccines are considered to be one of themost signif-
icant medical means of disease control and prevention
[14]. They have played a major role in the spread and
eradication of many infectious diseases, such as small-
pox, or partially, like measles. Many authors in the lit-
erature have studied the dynamics of epidemics models
with different types of vaccination schedules [15–19].
For instance, in [16], an SIR model with a generalized
incidence under preventive vaccination and treatment
controls is proposed. In [20], the authors developed an
SIVSepidemicmodelwith degree-related transmission
rates and imperfect vaccination on scale-free networks.
In [17], the authors establish two SVIR models: one
with continuous vaccination strategy and another one
with pulse vaccination strategy. An epidemic model to
study the potential impact of a SARS vaccine when it is
imperfect is proposed in [18]. The dynamics of cholera
epidemicswith impulsive vaccination is studied in [15].

To incorporate the effect of behavioral changes on
the disease spreading dynamics, the authors in [21]
introduce a nonlinear incidence rate of the form

Sg(I ) = βSI q1

1 + d I q2
(1)

where S and I represent the numbers of susceptible
and infectious individuals, respectively, β is the proba-
bility of transmission per contact per unit time, and the
constantq1 is positivewhile the constantsq2, d are non-
negative. Here, the constant d measures the inhibitory
effect. In (1), β I q1 measures the infection force of the
disease and 1/(1+d I q2) represents the inhibition effect
from the behavioral change of the susceptible individu-
als when the number of infectious individuals increase
[22]. It also can be used to describe the crowding effect
of infectious individuals [23]. There are three types of
incidence functions g(I ) = β I q1/(1+ d I q2) based on
the values of q1 and q2 [22,24]: (i) unbounded inci-
dence function: q1 > q2; (ii) saturated incidence func-
tion: q1 = q2; and (iii) nonmonotone incidence func-
tion: q1 < q2. In the literature, these types have been
used in different scenarios. For example, the authors in
[22] consider a nonmonotone incidence rate to repre-
sent the psychological effect with q1 = 1 and q2 = 2.
In [23], a saturated incidence rate is considered with
q1 = q2 = 2. For more details and examples, we

refer the reader to [24] and references within. In this
paper, we consider a general form of an nonmonotone
infection force function g(I ), in the sense that g(I )
is increasing when the population of infectious I is
small and decreasing when I is large. From a biolog-
ical point of view, this can be interpreted as the “psy-
chological effect”, that is, when a disease is spread-
ing among a population and the number of infective
individuals becomes large, the behavior of the popula-
tion may tend toward reducing the number of contacts
among individuals per unit time [22].

In the real world, the latent period may vary from
days, as in influenza AH1N1 [25], to years, as in AIDS
[26]. The latent period has a profound effect on the
generation time, which is defined as the time period
between a case becoming infected and its subsequent
infection of another case [27]. Thus, the latent period
has an influence on the epidemic growth [28]. The
purpose of the work is to investigate the dynamical
behavior of a time-delayed SEIR model with contin-
uous imperfect-vaccine and discuss the effect of the
latent period on the epidemic. The paper is organized
as follows. In the next section, we present the mathe-
matical model and the study its well-posedness. Then,
in Sect. 3, we calculate the effective reproduction num-
berRE . In Sect. 4, we use various methods, such as the
Lyapunov functional technique and the method of fluc-
tuations, to establish the global stability of the disease-
free equilibrium when RE < 1. Then, in Sect. 5, we
study the system persistence when RE > 1. More-
over, we use the semi-discretization method of order
one to study the local stability of endemic equilibrium.
In Sect. 6, we discuss the critical vaccination cover-
age that is required to eliminate the disease. In Sect. 7,
we consider an application to influenza transmission.
Numerically, we also study the local and global sen-
sitivities of RE , discuss the stability of the endemic
equilibrium and examine the sensitivity of model solu-
tions. Finally, we discuss our results in Sect. 8.

2 Mathematical model and the well-posedness
property

Motivated by [29], we let N (t) be the total popula-
tion at time t and divide it into five classes: S(t) is the
susceptible population, V (t) is the population of vacci-
nated individuals, E(t) is the population of individuals
who are infected but not yet infectious (exposed class),
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I (t) is the infected population and R(t) is the recov-
ered population. We assume there is a recruitment rate
into the population and the natural death rate is the
same for all the compartments. We make the following
assumptions to describe the interaction among the five
classes:

• When the susceptible individuals receive a vaccine,
they move from class S to V . On the other side, the
infected individuals in S move to the exposed class
E with transmission rate β and remain there for a
certain latent period τ (see e.g., [30]);

• The vaccine is not perfect, in the sense that, the indi-
viduals in V are not on a fully protective level. Con-
sequently, when the vaccinated individuals become
infected, they move into E for τ period with a
reduced transmission rate ξβ, where ξ ∈ [0, 1]
is the reduction coefficient [30]. When individuals
gain immunity, they move into the class R [17];

• After the latent period τ , infected individuals
become infectious and move from E to I . Then
when they recover, they move to R. Individuals in
R may lose immunity at rate α and become suscep-
tible again, that is, they move to the class S (i.e.,
the vaccine is continuous).

These assumptions lead to the following system of
delay differential equations:

dS

dt
= � − βS(t)I (t)

f (I (t))
− (μ + ψ) S(t) + αR(t),

dV

dt
= ψS(t) − ξβV (t)I (t)

f (I (t))
− (μ + η)V (t),

dE

dt
= β(S(t) + ξV (t))I (t)

f (I (t))

− β(S(t − τ) + ξV (t − τ))I (t − τ)

f (I (t − τ))
e−τμ

− μE(t),

dI

dt
= β(S(t − τ) + ξV (t − τ))I (t − τ)

f (I (t − τ))
e−μτ

− (μ + γ )I (t),

dR

dt
= ηV (t) + γ I (t) − (μ + α)R(t).

(2)

The term e−μτ represents the probability for individu-
als to survive the latent period [t − τ, t], see e.g., [3].
The population flux among the five compartments is
given in Fig. 1 and a description of the parameters is
given in Table 1.

Fig. 1 The flow diagram for system (2)

Table 1 Parameter description of the system (2)

Parameter Description

� Recruitment rate of susceptible humans

β Effective contact rate

ψ Vaccination coverage rate

μ Natural mortality rate

α Loosing immunity

ξ The vaccine efficacy is ε = 1 − ξ

1/η The immunity development period

τ Latent period

γ Recovery rate

Denote the infection force function by β I/ f (I ).
Following [16,31], we assume that the infection force
function decreases when the number of infectious indi-
viduals increases since the individuals tend to reduce
the number of contacts among them per unit time when
they are under intervention policies. Consequently, we
consider the following assumptions:

f (0) = 1 and
d f (I )

d I
> 0 forI > 0; (Q1)

There is a ζ > 0 such that
d

dI

(
I

f (I )

)
> 0 for (Q2)

0 < I < ζ and
d

dI

(
I

f (I )

)
< 0 for I > ζ.

Here, ζ is the critical level of invectives, that is, the
incidence rate is increasing when I ∈ (0, ζ ] and it
is decreasing when I > ζ . Notice that the nonlinear
incidence rate has the form β(S+ξV )I

f (I ) .
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Consider the Banach space C := C([−τ, 0),R5)

with the maximum norm

‖φ‖ =
5∑

i=1

(
max

θ∈[−τ,0]
|φi (θ)|

)
,

∀φ = (φ1, φ2, φ3, φ4, φ5) ∈ C.

Then C+ := C([−τ, 0],R5+) is a normal cone of C
and the interior of C is not empty. Let r > 0 and u =
(u1, u2, u3, u4, u5) : [−τ, r) → R

5 be a continuous
function. For t ≥ 0, define ut ∈ C by ut (θ) = (u1(t +
θ), u2(t + θ), u3(t + θ), u4(t + θ), u5(t + θ)) for all
θ ∈ [−τ, 0].
The initial data set for system (2) is in form:

X = {
φ ∈ C+ : φ3(0)

=
0∫

−τ

(
βφ3(s)(φ1(s) + ξφ4(s))

f (φ3(s))
eμs

)
ds

⎫⎬
⎭

where the form forφ3(0) follows from the implicit solu-
tion of E(t) in system (2) which has form:

E(t) =
t∫

t−τ

(
β I (θ)(S(θ) + ξV (θ))

f (I (θ))
e−μ(t−θ)

)
dθ. (3)

The following theorem shows the nonnegativity and
boundedness of system (2).

Theorem 2.1 Let φ ∈ X. Then, system (2) has
an ultimately bounded unique non-negative solution
(S(t), V (t) , E(t), I (t), R(t)) for t ≥ 0 in C. Further-
more, the region

� =
{
(S(t), V (t), E(t), I (t), R(t)) ∈ R

5+ :

S(t) + V (t) + E(t) + I (t) + R(t) = �

μ

}

is a positive invariant set and globally attractive set for
(2).

Proof For anyφ ∈ X,wedefineG(φ) = (G1(φ),G2(φ)

,G3(φ),G4(φ),G5(φ))T , where

G1(φ) = � − β
φ1(0)φ4(0)

f (φ4(0))
−(μ + ψ)φ1(0) + αφ5(0),

G2(φ) = ψφ1(0) − βξ
φ2(0)φ4(0)

f (φ4(0))
− (μ + η)φ2(0),

G3(φ) = β
(φ1(0) + ξφ2(0)) φ4(0)

f (φ4(0))

−β
(φ1(−τ) + ξφ2(−τ)) φ4(−τ)

f (φ4(−τ))
e−μτ

−μφ3(0),

G4(φ) = β
(φ1(−τ) + ξφ2(−τ)) φ4(−τ)

f (φ4(−τ))
e−μτ

−(μ + γ )φ4(0),

G5(φ) = ηφ2(0) + γφ4(0) − (μ + α)φ5(0)

G(φ) is continuous and Lipschitz in φ in each com-
pact set in R × X because X is closed in C and for
any φ ∈ X. Thus, there is a unique solution u(t, φ) of
system (2) through (0, φ) on its maximal interval [0, r)
of existence [32, Theorem 2.2.3].
Let φ ∈ X, if φ4(0) = 0, then F4(φ) ≥ 0. Conse-
quently, Fi (φ) ≥ 0 when φi (0) = 0 for i = 1, 2, 5.
Hence, it follows from [33, Theorem 5.2.1] that for
i = 1, 2, 4, 5, the solutions S(t), V (t), I (t) and R(t)
are non-negative for all t ∈ [0, r). Consequently, from
(3) we obtain E(t) ≥ 0.
Notice that

dN (t)

dt
= � − μN (t). (4)

Thus, N (t) = �
μ
is globally asymptotically stable on

(4). Hence, by the comparison arguments [34, Lemma
1.2], we have that S(t), V (t), E(t), I (t) and R(t) are
bounded on t ∈ [0, r). Thus, r = ∞ [32, Theorem
2.3.1], and hence, all the solutions are globally and
ultimately bounded.

The general solution of (4) can be written as

N (t) = �

μ
−

(
�

μ
− N (0)

)
e−μt .

Therefore, when N (0) ≤ �
μ
, we have N (t) ≤ �

μ
,

and hence, the set � is positive invariant. Moreover,
if N (0) > �

μ
, then

lim
t→∞ N (t) = �

μ
.

Consequently, the set � is the globally attractive set for
(2). 	


3 The effective reproduction number RE

In system (2), when E(t) = I (t) ≡ 0, the disease-free
equilibrium is E0 = (

S0, V 0, 0, 0, R0
)
always exists
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where

S0 = �(α + μ)(η + μ)

μ (α(η + μ + ψ) + (η + μ)(μ + ψ))
,

V 0 = �ψ(α + μ)

μ (α(η + μ + ψ) + (η + μ)(μ + ψ))
,

R0 = η�ψ

μ (α(η + μ + ψ) + (η + μ)(μ + ψ))
.

(5)

The equations for the diseased classes E and I in the
linearized system of (2) about E0 can be rewritten as

d

dt
Y(t) = M1Y(t − τ) − M2Y(t), (6)

where

Y(t) =
(
E(t)
I (t)

)
, M1 =

(
0 −β(S0 + ξV 0)e−μτ

0 β(S0 + ξV 0)e−μτ

)
,

M2 =
(

μ −β(S0 + ξV 0)

0 γ + μ

)
.

Let Y0 = (y1, y2)T be the number of classes E(t)
and I (t) at t = 0, then from (6) the distribution of the
remaining population of classes E(t) and I (t) at time
t > 0 is

Y(t) = e−M2tY0.

The total number of newly infected individuals is

Ȳ =
∞∫

τ

M1Y(t − τ)dt

=
∞∫

τ

M1e
−M2(t−τ)Y0dt = M1M

−1
2 Y0

due to the nonsingularity of the matrix M2. Then it
follows that, the next infection operator is

M0 = M1M
−1
2 =

⎛
⎝ 0 −β2(S0+ξV 0)

2
e−μτ

γμ+μ2

0 β(S0+ξV 0)e−μτ

γ+μ

⎞
⎠ .

In the literature (see e.g., [35]), the reproduction num-
berRE for system (2) is the spectral radius of thematrix
M0, which is

RE := βS0e−μτ

μ + γ
+ βξV 0e−μτ

μ + γ

= β�(α + μ)(η + μ + ξψ)e−μτ

μ(γ + μ)(α(η + μ + ψ) + (η + μ)(μ + ψ))
.

(7)

Since we introduce a vaccination program in system
(2), RE is called the effective reproduction number

which gives the actual number of secondary infections
per infectious person at any time [16,36]. Biologically,
1

μ+γ
is the time spent as an infectious individual and

e−μτ is the survival rate of infected individual in latent
period. Hence, first\second term ofRE gives the num-
ber of secondary infections of susceptible\vaccinated
individuals that one infected individual can produce in
a disease-free population S0\V 0.

4 Stability of the disease-free equilibrium

WhenRE is less than unity, the epidemiological inter-
pretation is that an epidemic cannot develop and even-
tually the disease dies out. On the other hand, when
RE > 1, the population of infected host grows and an
outbreak occurs. In this section, we establish the global
stability of E0 when RE < 1 .

As we mentioned in Sect. 3, E0 exists for all param-
eters values. The following result indicates the insta-
bility and local stability of E0 in (2). See [35, Theo-
rem 2.1 and Corollary 2.1].

Theorem 4.1 IfRE > 1, the disease-free equilibrium
E0 is unstable for system (2), and it is locally asymp-
totically stable ifRE < 1.

Since the equations of S, V , I and R are decoupled
in (2), it suffices to study the following system:

dS

dt
= � − βS(t)I (t)

f (I (t))
− (μ + ψ) S(t) + αR(t),

dV

dt
= ψS(t) − ξβV (t)I (t)

f (I (t))
− (η + μ)V (t),

dI

dt
= β(S(t − τ) + ξV (t − τ))I (t − τ)

f (I (t − τ))
e−μτ

− (μ + γ )I (t),

dR

dt
= ηV (t) + γ I (t) − (μ + α)R(t),

(8)

with initial data (φ1, φ2, φ4, φ5) ∈ C([−τ, 0],R4+).
To obtain the global stability of E0 in (2), first, we

prove the following results, Theorems 4.2 and 4.3, by
using the Lyapunov functional technique, the method
of fluctuations and the theory of limiting systems and
chain transitive sets.
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Theorem 4.2 Consider the system

dS

dt
= � − (μ + ψ) S(t) + αR(t),

dV

dt
= ψS(t) − (μ + η)V (t),

dR

dt
= ηV (t) − (μ + α)R(t).

(9)

with (S(0), V (0), R(0)) ∈ R
3+ where S(0) = φ1(0),

V (0) = φ2(0) and R(0) = φ5(0). Then, the equilib-
rium point (S0, V 0, R0) is globally attractive in (9),
that is,

lim
t→∞ (S(t), V (t), R(t)) =

(
S0, V 0, R0

)
.

Proof It is easy to check that S0 + V 0 + R0 = �
μ
.

Define a Lyapunov function U := U (S, V, R) as

U = 1

2

(
�

μ
− S − V − R

)2

.

Then, U (S0, V 0, R0) = 0, U (S, V, R) > 0 for
(S, V, R) �= (S0, V 0, R0) and

dU

dt
= −

(
dS

dt
+ dV

dt
+ dR

dt

)(
�

μ
− S − V − R

)

= − (� − μS − μV − μR)

(
�

μ
− S − V − R

)

= −μ

(
�

μ
− S − V − R

)2

≤ 0.

It follows from (9) that the largest invariant set in the set
of dU

dt = 0 is (S0, V 0, R0). By the LaSalle’s invariance
principle [37], (S0, V 0, R0) is globally attractive, that
is,

lim
t→∞ (S(t), V (t), R(t)) =

(
S0, V 0, R0

)
.

	

Theorem 4.3 When RE < 1, then equilibrium point
(S0, V 0, 0, R0) is global attractive in (8) for any
(φ1, φ2, φ4, φ5) ∈ C([−τ, 0],R4+).

Proof Since lim
t→∞ N (t) = �

μ
, we have

R(t) = �

μ
− (S(t) + V (t) + E(t) + I (t))

≤ �

μ
− (S(t) + V (t) + I (t)) .

Now, we show that the limit supremum of I (t) is zero
in (8) as t → ∞ when RE < 1 by using the method
of fluctuations [38,39]. Let

S∞ = lim sup
t→∞

S(t), V∞ = lim sup
t→∞

V (t),

I∞ = lim sup
t→∞

I (t).

Claim 1 When RE < 1, then I∞ = 0 in (8).

For i = 1, 2, 3, there exist three sequences α
(i)
n →

∞ as n → ∞ [39, Lemma 4.2], such that

lim
n→∞ S(α(1)

n ) = S∞ and
dS

dt

∣∣∣∣
t=α

(1)
n

= 0, ∀n ≥ 1,

lim
n→∞ V (α(2)

n ) = V∞ and
dV

dt

∣∣∣∣
t=α

(2)
n

= 0, ∀n ≥ 1.

lim
n→∞ I (α(3)

n ) = I∞ and
dI

dt

∣∣∣∣
t=α

(3)
n

= 0, ∀n ≥ 1.

Hence, when n ≥ 1 and n → ∞, it follows from (8)
that

0 = dS

dt

∣∣∣∣
t=α

(1)
n

= � − βS∞ lim
n→∞

I (α(1)
n )

f (I (α(1)
n ))

− (μ + ψ) S∞ + αR(α(1)
n )

≤ � − (μ + ψ) S∞ + α�

μ

− α
(
S(α(1)

n ) + V (α(1)
n ) + I (α(1)

n )
)

≤ �(μ + α)

μ
− (μ + ψ) S∞.

(10)

Since

(μ + ψ)(μ + η)

α (η + μ + ψ) + (μ + ψ)(μ + η)
< 1

it follows from (10) that S∞ < S0. From the equation
of V in (8), we have

0 = dV

dt

∣∣∣∣
t=α

(2)
n

= ψ lim
n→∞ S(α(2)

n ) − ξβV∞

lim
n→∞

I (α(2)
n )

f (I (α(2)
n ))

− (η + μ)V∞

≤ ψS∞ − (η + μ)V∞.

(11)
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Since V 0 = ψS0

μ+γ
, we have V∞ < V 0. Moreover, the

last equation in (8) leads to

0 = dI

dt

∣∣∣∣
t=α

(3)
n

= β lim
n→∞

(
S(α(3)

n − τ) + ξV (α(3)
n − τ)

)
I∞

f (I∞)
e−μτ − (μ + γ + δ)I∞

≤ β (S∞ + ξV∞) I∞

f (I∞)
e−μτ − (μ + γ + δ)I∞.

(12)

From (Q1), we have 1 = f (0) ≤ f (I∞), and hence,

0 ≤ β
(
S∞ + ξV∞)

I∞e−μτ − (μ + γ + δ)I∞

≤
(
β

(
S0 + ξV 0

)
e−μτ − (μ + γ + δ)

)
I∞.

Thus, 0 ≤ (μ + γ + δ) (RE − 1) I∞. Since RE < 1,
we have RE − 1 < 0, and hence, I∞ = 0 because
I (t) ≥ 0. This proves Claim 1.

It follows from Claim 1 that

lim
t→∞ I (t) = 0

whenRE < 1, and hence, the system (8) is asymptotic
to the limiting system (9).

Recall that (S0, V 0, R0) is globally attractive in the
limiting system (9), seeTheorem4.2. To lift the dynam-
ics of the limiting system (9) to the main system (8),
we use the theory of internally chain transitive sets to
prove

lim
t→∞ (S(t), V (t), I (t)) =

(
S0, V 0, 0

)
.

Let (φ1, φ2, φ4, φ5) ∈ C([−τ, 0],R4+) and ω =
ω(φ1, φ2, φ4, φ5) be the omega limit set for the solu-
tion semi-flow zt (φ1, φ2, φ4, φ5) of (8). Hence, ω is
an internally chain transitive set for zt , see e.g., [35,
Lemma 1.2.1]. Thus, ω = {(S0, V 0)} × ω̂ × {R0} for
some ω̂ ⊂ R. Since zt (ω) = ω, for all t ≥ 0, we have

zt (S
0, V 0, Î , R0) = (S0, V 0, ẑt ( Î ), R

0)

where ẑt is the solution semi-flow associated with the
equation

dI

dt
= β(S0 + ξV 0)I (t − τ))e−μτ

−(μ + γ + δ)I (t). (13)

Notice that ω̂ becomes an internally chain transitive
set for ẑt (ẑt (ω̂) = ω̂) because ω is an internally chain
transitive set for zt .

Claim 2 When RE < 1, then lim
t→∞ I (t) = 0 in (13).

Suppose the solutions of (13) take the form I (t) =
ceλt where λ satisfies the characteristic equation

λ + (μ + γ + δ) − β(S0 + ξV 0)e−μτ e−λτ = 0.

(14)

Assume there exists a zero in (14) with Re(λ) then

|λ + (μ + γ + δ)| =
∣∣∣β(S0 + ξV 0)e−μτ e−λτ

∣∣∣ ⇔∣∣∣∣ λ

μ + γ + δ
+ 1

∣∣∣∣ = |RE | ∣∣e−λτ
∣∣ ,

which is a contradiction because∣∣∣∣ λ

μ + γ + δ
+ 1

∣∣∣∣ > 1 and |RE | ∣∣e−λτ
∣∣ < 1

when RE < 1. Thus, all roots have negative real part.
Therefore, lim

t→∞ I (t) = 0. This proves Claim 2.

LetWs(0) be the stablemanifold of 0, then it follows
from Claim 2 that ω̂ ∩ Ws(0) �= ∅. Hence by [35,
Theorem 1.2.1] we have ω̂ = {0}. Therefore, we have
ω = (S0, V 0, 0, R0), and hence

lim
t→∞ (S(t), V (t), I (t), R(t)) =

(
S0, V 0, 0, R0

)
,

i.e.,
(
S0, V 0, 0, R0

)
is globally attractive in system (8).

	

The following result shows the global stability of E0

for system (2).

Theorem 4.4 WhenRE < 1, the disease-free equilib-
rium E0 is globally asymptotically stable for system (2)
in X .

Proof It follows from Theorem 4.3, the integral form
of E(t) in (3) and the reverse Fatou lemma (see e.g.,
[40]) that

lim sup
t→+∞

E(t)

= lim sup
t→+∞
t∫

t−τ

(
β I (θ)(S(θ) + ξV (θ))

f (I (θ))
e−μ(t−θ)

)
dθ

= lim sup
t→+∞
τ∫

0

(
β I (t − θ)(S(t − θ) + ξV (t − θ))

f (I (t − θ))
e−μθ

)
dθ

≤ lim sup
t→+∞
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τ∫
0

(
β I (t − θ)(S(t − θ) + ξV (t − θ))

f (I (t − θ))

)
dθ

≤
τ∫

0

lim sup
t→+∞

(
β I (t − θ)(S(t − θ) + ξV (t − θ))

f (I (t − θ))

)
dθ

= 0. (15)

Thus, lim
t→∞ E(t) = 0. Hence,

lim
t→∞ (S(t), V (t), E(t), I (t), R(t))

=
(
S0, V 0, 0, 0, R0

)
.

Since E0 is the local stability when RE < 1, see The-
orem 4.1, we obtain that E0 is globally asymptotically
stable in (2) when RE < 1. 	


5 Uniform persistence

In this section, we prove the persistence of system (2)
when RE > 1. Define

X1 := {φ ∈ X : φ4(0) > 0}
∂X1 := {φ ∈ X : φ4(0) = 0} = X\X1.

Here ∂X1 is the set of states without disease presence.
The following results demonstrate the uniform persis-
tence of the disease state in (2) with respect to X1.

Theorem 5.1 If RE > 1, then the disease class I (t)
is uniformly persistent in (2), i.e., there is a positive
number κ1 > 0 such that

lim inf
t→∞ I (t) ≥ κ1

with φ ∈ X1.

Proof Fix a small 0 < σ � 1. Since S(t)+ξV (t)
f (I (t)) →

S0 + ξV 0 as (S, V, I ) → (S0, V 0, 0), in a neighbor-
hood of (S0, V 0, 0), we have

S0 + ξV 0 − σ <
S(t) + ξV (t)

f (I (t))
< S0 + ξV 0 + σ.(16)

Claim 3 There exists an ε(σ ) := ε, such that for any
φ ∈ X1

lim sup
t→∞

‖ut (φ) − E0‖ ≥ ε.

By contradiction, suppose that |ut (ψ) − E0‖ < ε for
some ψ ∈ X1. Thus, there exists t0 > 0 such that∣∣S(t) − S0

∣∣ < ε,
∣∣V (t) − V 0

∣∣ < ε and |I (t)| < ε for
t > t0 + τ . Hence, (16) is satisfied.
From the fourth equation of (2), we have

dI

ddt
> β(S0 + ξV 0 − σ)e−μτ I (t − τ)

− (μ + γ + δ)I (t).
(17)

For sufficiently small σ , the equation obtained from
(17), by replacing>with=, is quasimonotone. Hence,
it suffices to study the real roots of the characteristic
equation ([33, Theorem 5.5.1])

�1(λ) := λ + (μ + γ + δ)

− β(S0 + ξV 0 − σ)e−μτ e−λτ = 0.
(18)

Let σ = 0. Then, �1(0) = (μ + γ + δ)(1−RE ) < 0
whenRE > 1. Notice that �1 is continuous, increases
for λ > 0 and goes to ∞ when λ → ∞. Hence, there
exists a positive root λ̂ > 0 satisfying (18). Letλ0(σ )be
the principle eigenvalue. Then, λ0(0) > 0, and hence,
due the continuity of λ0, λ0(σ ) > 0 for sufficiently
small σ > 0. Thus, there exists a solution U (t) =
ceλ0(σ )t with c > 0. Since I (t) ≥ 0 for t > 0, by the
comparison theorem [33, Theorem 5.1.1], there exists
a small K > 0 such that I (t) ≥ Kceλ0(σ )t for all
t ≥ t0 + m. Thus, I (t) → ∞ as t → ∞ due to
the positivity of λ0(σ ), which is a contradiction to the
boundedness of (2). This proves Claim 3.

Let ω1(φ) be the omega limit set of the orbit ut (φ)

through φ ∈ X and define

M∂ = {φ ∈ X : ut (φ) ∈ ∂X, t ≥ 0}.
Claim 4

⋃ {ω1(φ) : φ ∈ M∂} = {E0}.
Let φ ∈ M∂ , i.e., I (t) ≡ 0. Then, from the equation

of E in (2), we have

lim
t→∞ E(t) = 0.

By using idea of limiting systems and the theory of
internally chain transitive sets, see the proofs of Theo-
rems 4.2 and 4.3, it follows that

lim
t→∞ (S(t), V (t), R(t)) =

(
S0, V 0, R0

)
,

and hence,

lim
t→∞ (S(t), V (t), E(t), I (t), R(t))

=
(
S0, V 0, 0, 0, R0

)
,
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Thus,
⋃ {ω1(φ) : φ ∈ M∂} = {E0}. This proves

Claim 4.
Letφ ∈ X anddefine a continuous function p : X →

R+ by p(φ) = φ4(0). Therefore, p−1(0,∞) ⊂ X1

and p(ut (φ)) > 0 for all t > 0 whenever p(φ) >

0. It follows from Claim 4 that any forward orbit of
ut in M∂ converges to E0. Let Ws (E0) is the stable
manifold of E0. Then it follows from that Claim 3 that
Ws (E0) ∩ X = ∅, and hence, there is no cycle in M∂

from E0 to E0. By [41], there exists κ1 > 0 such that
lim inf
t→∞ I (t) ≥ κ1 for all φ ∈ X1, which implies the

uniform persistence. 	

Furthermore, we can prove the uniform persistence

of system (2) with respect to X1.

Theorem 5.2 If RE > 1, then the system (2) is uni-
formly persistent in (2), i.e., there is a positive number
κ2 > 0 such that every solution in system (2) with
φ ∈ X1 satisfies

lim inf
t→∞ (S(t), V (t), E(t), I (t), R(t))

≥ (κ2, κ2, κ2, κ2, κ2) .

Proof From Theorems 2.1 and 5.1, we have κ1 ≤
I (t) ≤ �/μ. Consequently, from the first equation of
(2) and (Q1), we have

dS

dt
≥ � −

(
β�/μ

f (�/μ)
+ ψ + μ

)
S(t). (19)

When we replace ≥ by = in (19),

κ̂1 = � f (�/μ)

β�/μ + (μ + ψ) f (�/μ)

is globally asymptotically stable in (19). Hence, by
applying the comparison arguments [34, Lemma 1.2],
we have S(t) ≥ κ̂1. Parallely, from the equations of V
and R in (2) we have

V (t) ≥ κ̂2 and R(t) ≥ κ̂3,

respectively, where

κ̂2 = ψκ̂1 f (�/μ)

βξ�/μ + (η + μ) f (�/μ)
and

κ̂3 = ηκ̂2 + γ κ1

μ + α
.

It follows from Theorem 5.1 and the integral form of
E(t) in (3) that

lim inf
t→+∞ E(t)

= lim inf
t→+∞

t∫
t−τ

(
β I (θ)(S(θ) + ξV (θ))

f (I (θ))
e−μ(t−θ)

)
dθ

= lim inf
t→+∞

τ∫
0(

β I (t − θ)(S(t − θ) + ξV (t − θ))

f (I (t − θ))
e−μθ

)
dθ

≥ lim inf
t→+∞

τ∫
0

(
β Iκ1(κ̂2 + ξ κ̂2)

f (�/μ)
e−μθ

)
dθ

= β Iκ1(κ̂2 + ξ κ̂2)
(
1 − e−μτ

)
μ f (�/μ)

:= κ̂4.

(20)

Choose κ2 = min{κ1, κ̂1, κ̂2, κ̂3, κ̂4}. This completes
the proof. 	


5.1 Endemic equilibrium and its stability region

Since C([−τ, 0],R4+) is a convex set and the system
(8) is ultimately bounded and uniformly persistent with
respect to X1 when RE > 1, it follows from [42,
Theorem 3.1] that (8) has at least a positive equilib-
rium point (S∗, V ∗, I ∗, R∗) when RE > 1. Conse-
quently, the system (2) has the positive equilibrium
point E1 = (S∗, V ∗, E∗, I ∗, R∗). The value of E∗ can
be found from the integral form of E(t) in (3). It is
not possible to derive an explicit formula for the com-
ponents of E1 or guarantee its uniqueness due to the
presence of the exponential terms in the model.

Regarding the stability of E1, a self-contained proof
seems to have a tedious calculation due to the fourth-
order transcendental characteristic equation. However,
we use the semi-discretization method of order one to
study the linear stability of the endemic equilibrium
[43,44].

Let RE > 1 and assume that E1 exists. By setting
x = (S, V, E, I, R) − E1, the linearized system of (2)
about E1 is

dx(t)
dt

= Ax(t) + Bx(t − τ) (21)
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where x(t) = (x1(t), x2(t), x3(t), x4(t), x5(t))T and

A =

⎛
⎜⎜⎜⎜⎜⎜⎝

− β I ∗
f (I ∗) − μ − ψ 0 0 β I ∗S∗ f ′(I ∗)

f (I ∗)2 − βS∗
f (I ∗) α

ψ − ξβ I ∗
f (I ∗) − η − μ 0 ξβ I ∗V ∗ f ′(I ∗)

f (I ∗)2 − ξβV ∗
f (I ∗) 0

β I ∗
f (I ∗)

ξβ I ∗
f (I ∗) −μ −β I ∗(S∗+ξV ∗) f ′(I ∗)

f (I ∗)2 + β(S∗+ξV ∗)
f (I ∗) 0

0 0 0 −γ − μ 0
0 η 0 γ −α − μ

⎞
⎟⎟⎟⎟⎟⎟⎠

,

B =

⎛
⎜⎜⎜⎜⎜⎜⎝

0 0 0 0 0
0 0 0 0 0

−β I ∗e−μτ

f (I ∗) − ξβ I ∗e−μτ

f (I ∗) 0 β I ∗(S∗+ξV ∗)e−μτ f ′(I ∗)
f (I ∗)2 − β(S∗+ξV ∗)e−μτ

f (I ∗) 0
β I ∗e−μτ

f (I ∗)
ξβ I ∗e−μτ

f (I ∗) 0 −β I ∗(S∗+ξV ∗)e−μτ f ′(I ∗)
f (I ∗)2 + β(S∗+ξV ∗)e−μτ

f (I ∗) 0

0 0 0 0 0

⎞
⎟⎟⎟⎟⎟⎟⎠

.

Now, define the solution operator U : C → C of
(21) by

xt (·, φ) = U (t)φ. (22)

When all of the nonzero elements of the spectrum of
the monodromy operatorU (the Floquet multipliers of
system (21)) are within the unit circle of the complex
plane, the zero solution of (21) is stable. While when
one or more of the Floquet multipliers are on the unit
circle and the rest of them are inside the unit circle, the
zero solution may undergo a bifurcation [45].

To study the location of the Floquet multipliers, we
use the semi-discretization method which is an effi-
cient numerical method based on a special kind of dis-
cretization technique with respect to the past effects
only [46]. By employing this method, we define a Flo-
quet transition matrix, which is an approximation to
the infinite-dimensional monodromy operatorU corre-
sponding to the linear delayed system (21). Usually, the
semi-discretization method is used to study the linear
stability when the system is non-autonomous (contains
time-dependent periodic delays or coefficients func-
tions). However, since system (21) is autonomous, we
can choose an arbitrary period [43]. Consequently, we
assume a period T for the system (21), and hence, the
length of the discretization interval is h = T/K where
K is the number of subintervals of [0, T ]. Let ti = ih.
Then, in each discretization interval [ti , ti+1], the first-
order semi-discretization approximate the delayed term
x(t − τ) by the Lagrange first-order polynomial

x(t − τ) ≈ δ0(t)x(ti−r ) + δ1(t)x(ti−r+1), (23)

where

δ0(t) = τ + (i − r + 1)h − t

h
,

δ1(t) = t − (i − r)h − τ

h

and r = int(τ/h + 1/2) with int denoting the integer-
part function, see [43,44]. The scheme of the approxi-
mation in (23) is shown in Fig. 2, and more details are
provided in [44, Chapter 3].

Consequently, system (21) can be approximated by
a system of ordinary differential equations

dx
dt

= Ax(t) + B (δ0(t)x(ti−r ) + δ1(t)x(ti−r+1)) ,

t ∈ [ti , ti+1]
(24)

where i = 0, . . . , K − 1. By using the variation of
constants formula, the general solution of (24) can be
written as

X (t) = eA(t−ti )X(ti ) +
t∫

ti

eA(t−s)B

(δ0(t)x(ti−r ) + δ1(t)x(ti−r+1)) ds.

Using the notation x(ti ) = xi , when t = ti+1. Then,
the solution over one discrete step can be formulated
as

xi+1 = Pxi + Ri,0xi−r + Ri,1xi−r+1,
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Fig. 2 Approximation of the delayed term x(t − τ) is shown by the gray dashed line. Here xi = x(ti )

where P = eAh and

Ri,0 =
⎛
⎝

h∫
0

τ − (r − 1)h − s

h
eA(h−s)ds

⎞
⎠B,

Ri,1 =
⎛
⎝

h∫
0

s + rh − τ

h
eA(h−s)ds

⎞
⎠B.

(25)

If A−1 exists, then (25) can be written as

Ri,0 =
(
A−1 + 1

h

(
A−2 − (τ − (r − 1)h)A−1

)
(
I − eAh

))
B,

Ri,1 =
(

−A−1 + 1

h

(
−A−2 − (τ − rh)A−1

)
(
I − eAh

))
B.

Now, we define the augmented state vector as

zi = (xi , xi−1, . . . , xi−r)
T . (26)

Combining zi and (24) leads to the discrete map

zi+1 = Gizi

where Gi is the coefficient matrix of the form

Gi =

1 lr − 1 lr⎛
⎜⎜⎜⎜⎜⎝

P 0 · · · 0 Ri,1 Ri,0

I 0 · · · 0 0 0
0 I · · · 0 0 0
...

...

0 0 · · · 0 I 0

⎞
⎟⎟⎟⎟⎟⎠

Utilizing that T = Kh and applying (26) K times with
initial state z0 gives the monodromy mapping

zK = �z0. (27)

where

� = GK−1GK−2 · · ·G0 (28)

which represents a finite-dimensional approximation
of the monodromy operator U associated with E1 of
(2). The rate of convergence for the first-order semi-
discretization method is O(h3).

When all the eigenvalues of � are inside the unit
circle of the complex plane, then E1 is asymptotically
stable. While when one or more of the eigenvalues
are on the unit circle and the rest of them are inside
the unit circle, E1 may undergo a bifurcation [45]. In
the numerical simulations, Sect. 7.4, we implement the
above algorithm to construct an approximate stability
region for E1. We notice that when E1 is unstable, the
model exhibits periodic oscillations as it is expected
from SIRS models with delay [47].
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6 The critical vaccination coverage

In this section,wediscuss the critical vaccination cover-
age rate that eliminates the disease. LetRE (ψ) := RE .
When the vaccination is absent, i.e., ψ = 0, the effec-
tive reproduction number becomes

R0 := RE (0) = β�(α + μ)(η + μ)e−μτ

μ(γ + μ)(α(η + μ) + μ(η + μ))
.

(29)

In fact R0 is so-called the basic reproduction number
which is the average number of secondary cases aris-
ing from one infectious individual in a totally suscep-
tible population [48,49]. In the case ofR0, everyone is
susceptible while in RE not all contacts will become
infected due immunity, hence,RE is less thanR0 from
epidemiological point of view. Notice that,RE (ψ) can
be written as

RE (ψ) =
(

(α + μ)(η + μ + ξψ)

α(η + μ + ψ) + (η + μ)(μ + ψ)

)
R0.

Thus,

RE (∞) := lim
ψ→∞RE (ψ) = ξ(α + μ)

α + η + μ
R0.

Since

dRE (ψ)

dψ

= − (η + μ)((1 − ξ)(μ + α) + η)

(α(η + μ + ψ) + (η + μ)(μ + ψ))(η + μ + ξψ)
RE (ψ)

< 0,

we have that ξ(α+μ)
α+η+μ

R0 ≤ RE ≤ R0, and hence,R0 <

1 impliesRE < 1, but the reverse is not true.
Now,we find the critical level of vaccination to erad-

icate of the disease when R0 > 1. Assume R0 > 1,
then

RE (∞) < 1 ⇔ ξ(α + μ)

α + η + μ
R0 < 1 ⇔

ξ <
α + η + μ

α + μ
× 1

R0
:= ξ∗ ⇔

ε > ε∗ :=
(
1 − α + η + μ

α + μ
× 1

R0

)
.

Obviously ε∗ increases as R0 increases. Hence, when
ε (the vaccine efficacy) is not large enough whenR0 is
high, the disease may not be eradicated even if every-
body gets the vaccine. That is,RE (ψ) cannot become
below 1 when ψ becomes high, see Fig. 3.

2 4 6 8 10

0.0

0.2

0.4

0.6

0.8

Fig. 3 Plot of ε∗ as a function of R0

Lemma 1 Assume R0 > 1. Then, there exists

ψ∗ = (R0 − 1) (μ + η)

R0 (ξ∗ − ξ)
= (R0 − 1) (μ + η)

R0 (ξ∗ + ε − 1)
> 0

such thatRE (ψ∗) = 1. Furthermore,RE (ψ) > (<)1
when ψ < (>)ψ∗.

Biologically, Lemma 1 indicates that ψ∗ is the vac-
cination coverage rate to eradicate of the disease.

From V 0 and Theorem 2.1, we have

V 0 = �

μ
× ψ(α + μ)

α(η + μ + ψ) + (η + μ)(μ + ψ)

= N (t) × ψ(α + μ)

α(η + μ + ψ) + (η + μ)(μ + ψ)
.

Hence,

V 0

N (t)
= ψ(α + μ)

α(η + μ + ψ) + (η + μ)(μ + ψ)
. (30)

Hence, in a disease-free population, the proportion of
vaccinated individuals is

ψ(α + μ)

α(η + μ + ψ) + (η + μ)(μ + ψ)
. (31)

Therefore, whenR0 > 1, the critical proportion of the
population that should be vaccinated when the vacci-
nation is imperfect and ψ = ψ∗ is given by

ρε = (R0 − 1) (μ + η) (α + μ)

(R0 − 1) (μ + η) (α + η + μ) + R0 (ξ∗ + ε − 1) (α + μ)(η + μ)
.

(32)

Figure 4a and b shows the contour plot of ρε inR0ε-
and τε-plane, respectively. We notice that when ε is
fixed, ρε increases as R0 increases. While τ does not
have a noticeable effect on the value of ρε. Also, the
figures are consistent with that fact that ∂ρε

∂ε
≤ 0.
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(b) τε-plane

Fig. 4 The contour plot of ρε . Parameters values are similar to those in Fig. 5

Table 2 Parameter value ranges of the system (2)

Parameter Range Reference

β [0.390, 0.432] per day [25]

ψ [0.371, 0.436] [51]

α Six months [52]

ξ [0.4, 0.81] [53]

1/η Two weeks [54]

τ [1, 4] [55]

Infectious period (1/γ ) [3, 7] days [55]

7 Numerical simulations

In this section, firstly, we fit the model with data of
influenza patients as a case study. Secondly, we study
the local and global sensitivity ofRE with respect to the
parameters of system (2). Thirdly, we discuss the sta-
bility of endemic equilibrium. Finally, we investigate
the sensitivity system of the system (2) with respect to
main parameters.

Through this section, we take

f (I ) = 1 + 0.001I 5.

7.1 Case study

We use the system (2) to simulate the data of influenza
patients (weekly percentage) in North Carolina from

Fig. 5 Weekly percentage of influenza patients in North Car-
olina from January to April, 2011 [50] compared to the sim-
ulation results of the system (2). Parameters: β = 0.196 per
week, γ = 2, α = 16 weeks, η = 0.5 per week, � = 100,
μ = 0.1, ξ = 0.3, ψ = 0.4, τ = 0.143 week. Initial func-
tions: S(θ) = 100, I (θ) = 1, V (θ) = E(θ) = R(θ) = 0 for
θ ∈ [− 0.143, 0]

January to April, 2011 [50]. A range for (2) parameters
is given in Table 2. Figure 5 shows that the numerical
solution of (2) provides a good agreement with the real
data.

7.2 Local sensitivity ofRE

The local sensitivity analysis of RE provides insight
into the proportional change in RE responding to a
small variation of a single parameter p at one time. The
normalized forward sensitivity index ofRE (elasticity
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Fig. 6 Local sensitivity
indices of RE

ofRE ) measures such relative change inRE , denoted
by ϒ

RE
p , and defined as [56,57]:

ϒRE
p := ∂RE

∂p
× p

RE
. (33)

From the explicit formula of RE in (7), we derive
an analytical expression for ϒ

RE
p to each parameter

described in Table 1. From (7) and (33), we have

ϒ
RE
� = ϒ

RE
β = 1,

ϒ
RE
ψ = − ψη(η + μ)(1 − ξ)(α + μ)

(α(η + μ + ψ) + (η + μ)(μ + ψ))(η + μ + ξψ)

< 0,

ϒRE
μ = −μτ − 1 − μ(α + η + 2μ + ψ)

α(η + μ + ψ) + (η + μ)(μ + ψ)

+ μ

α + μ
− μ

γ + μ
+ μ

η + μ + ξψ
,

ϒRE
η = − ηψ(α(ξ − 1) + ξ(μ + ψ))

(α(η + μ + ψ) + (η + μ)(μ + ψ))(η + μ + ξψ)
,

ϒRE
γ = − γ

γ + μ
< 0,

ϒRE
α = (αηψ)

(α + μ)(α(η + μ + ψ) + (η + μ)(μ + ψ))

< 0,

ϒRE
τ = −μτ < 0. (34)

First, we notice for the parameters � and β, the sen-
sitivity indices ϒ

RE
� and ϒ

RE
β are independent of any

other parameters; hence, they are locally and globally
valid. Also, both parameters are equally important for
RE because ϒ

RE
� = ϒ

RE
β = 1. Consequently, when

� orβ increases by 100%, thenRE increases by 100%.
For the other parameters p ∈ {ψ,μ, ξ, η, τ, γ, δ}, they
have different impacts onRE due to the different abso-
lute value of the forward sensitivity indices ϒ

RE
p in

(34). We use the values in Table 2 to calculate numeric

values for ϒ
RE
p , see Fig. 6. For example, when ψ

increases by 100%,RE decreases by 86% while when
α increases by 100%,RE increases by 5%; hence, due
to absolute value of the sensitivity index we have φ is
more important forRE . From Fig. 6, we notice that the
order of parameters from the highest importance to the
lowest is μ, �(and β), ψ , γ , τ , α, ξ and η.

7.3 Global sensitivity of RE

When there are large perturbations in all parame-
ters, global sensitivity analysis is typically used which
includes sampling a given range of parameter val-
ues [58]. We use the Latin Hypercube Sampling
(LHS) design and Partial Rank Correlation Coefficient
(PRCC) analysis technique to provide good insight on
global sensitivity of RE on the uncertainties in its
parameters [59]. The PRCC values vary in the interval
[−1, 1] such that there is a perfect negative\positive
correlation when the value is −1\1, also, the PRCC
value is statistically significant when |PRCC value| >

0.5. Figure 7 shows PRCC values of RE where the
parameters sampling are produced from LHS with uni-
form distribution over the parameter values in Table 2
with 1,000,000 samples. We notice from Fig. 7 that
the most influential parameters on RE , ordered from
highest to lowest, are γ , ξ , β, η, τ , ψ and α.

7.4 Stability of E1

In this section, we fix

� = 300, η = 1, μ = 0.13, ξ = α = 0.01.

We use the package SemiDiscretizationMethod.jl on
Julia to implement the algorithm in Sect. 5.1 and con-
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Fig. 7 PRCC results, the orange boxes represent the partial rank correlation coefficients ofRE . The small figures in the right side and
bottom show the PRCC scatter plots

struct an approximate stability region for E1 in two
parameters space. Figure 8 shows the stability charts in
βγ -plane, βψ-plane and γψ-plane. In Fig. 8b, when
ψ is fixed in the interval [0.4, 0.6] and β increases,
a stability switches occur where endemic equilibrium
losses its stability and then becomes stable for larger
β, see Fig. 9a. While when β is fixed and ψ increases,
a Hopf bifurcation occurs and the endemic equilibrium
losses its stability and becomes unstable, see Fig. 9b.
The latter case also occurs when β or ψ is fixed and γ

increases, see Fig. 8a and c.
Figure 9c shows a one-parameter bifurcation dia-

gram, by varying the value of τ . For small τ , the
endemic equilibrium E1 is stable (Fig. 10a).By increas-
ing the value of τ , E1 loses the stability and a Hopf
Bifurcation occurs around τ ≈ 2.94. For τ > 2.94,
a unique stable periodic solution of system (2) exists
(Fig. 10c). In Fig. 10, we plot the phase portrait of the
system (2) with different initial condition and various
value of τ , we notice that system (2) exhibits global
asymptotic stability behavior when RE > 1.

7.5 Sensitivity of model solutions

The sensitivity system of (2) with respect to a param-
eter p ∈ {ψ,μ, ξ, η, τ, γ, α} is given by the partial
derivative of X = (S, V, E, I, R)T with respect to p,
denoted by Xp = ∂X

∂p . Define f(S, V, E, I, R) := dX
dt ,

then by the Chain Rule and Clairaut’s Theorem, we
have

dXp

dt
= df

dX
Xp + ∂f

∂p
, Xp(0) = ∂X0(p)

∂p
.

The semi-relative sensitivity for X is represented by
pXp, while the logarithmic sensitivity is represented

by p
Xp
X . The detailed method is given in [60].

Figures 11 and 12 show the semi-relative and loga-
rithmic sensitivity curves for S, V, I and Rwith respect
to the parameterβ,ψ ,α and τ . FromFigs. 11 and12,we
can interpret that the perturbation of τ has a big influ-
ence over S, V , I and R. For t ∈ (0, 10), a remarkable
positive affect of the parameter β occurs on I and R,
while an opposite affect appears on the variables S and
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(a) ψ = 0.2 and τ= 1 (b) γ = 0.09 and τ = 3.17 (c) β = 0.5 and τ = 1.

Fig. 8 Stability chart for the endemic equilibrium E1 obtained by semi-discretization method for h = 0.1, where stable region is the
green area and unstable region is the gray area

(a) ψ = 0.55 and τ = 3.17 (b) β = 0.9 and τ = 3.17 (c) β = 0.9 and ψ = 0.55

Fig. 9 One-parameter bifurcation diagrams with β, ψ and τ . We fix γ = 0.09

(a) (b) (c)

Fig. 10 Row 1: phase portrait of the system (2) with
different initial condition and various value of τ . Row
2: the eigenvalues of the matrix � in (28) and the
roots of the characteristic equation corresponding to E1.

β = 0.9, γ = 0.09 and ψ = 0.2 The endemic equilib-
rium E1 is a (912.618, 161.509, 1.30009, 42.5669, 1181
b (905.814, 160.301, 4.02373, 39.9422, 1170.68) c
(901.278, 159.496, 5.77535, 38.4905, 1164)
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Fig. 11 The semi-relative sensitivity curves of S, V, I and R with respect to the parameter β, ψ , α and τ

Fig. 12 The logarithmic sensitivity curves of S, V, I and R with respect to the parameter β, ψ , α and τ
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Fig. 13 The semi-relative (row 1) and logarithmic (row 2) sensitivity curves for S, V, I and R with respect to the parameter d (red)
and q (green) in f (I ) = 1 + d I q

V . Moreover, at t ≈ 4(7), we notice that both param-
eters τ and β have the largest effects on S and V (I
and R). The perturbation of ψ and α has a noticeable
positive affect on V and R.

Finally, since the function f (I ) is independent of the
value of RE , we consider f (I ) = 1 + d I q and study
the influence of the parameters d and q on the solution
of the system (2). In Fig. 13, the sensitivity solution
curves show that d and q have a positive influences on
S and V and a negative affects on I . The influence of
q is relatively higher than that of d. More precisely, q
has an oscillatory influence on {S, V, I, R}. There are
small affects (around zero) of d on the four variables.

8 Conclusions

Nowadays, epidemiological modeling plays a key role
in providing strategies for the prevention and control
of many communicable diseases. Vaccination, mean-
while, is considered to be one of the most favored and
effective methods of mitigation and elimination of epi-
demics. In the paper, we have studied infectious disease
transmission dynamics in the presence of an imperfect
vaccine by a stage-structured mathematical model. To
interpret the “psychological effect” when an infectious
disease being spread in a population, we have consid-
ered a general nonmonotone nonlinear incidence rate
function. We have shown that the solutions of the pro-
posed model exist (uniquely determined) and they are
nonnegative and bounded, that is, the model is biolog-
ically well-posed.

Due to the existence of time delay, we have used the
method in [35] to obtain an explicit expression for the

effective reproduction number (RE ) which gives the
actual number of secondary infections per infectious
person at any time [16,36]. Then we have obtained the
threshold dynamics of the system with respect to RE :
(i) we have shown that the disease-free equilibrium is
globally stable when RE < 1; and (ii) we have dis-
cussed the system persistence and the coexistence of
endemic equilibrium when RE > 1. Then, we have
used the semi-discretization method to analyze the lin-
ear stability of the endemic equilibrium. Also, we have
discussed the critical vaccination coverage rate that is
required to eliminate the disease and the critical pro-
portion of the population (ρε) that should be vaccinated
when the vaccination is imperfect. We have not noticed
any influence of the latent time τ on ρε when the vac-
cine efficacy ε is fixed. However, we have observed
that the value of ρε increases as R0 increases when ε

is fixed. The quantity R0 is the value of RE when the
vaccination rate ψ is zero. Furthermore, through the
theoretical analysis, we have found that when ε is not
large enough and R0 is high, the disease may not be
eradicated even if everybody gets the vaccine. In other
words,RE cannot become below the unity even when
ψ becomes high.
Through the numerical simulations:

• We have fitted the model with data of influenza
patients as a case study. We have noticed that at the
peak level of infection, nearly 6% of the population
is infected;

• We have carried out global and local sensitivities
analysis forRE . We have found that the latent time
τ has a noticeable effect onRE . Regarding the vac-
cination parameters,ψ and the reduction coefficient
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(ξ ), they both have an opposite effect on the value
of RE , ψ has a negative influence while ξ has a
positive one;

• Wehave constructed an approximate stability region
for the endemic equilibrium E1 and noticed that
when E1 loses its stability, a unique stable periodic
solution exists via Hopf Bifurcation. For example,
for small τ , the endemic equilibrium is stable and as
the value of τ increases, E1 loses the stability and
a Hopf Bifurcation occurs and a unique stable peri-
odic solution exists. Moreover, we have observed
that the model exhibits global asymptotic stability
behavior when RE > 1.

• The semi-relative and logarithmic sensitivities curves
have shown that the perturbation of τ has a big influ-
ence over the variables {S, V, I, R}.

• Although RE is independent of the function f , the
sensitivity curves of themodel solutions have shown
f has a noticeable effect on the behavior of the solu-
tion.

For furtherwork, it will be interesting to consider the
“asymptomatic carriers”. These carriers are individuals
who have been infected and are able to transmit their
illness without showing any symptoms [3]. For certain
infectious diseases, asymptomatic carriers are a poten-
tial source for transmission such as Typhoid Fever, HIV
and, most recently, the COVID-19.
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