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Abstract

Induced pluripotent stem cell (iPSC)-derived retinal organoids provide a platform to

study human retinogenesis, disease modeling, and compound screening. Although

retinal organoids may represent tissue structures with greater physiological relevance

to the in vivo human retina, their generation is not without limitations. Various proto-

cols have been developed to enable development of organoids with all major retinal

cell types; however, variability across iPSC lines is often reported. Modulating signal-

ing pathways important for eye formation, such as those involving bone morphoge-

netic protein 4 (BMP4) and insulin-like growth factor 1 (IGF1), is a common approach

used for the generation of retinal tissue in vitro. We used three human iPSC lines to

generate retinal organoids by activating either BMP4 or IGF1 signaling and assessed

differentiation efficiency by monitoring morphological changes, gene and protein

expression, and function. Our results showed that the ability of iPSC to give rise to

retinal organoids in response to IGF1 and BMP4 activation was line- and method-

dependent. This demonstrates that careful consideration is needed when choosing a

differentiation approach, which would also depend on overall project aims.
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1 | INTRODUCTION

The development of in vitro retinal models has been driven by a lack

of adequate animal models that recapitulate the structure and func-

tion of the human retina. Induced pluripotent stem cell (IPSC)-derived

retinal organoids have been shown to have a wide range of

applications, including the study of human retinogenesis,1-3 disease

modeling,4,5 drug discovery,6,7 and cell therapy.8-10 Numerous proto-

cols have been developed for the generation of retinal organoids that

follow basic developmental principles of forebrain development and

eye formation. Despite the ability of these protocols to give rise to

laminated retinal organoids, variability in the propensity of iPSCs to

give rise to various retinal cell types is often reported. Several groups

including ours have reported variable laminar organization between

samples differentiated from the same iPSC lines and the presence of

non-neural cell types alongside the retinal structures.7,11,12

Retinal development in vivo is controlled by a diverse set of

signaling pathways and complex interactions between embryological

tissues which affect the identity of the resultant cell population.

Forebrain development is orchestrated by a fine balance between a

number of signaling pathways, including bone morphogenetic protein

4 (BMP4) and insulin-like growth factor 1 (IGF1).13,14 Long-term mat-

uration of retinal cells for an extended period of time is enhanced by

retinoic acid (RA), taurine, and triiodothyronine (T3).1,15,16 We used
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differentiation protocols that followed these principles in order to

compare retinal differentiation efficiency of multiple iPSC lines

across differentiation protocols that rely on activation of these

pathways.7,11,17,18

2 | RESULTS

To investigate the reproducibility of retinal organoid differentiation

protocols across multiple iPSC lines, we differentiated three iPSC

lines (WT1, WT2, and WT3.7) from unaffected subjects using two

differentiation protocols, designated as Method I and Method II

(details are shown in Figure 1A). Key morphological features of

Significance statement
Retinal organoids were derived from three human induced plu-

ripotent stem cell (iPSC) lines using two different differentiation

approaches involving either bone morphogenetic protein

4 or insulin-like growth factor 1 signaling pathways. Retinal

organoids were generated using both methods; however, the

two different approaches produced bias toward certain retinal

cell types. The results of this study suggest that careful consid-

eration is needed when choosing a differentiation protocol and

that overall efficiency to generate retinal organoids would

depend on the signaling pathways that are modulated.

F IGURE 1 Generation of retinal organoids
by modulating bone morphogenetic protein

4 and insulin-like growth factor 1 signaling
pathways. A, A schematic representation of the
two differentiation methods. B and C, Bright-
field images showing development of retinal
organoids at days 85 and 169 of
differentiation. D, Representative examples and
quantification of retinal and nonretinal tissues
showing variability across methods and cell
lines. n = 32 for each time point
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developing retina in vitro include the appearance of optical vesicles

(OVs) containing phase-bright neuroepithelium on the apical side,

with some OVs also containing retinal pigment epithelium (RPE).

Morphological observations at days 85 and 169 of differentiation

showed that WT1 and WT2 organoids differentiated using both

methods contained OV-like structures and in some cases presump-

tive RPE cells identified by their pigmented appearance. WT3

organoids were comparable with WT1 and WT2 in Method I but

responded poorly to Method II (Figure 1B,C). The capacity to give

rise to neural retina with and without RPE differed across the lines

and protocols (Figure 1D). WT1 and WT2 produced more RPE with

Method II, WT3 responded better to Method I overall, and the

number of undefined structures was cell line- and method-

dependent.

We performed quantitative PCR analysis to assess whether there

was any difference in the expression of genes associated with various ret-

inal cell types (photoreceptor precursors—cone-rod homeobox [CRX];

photoreceptors and photoreceptor precursors—recoverin [RCVRN];

rods—neural retina leucine zipper [NRL], rhodopsin [RHO]; cones—short-

wave-sensitive opsin-1 [OPN1SW], medium-wave-sensitive opsin-1

F IGURE 2 Development of photoreceptors. A, The expression of RECOVERIN, RHODOPSIN, OPSIN R/G, and OPSIN B indicated the
presence of rod and cone photoreceptors. B, Quantification of proteins associated with different types of photoreceptors showed that both
methods gave rise to rods and cones, apart from WT3 cells which were more responsive to Method I. C, Ratio of cone photoreceptors was in line
with reported values (5-8:1) in WT1 and WT2 Method I organoids. D, Organoids from all differentiations, apart from WT3 Method II, which failed
to give rise to mature photoreceptors, contained a higher proportion of rods than cones. OPSIN B, opsin blue; OPSIN R/G, opsin red/green;
Recov, recoverin; Rho, rhodopsin. Data are shown as mean ± SEM. Organoids used for these experiments were at day 180 of differentiation.
Scale bar = 10 μm. ****P < .0001 for panels B-D

DIFFERENTIATION VARIABILITY TO RETINAL ORGANOIDS 197



[OPN1MW], long-wave-sensitive opsin-1 [OPN1LW]; horizontal cells—

prospero-related homeobox 1 [PROX1]; Müller glia and RPE—ret-

inaldehyde-binding protein [RLBP]; amacrine cells—activating enhancer-

binding protein 2-alpha [AP2α]; retinal ganglion cells [RGCs]—atonal

bHLH transcription factor 7 [MATH5], RNA binding protein, mRNA

processing factor [RBPMS]; RPE—retinoid isomerohydrolase RPE65

[RPE65]) across differentiation protocols at 180 days of differentiation

(Figure S1). Expression of CRX and RHO was significantly higher in WT1

organoids differentiated with Method II comparing to Method I; similarly,

differentiating WT2 with Method II resulted in significantly higher expres-

sion of NRL comparing to organoids differentiated with Method I. These

results are unsurprising since Method II uses T3, which is known to

encourage rod development, which is reflected in upregulation of NRL

and RHO.19 The largest difference between Methods I and II on differen-

tiation outcome was observed in WT3 cells. Method I resulted in signifi-

cant upregulation of all genes tested apart from RBPMS and RPE65, which

corroborates the morphological observations reported in Figure 1D.

Gene expression analyses were followed by immunofluorescence

microscopy examining the presence of photoreceptors marked by the

appearance of cells positive for RECOVERIN, RHODOPSIN, OPSIN

RED/GREEN, and OPSIN BLUE (Figure 2A). Method I resulted in the

development of photoreceptors in organoids from all iPSC lines,

whereas Method II gave rise to photoreceptors in both WT1 and

WT2 lines, with only negligible presence of RECOVERIN-positive cells

in the inner layers in WT3 organoids. There was significantly higher

number of RHODOPSIN-positive cells in WT1 organoids differenti-

ated with Method II (Figure 2B); WT2 organoids differentiated with

the same method showed the presence of RECOVERIN- and

RHODOPSIN- positive cells and OPSIN RED/GREEN positive cells

could also be observed; however, protein localization to the outer

segments was not always apparent. The reported M/L- to S-cone

(red/green to blue) ratios range between 5 and 8 to 1.1,12 We

observed similar proportions in WT1 and WT2 Method I-derived

organoids (Figure 2C). Organoids from all differentiations, apart from

WT3 Method II, which failed to give rise to mature photoreceptors, all

contained a higher proportion of rods (Figure 2D).

In addition to photoreceptors, we also looked at the presence and

distribution of amacrine (AP-2α), RGCs (SNCG), Müller glia (CRALBP),

and differentiating neurons of the inner nuclear retinal layer (horizon-

tal/amacrine cells; PROX1; Figure 3A). Method I gave rise to more

amacrine cells in all iPSC lines, with a significantly higher number of

AP-2α-positive cells in WT1 Method I, comparing to Method II

(Figure 3B). No amacrine cells were found in WT3 Method II. The

number of RGCs was comparable across the methods with WT3

F IGURE 3 Development of retinal ganglion cells (RGCs), Müller glia, and differentiating neurons of the inner nuclear retinal layer (horizontal,

amacrine, and bipolar cells). A, WT1 and WT2 cells differentiated with both methods and WT3 cells differentiated with Method I gave rise to cells
positive for AP-2α, SNCG, CRALBP, PROX1, and PKCα. WT3 cells differentiated with Method II only gave rise to SNCG and PROX1 positive
cells. B, Method I gave rise to more amacrine cells (AP-2α) in all cell lines (***P < .001 for WT1 Method I), apart from WT3 Method II, which did
not have any cells positive for this marker. The number of RGCs (SNCG) was comparable across the methods. Müller glia (CRALBP) spanned
across the retinal layers in all conditions, apart from WT3 Method II. The number of PROX1 positive cells was comparable across the conditions,
apart from WT3 Method II, with only a small proportion of cells expressing it. Data are shown as mean ± SEM. Organoids used for these
experiments were at day 180 of differentiation. Scale bar = 50 μm
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differentiated with Method II having a tendency to produce more cells

positive for SNCG. Müller glia spanned across the retinal layers in all

conditions, apart from WT3 Method II. The number of

PROX1-positive cells was comparable across the conditions, apart

from WT3 Method II, with only a small proportion of cells expressing

it. Overall, WT3 cells did not respond well to Method II, which is

reflected by gene and protein expression data (Figures 2 and 3 and

Figure S1).

As a final test, we compared the functionality in these organoids

by quantifying their ability to respond to light. We have recently

shown that retinal organoids can respond to light, similar to the earli-

est light responses in mice at day 150 of differentiation.7 Accordingly,

we were able to record light-driven spikes from retinal organoids from

WT1 and WT2 iPSCs. Based on gene expression and immunofluores-

cence data (Figure S1, Figures 2A and 3A). WT1 and WT2 produced

retinal cell types when differentiated with both methods, whereas

WT3 responded poorly to Method II; therefore, we omitted WT3

from the analysis. RGCs were considered responsive if they showed

at least 25% increase or decrease in spiking activity during a

90-second time window after the onset of a white light pulse

(200 milliseconds, 217 μW/cm2; irradiance, 1 Hz, duration 5 minutes)

compared with the spiking rate before the light was turned

on. Furthermore, we used sustained broad blue light stimulation

(2 minutes, 217 μW/cm2 irradiance) to evoke responses from poten-

tial intrinsically photosensitive RGCs (ipRGCs). Photoreceptor-driven

responses are transient, whereas ipRGCs light responses are sustained

and have a delayed onset. Hence, we classified RGCs as potential

ipRGCs if they still exhibited significantly higher firing rates at least

30 seconds after the onset of the sustained blue stimulus. More

importantly, all other RGCs, which showed relatively transient

responses during sustained blue light, were classified as potentially

photoreceptor-driven and further analyzed in this study. The percent-

age of potential ipRGCs from the pool of all light-driven RGCs for

WT1 was 56.5% (Method I) vs 13.3% (Method II). For WT2, the ratio

was 57.8%/60%. Overall, the photoreceptor-driven RGCs in all

organoids exhibited either an increase in spike rate during exposure to

light (presumed ON-center RGCs; Figure 4A,B) or a decrease in spike

rate (presumed OFF-center RGCs; Figure 4C). The medians of the cal-

culated change of firing (COF) were not significantly different between

the methods for WT1 but they were for WT2 (Figure 4B, C). Indeed,

WT2 organoids showed either a significant increase (Mann-Whitney

test: P = .009) or decrease (P = .042) in COF medians with Method I.

3 | DISCUSSION

Generation of retinal organoids on a large scale is necessary in order

to meet the growing demand for a model system which is predictive

of human physiology and resembles key morphological and functional

features. In this study, we used three human iPSC lines and differenti-

ated them to retinal organoids using differentiation protocols activat-

ing either BMP4 (Method I) or IGF1 (Method II) signaling pathways;

F IGURE 4 Light-driven spiking activity recorded from
presumed ON-Centre retinal ganglion cells (RGCs) and OFF-Centre
RGCs. A, In the raster plot, each small vertical bar indicates the
time stamp of a spike, where each row represents a different
RGC. The left half illustrates the activity before stimulus onset
and, separated by the red line, the right half the activity when
exposed to light. B, The change of firing (COF) percentage values
from presumed ON-Centre RGCs are scatter plotted for Method
I and Method II of WT1-2 lines. The median is indicated as a red
horizontal line and the interquartile range as a vertical line. Each
symbol represents one RGC that showed more than 25%
increased spiking after light onset. C, The COF percentage values
from presumed OFF-Centre RGCs are scatter plotted in the same
way as described above. We defined outliers as values which
exceed three times the standard deviation (three-sigma rule).
A total of five to six organoids were recorded from for each
condition. Number of RGCs found to show increased firing in
(B) WT1 (M1 = 27 out of 389 RGCs [�6.9%]; M2 = 24/282
[8.5%]), WT2 (M1 = 26/317 [8.2%]; M2 = 46/496 [9.3%]). Number
of RGCs found to show decreased firing in (C) WT1 (M1 = 35 of
389 RGCs [�9%]; M2 = 21/282 [7.4%]), WT2 (M1 = 19/317 [6%];
M2 = 44/496 [8.8%])
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our data indicate that all cell lines were able to generate retinal cell

types and the response to IGF1 and BMP4 was line- and method-

dependent. Variability in the propensity of iPSCs to differentiate is

widely reported in the literature and is thought to be a result of some

factors including gene expression heterogeneity among stem cell

populations, DNA methylation and histone modifications, and differ-

ences in endogenous signaling activities, such as BMP4.20-23 This is

unsurprising, since BMP4 has been shown to be involved in the differ-

entiation of the anterior portion of the neural plate toward retinal

neurones; in addition, IGF1 promotes induction of retinal fate.14,24

Interestingly, it has also been reported that using IGF1 in combination

with a BMP4 antagonist results in efficient generation of cone photo-

receptors.25 The interactions between these signaling pathways are

complex, and it is plausible that depending on the endogenous levels

of expression of key components of these pathways in the starting

population of iPSCs it may be required to adapt differentiation proto-

cols, which could include blocking BMP4 and simultaneously stimulat-

ing IGF1 in some cases.23 This is further compounded by the addition

of other components (eg, T3, N2, RA) after day 18 of differentiation,

which can synergize or agonize the activation of BMP4 or IGF1 path-

ways in a different way in each of the two methods reported in this

article. Furthermore, this variability is also reflected in the ability to

establish light-sensitive signaling pathways. Only 7%-12% of all RGCs

changed the activity when light activates phototransduction in photo-

recetors and bipolar cells relay that signal to RGCs, whereas 2%-5% of

all RGCs were classified as potential ipRGCs. Except for WT2, there

were no significant differences of light-induced RGC activity between

BMP4 and IGF1 protocols. High proportion of ipRGCs could be a

reflection of maturity of the retinal organoids. In neonatal mice, func-

tional ipRGCs can be observed at birth (P0), which is earlier than the

establishment of light-driven responses by RGCs (P10). Then, the

number of ipRGCs decreases later in development.26

In this study we found that the two differentiation approaches

produced bias toward certain retinal cell types, which was iPSC line-

and method-dependent. This shows that careful consideration is

needed when choosing a differentiation protocol and that overall effi-

ciency to generate retinal organoids would depend on the signaling

pathways that are modulated.

4 | CONCLUSION

Our data demonstrate that choice of cell line and differentiation pro-

tocol would depend on project requirements and further refinements

in in vitro retinal culture methods are needed.
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