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Abstract

Landscape genomics studies focus on identifying candidate genes under selection via spatial 

variation in abiotic environmental variables, but rarely by biotic factors (i.e., disease). The 

Tasmanian devil (Sarcophilus harrisii) is found only on the environmentally heterogeneous island 

of Tasmania and is threatened with extinction by a transmissible cancer, devil facial tumor disease 

(DFTD). Devils persist in regions of long-term infection despite epidemiological model 

predictions of species’ extinction, suggesting possible adaptation to DFTD. Here, we test the 

extent to which spatial variation and genetic diversity are associated with the abiotic environment 

(i.e., climatic variables, elevation, vegetation cover) and/or DFTD. We employ genetic-

environment association analyses using 6886 SNPs from 3287 individuals sampled pre- and post-

disease arrival across the devil’s geographic range. Pre-disease, we find significant correlations of 

allele frequencies with environmental variables, including 365 unique loci linked to 71 genes, 

suggesting local adaptation to abiotic environment. The majority of candidate loci detected pre-

DFTD are not detected post-DFTD arrival. Several post-DFTD candidate loci are associated with 
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disease prevalence and were in linkage disequilibrium with genes involved in tumor suppression 

and immune response. Loss of apparent signal of abiotic local adaptation post-disease suggests 

swamping by strong selection resulting from the rapid onset of DFTD.

A central goal of molecular ecology is understanding how ecological processes generate and 

maintain the geographic distribution of adaptive genetic variation. Landscape genomics has 

emerged as a popular framework for identifying candidate loci that underlie local adaptation 

(Manel et al. 2010; Rellstab et al. 2015; Hoban et al. 2016; Lowry et al 2017; Storfer et al. 

2018). Using genomic-scale data sets, researchers screen for loci that exhibit patterns of 

selection across heterogeneous environments (Haasl & Payseur 2016). One widely used 

method for testing for statistical associations of allele frequencies of marker loci across the 

genome with environmental variables is genetic-environmental associations (GEAs) 

(Rellstab et al. 2015; Whitlock & Lotterhos 2015; Francois et al. 2016; Hoban et al. 2016).

GEAs identify significant correlations of allele frequencies at candidate loci with abiotic 

environmental variables such as altitude, rainfall, and temperature. GEAs have been 

successful, for example, in identifying loci associated with adaptation to hypoxia in high-

elevation human populations (Beall 2007, Peng et al. 2011), stress response in lichen 

populations along altitudinal gradients (Dal Grande et al. 2018), and leaf longevity and 

morphogenesis in response to aridity (Steane et al. 2014). Climatic, geographic, and fine-

scale remote sensing data that explain large amounts of heterogeneity in the environment are 

often easily obtained (Rellstab et al. 2015). However, data on biotic factors such as life-

history traits (Sun et al. 2015), community composition (Harrison et al. 2017), or disease 

prevalence often involve extensive fieldwork and are far more difficult and labor-intensive to 

collect than abiotic variables. Accordingly, few landscape genomics studies have tested for 

the influence of biotic variables on the spatial distribution of adaptive genetic variation.

Infectious diseases often impose strong selective pressures on their host and thereby 

represent key biotic variables increasingly recognized for their severe impacts on natural 

populations (summarized in Kozakiewicz et al. 2018, e.g., Biek & Real 2010; Wenzel et al. 

2016; Leo et al. 2016; Mackinnon et al. 2016; Eoche-Bosy et al. 2017). Landscape genomic 

studies of the disease can help guide management programs, such as captive breeding 

designs and reintroductions (Hoban et al. 2016; Hohenlohe et al. 2019). Additionally, 

landscape genomics studies have been used to elucidate how the landscape influences the 

distribution and spread of the pathogen (Robinson et al. 2015; Schwabl et al. 2017). 

However, studies disentangling the influence of pathogen dynamics from that of other 

abiotic landscape features have had limited statistical power to date. For example, Wenzel et 

al. (2016) tested for correlations between parasite burden and genetic differentiation across 

the landscape but did not detect any statistically significant associations due to stochasticity 

in the genomic background created by dispersal. The disease may play an important role in 

the distribution of adaptive genetic variation across the landscape, potentially swamping 

signatures of local adaptation to the abiotic environment.

Tasmanian devils (Sarcophilus harrisii) and their transmissible cancer, devil facial tumor 

disease (DFTD), offer such an opportunity. Devils are isolated to the island of Tasmania and 

have been sampled across their entire geographic range. Intense mark-recapture studies and 
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collection of thousands of genetic samples have been conducted over the past 20 years, both 

before and after DFTD arrival across multiple populations. This sampling effort, in addition 

to resources such as an assembled genome (Murchison et al. 2012; Patton et al. 2019), 

provides extensive data to employ GEAs to test for the relative effects of abiotic 

environmental factors versus DFTD.

In 1996, the first evidence of DFTD was documented in Mt. William/Wukalina National 

Park (McCallum 2008). In just over two decades, DFTD has spread across the majority of 

Tasmania with nearly a 100% case fatality rate (Hawkins et al. 2006; McCallum et al. 2009), 

and a second independently evolved clonal transmissible cancer (DFT2) has since emerged 

(Stammnitz et al. 2018; Pye et al. 2016a). Transmission appears to be largely frequency-

dependent (McCallum et al. 2009; McCallum 2012), with tumors originating on the face or 

in the oral cavity and being transferred as allografts (Pearse et al. 2012) through biting 

during social interactions (Hamede et al. 2009). DFTD has a single, clonal Schwann cell 

origin (Murchison et al. 2010; Siddle et al. 2010) and evades host immune system detection 

via downregulation of host major histocompatibility complex (Siddle et al. 2013). Low 

overall genetic variation in devils resulting from population bottlenecks that occurred during 

the last glacial maximum as well as during extreme El Niño events 3000–5000 years ago 

(Brüniche-Olsen et al. 2014; Patton et al. 2019) has also been attributed to high 

susceptibility to this emerging infectious disease.

DFTD imposes extremely strong selection as it has caused local population declines 

exceeding 90%, and an overall species-wide decline of 80% (Jones et al. 2004; Lachish et al. 

2009; Lazenby et al. 2018). However, small numbers of devils persist in areas with long-

term infection likely resulting from evolutionary responses in the Tasmanian devil (Jones et 

al. 2008; Brüniche-Olsen et al. 2013; Epstein et al. 2016; Wright et al. 2017). Indeed, recent 

work has shown: (1) rapid evolution in genes associated with immune-related functions 

across multiple populations (Epstein et al. 2016), (2) sex-biased response in a few large-

effect loci in survival following infection (Margres et al. 2018a), (3) evidence of effective 

immune response (Pye et al. 2016b), and (4) cases of spontaneous tumor regression (Pye et 

al. 2016b; Wright et al. 2017; Margres et al. 2018b). These studies, however, focused on 

relatively small geographic areas.

Here, we estimated allele frequencies in 6886 SNPs both randomly selected and previously 

shown to be associated with DFTD (Epstein et al. 2016) in 3287 devils from seven localities 

throughout Tasmania sampled both prior to and following disease arrival. We investigated 

four questions about the relative effects of abiotic environmental variables versus DFTD on 

the genomics of adaptation in Tasmanian devil populations: Question (1) Were there 

differences in the number of genetic clusters detected post-DFTD arrival? Question (2) Pre-

DFTD arrival, what were the genetic-environmental associations of devil populations with 

abiotic variables (i.e., climatic variables, elevation, vegetation cover)? Question (3) Were 

statistical signals of local adaptation to abiotic variables detected pre-disease weakened 

following the arrival of DFTD? Question (4) Has genetic variation declined following 

disease arrival? Lack of significant variation in population structure (1) and genetic diversity 

(4) following disease arrival may suggest directional selection led to changes in allele 

frequencies at candidate loci rather than genetic drift owing to small surviving population 
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sizes. We predicted that the DFTD epidemic would result in swamping of prior genetic-

environmental associations with the abiotic environment (3 and 4).

Methods

TRAPPING AND SAMPLING DATA

Field data and ear biopsy samples from 3287 Tasmanian devils were collected from seven 

different locations across their geographic range in Tasmania (Fig. 1), pre and post-DFTD, 

between 1999 and 2014 (Table 1). These geographic sampling locations were selected to 

maximize the extent of abiotic environmental heterogeneity and variation in disease 

prevalence across the species’ geographic range. On the eastern seaboard, coastal 

populations occupying narrow peninsulas were characterized by lower seasonal rainfall and 

moderate human activity (Freycinet and Forestier). In contrast, the coastal heathlands and 

dry grasslands of Mount William National Park and the coastal wetlands and lagoons that 

dominate the Narawntapu National Park in northeastern Tasmania experienced wetter 

climates. Inland, high elevation, habitats had greater annual temperature ranges and were 

heavily influenced by anthropogenic disturbance including increased surface area of sealed 

roads (Fentonbury) and commercial forestry (West Pencil Pine). While both Woolnorth and 

West Pencil Pine were dominated by heavy rainfall, Woolnorth had minimal human 

development and was primarily characterized by dry, coastal Eucalypt forests common along 

the northwest coast.

Five of these locations became infected with DFTD during the study; one location remained 

disease-free, and one location was already infected at the beginning of the study (Fig. 1, 

Table 1). We considered the first year of disease arrival as pre-disease in our analyses, as the 

generation time for Tasmanian devils is approximately two years. Tasmanian devils were 

trapped using standard protocols (Hamede et al. 2015) involving custom-built polypropylene 

pipe traps 30 cm in diameter (Hawkins et al. 2006). These traps were set and baited with 

meat for ten consecutive trapping nights. In each 25 km2 trapping site, at least 40 traps were 

set. Traps were checked daily, commencing at dawn. Each individual was permanently 

marked upon first capture with a microchip transponder (Allflex NZ Ltd, Palmerstone North, 

New Zealand). Additional specifics regarding field protocols, samples taken, and phenotypic 

data recorded can be found in Hawkins et al. (2006), Hamede et al. (2015), and Lazenby et 

al. (2018). Animal use was approved under IACUC protocol ASAF#04392 at Washington 

State University.

OVERVIEW OF RAD-CAPTURE ARRAY DEVELOPMENT

We used 90,000 Restriction-site Associated DNA sequencing (RAD-seq) loci generated 

from 430 individuals sampled across 39 sampling localities using the PstI restriction enzyme 

(Epstein et al. 2016; Hendricks et al. 2017) to develop a RAD-capture probe set (Ali et al. 

2016). The details of the sample collection, preparation, and data processing of these 

original RAD loci is described in Epstein et al. (2016). Using these data, baits were designed 

to target a total of 15,898 RAD loci. This array included three categories of RAD loci (with 

some overlap among categories): (i) 7108 loci spread widely across the genome that were 

genotyped in more than half of the individuals, had ≤3 non-singleton SNPs, and had a minor 
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allele frequency (MAF) ≥0.05; (ii) 6315 loci based on immune function, restricted to non-

singleton SNPs genotyped in ≥ 1/3 of the individuals, in and within 50 kb of an immune-

related gene; (iii) 3316 loci showing preliminary evidence of association with DFTD 

susceptibility with ≤5 non-singleton SNPs. Each RAD-capture locus was ≥20 kb away from 

other targeted loci to minimize potentially confounding effects of linkage disequilibrium. 

Additional details of the creation of the RAD-capture probe set have been summarized in 

Margres et al. (2018a).

DATA QUALITY AND FILTERING

Libraries produced from the RAD-capture arrays were constructed using 3,568 individuals 

from the seven distinct geographical locations across Tasmania (Fig. 1). Libraries were then 

sequenced on a total of 12 lanes of an Illumina platform (5 lanes on NextSeq at the 

University of Oregon Genomics & Cell Characterization Core Facility; seven lanes on HiSeq 

4000 at the QB3 Vincent J. Coates Genomics Sequencing Laboratory at the University of 

California, Berkeley). We de-multiplexed paired-end 150 bp reads, removed low quality 

reads, and removed potential PCR/optical duplicates using the clone_filter program (Stacks 

v1.21; Catchen et al. 2013). We then used Bowtie2 (Langmead & Salzberg 2012) to align 

reads to the reference genome (Murchison et al. 2012; Devil_ref v7.0 GCA_00189315.1 

downloaded from Ensembl May 2017, N50 20.13 kilobases for contigs and 1847.19 

kilobases for supercontigs). We required the entire read to align from one end to the other 

without trimming (-end-to-end) with sensitive and -X 900 mapping options. With the 

resulting bam files, we created individual GVCF files using the option to emit all sites in the 

aligned regions with HaplotypeCaller from GATK (McKenna et al. 2010). All GVCF files 

were analyzed together using the option GenotypeGVCFs that re-genotyped and re-

annotated the merged records. We selected SNPs using the SelectVariants option and filtered 

using the following parameters: QD < 2.0 (variant quality score normalized by allele depth), 

FS > 60.0 (estimated strand bias using Fisher’s exact test), MQ < 40.0 (root mean square of 

the mapping quality of reads across all samples), MQRankSum < −12.5 (rank-sum test for 

mapping qualities of reference versus alternative reads), and Read-PosRankSum < −8 (rank-

sum test for relative positioning of reference versus alternative alleles within reads). Using 

VCFtools (Danecek et al. 2011), additional filtering was performed to remove non-biallelic 

SNPs, indels, those with a minor allele frequency <0.05, and those missing data at more than 

50% of the individuals genotyped and 40% of the sites across all individuals. To parse out 

the genetic-environmental associations of abiotic factors from disease, samples were divided 

into pre and post-disease subsets prior to analyses. After filtering, we retained 3287 

Tasmanian devils (1521 before and 1765 after DFTD) and 6886 SNPs (Table 1). Post-

filtering, we retained (i) 3084 SNPs (2912 unique SNPs) in RAD loci targeted for their high 

genotyping rate and distribution across the genome; (ii) 250 SNPs (203 unique SNPs) in 

RAD loci targeted for immune function; (iii) 913 SNPs (757 unique SNPs) in RAD loci 

targeted due to preliminary evidence of association with DFTD; and (iv) 2827 off-target 

SNPs widely distributed across the genome. There were 32 overlapping SNPs between 

categories (i) and (ii), 141 SNPs overlapping between categories (i) and (iii), and 16 SNPs 

overlapping between categories (ii) and (iii). However, because there was an overlap of non-

unique SNPs between the overlapping categories, the numbers do not sum to the number 

total number of SNPs in each category.
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ANALYSES OF POPULATION STRUCTURE

To examine the underlying population structure in our dataset, both pre- and post-disease, 

we used fastSTRUCTURE (Alexander, Novembre & Lange 2009). fastSTRUCTURE is an 

algorithm that estimates ancestry proportions using a variational Bayesian framework to 

infer population structure and assign individuals to genetic clusters. We ran both the pre- and 

post-disease data sets with the number of genetic clusters (K) set from 1 to 18. Genetic 

relationships amongst sampled populations were also evaluated using discriminant analysis 

of principal components (DAPC) analysis (Jombart et al. 2010) implemented in the 

Adegenet package in R (Jombart 2008). This method transforms genotypic data into 

principal components and then uses discriminant analysis to maximize between-group 

genetic variation and minimize within-group variation. To determine the optimal number of 

genetic clusters, we used the k-means clustering algorithm for increasing values of K from 1 

to 20. We selected the optimal K value by selecting the visual “elbow” in the Bayesian 

information criterion (BIC) score, which is the lowest BIC value that also minimizes the 

number of components or genetic clusters retained.

GENETIC DIVERSITY

To identify signals of a potential genetic bottleneck, we tested for changes in genetic 

diversity pre- and post-disease emergence. We used VCFtools (Danecek et al. 2011) to 

calculate Weir and Cockerham’s estimator of FST (θ; Weir and Cockerham 1984) for all 

pairwise comparisons and all pre-post disease population comparisons. To gauge whether 

populations had significantly different FST values, we bootstrapped 95% confidence 

intervals for 10,000 iterations and tested whether the confidence intervals bounded zero. 

Additionally, we calculated estimated heterozygosity (Nei and Li 1979) and Tajima’s D 

(Tajima 1989) for each population before and after disease arrival to estimate standing levels 

of genetic variation (Danecek et al. 2011). Each metric was calculated by taking the average 

of each non-overlapping windows of 10 kilobases (kb) per population pre and post-disease. 

We also tested for changes in inbreeding (Fis) using the R package Adegenet (Jombart 2008) 

for each population pre and post-disease. Finally, we tested for changes in effective 

population size calculated from estimates of linkage disequilibrium among SNPs in 

NeEstimator v2 (Do et al. 2014).

ABIOTIC ENVIRONMENTAL VARIABLES

We used ArcGIS 10 to plot the location of every sampled Tasmanian devil. Pemberton et al. 

(1990) found that Tasmanian devils typically have a home range of 10–20 km2, with devils 

often having overlapping home ranges. A trapping area of 25 km2 thus reflects an area of 

overlapping home ranges for devils that has been consistently used by the Tasmanian 

Department of Primary Industries, Parks, Water and Environment, save the Tasmanian 

Devils project, University of Tasmania and other researchers for over two decades and has 

supported dozens of publications. Over the course of the 15 years (1999–2014; Table 1), 

however, there was some variation in the shape of the trapping grids at the sampling sites 

due to changes in land use and permissions. To account for this variation, we located the 

centroid of each sampling area using the calculate geometry tool in ArcGIS 10. We then 

drew a 25 km2 ellipse around each centroid to represent the total trapping area for each 
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sampling location and extracted environmental data for each location. Although the 

Freycinet and Forestier sites were larger than other sampling sites, the centroids were in the 

middle of peninsulas, likely making them representatives of those sites. We collected abiotic 

environmental data describing variation in climate, elevation, vegetation, human 

development and hydrological features for this study (Table S1). The data layers for each of 

the climatic and vegetation variables for each site were collected and aggregated by 

WorldClim between 1970–2000 at 1-km spatial resolution (www.worldclim.org; Fick & 

Hijmans 2017). Elevation values were similarly calculated by extrapolating the centroid of 

the 25 km2 ellipses for each site; elevation data were collected and aggregated by 

Geoscience Australia between 2001–2015 at 5 m spatial resolution (www.ga.gov; 

Geoscience Australia 2015). The centroids for each of the climatic, elevational, and 

vegetative variables for each sampling location were used in downstream analyses. The only 

environmental variables that were not summarized as centroids were the length of sealed 

roads, length of public roads, and the total surface area of water. The data layers for these 

three variables were generated by the Land Information System Tasmanian between 2013 

and 2016 at 25–500 m spatial accuracy (www.thelist.tas.gov.au). Sealed and public road 

lengths were calculated by cumulatively summing the total length of the sealed roads in the 

entire 25 km2 ellipse for each sampling location. The total surface area of water was 

calculated by adding the total surface area of hydrological features we hypothesized would 

be accessible to Tasmanian devils including “natural or dammed freshwater,” “stream,” and 

“watercourse” hydrological features. Table S1 includes all of the 18 abiotic environmental 

variables analyzed and the location of each centroid.

We extracted the values for each environmental variable at five randomly chosen locations 

within the ellipse generated for each trapping area to test whether there was significant 

heterogeneity for any of the environmental variables across the trapping area of any 

particular site. Using the calculate statistics tools in ArcGIS 10, we calculated the mean, 

standard deviation, and 95% confidence intervals for each of the environmental variables 

within each site. If the environmental values fell within the 95% confidence interval of the 

randomly selected points at each site, we deemed the environmental value as an adequate 

representation for that environmental variable site-wide (Table S2).

To estimate collinearity among environmental variables (Table S1), we conducted a principal 

component analysis (PCA) using the prcomp package in R including the environmental 

values for each of our seven sampling localities. The top two abiotic environmental variables 

that explained the greatest proportion of the variance in each of the first six principal 

components in the PCA were used as explanatory variables in the subsequent GEA analyses. 

We did not include the seventh principal component as the amount of variation in the data 

explained by this component was negligible (<0.001). To ensure that environmental 

variables were not correlated, we conducted paired correlative tests using Spearman’s ρ). 

Significantly correlated environmental variables were excluded (p ≤ 0.01).

BIOTIC ENVIRONMENTAL VARIABLES

To estimate disease prevalence within populations, we used trapping records compiled in a 

database provided by collaborators at the University of Tasmania and the Department of 
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Primary Industries, Parks, Water and Environment from 1999 to 2014 from the six infected 

populations (McCallum et al. 2009; Hamede at al. 2009, 2012, 2013, 2015; Lachish et al. 

2009). Field records contained data regarding every unique trapping encounter as well as 

phenotypic data for each devil. Likelihood of a single devil being infected with DFTD is 

recorded for devils in the field using a scale of 1–5 (Hawkins et al. 2006). We calculated 

disease prevalence using the total number of unique devils trapped with a high probability of 

being infected divided (DFTD score ≥ 3) by the number of unique devils captured alive that 

year. Infection probability scores were derived in the field based on visual infection status 

from 1 (no apparent signs of DFTD) to 3 (wounds and other irregularities present) to 4 

(tumors present) (Lachish et al. 2007). In our GEAs, we averaged the annual disease 

prevalence values across years 2–4 after DFTD was confirmed at a particular sampling 

location. We selected these years instead of using the first year of infection of DFTD 

because there was variation in estimates of prevalence during the first year of DFTD 

detection and no guarantee that this truly was the first year of infection.

GENETIC-ENVIRONMENTAL ASSOCIATION (GEA) ANALYSES

We tested correlations of allele frequencies with abiotic and biotic environmental variables 

across the seven study locations using latent factor mixed models (LEA; Frichot & Francois 

2015) and Bayenv2 (Gunther and Coop 2013). The R package for landscape and ecological 

association studies (LEAs) uses latent factors, analogous to principal components in a PCA, 

to account for background population structure (Frichot & Francois 2015). These latent 

factors serve as random effects in a linear model that tests for correlations between 

environmental variables and genetic variation (Frichot & Francois 2015). The number of 

populations sampled was used for the number of latent factors in LEA. Bayenv2 uses allelic 

data to generate a variance-covariance matrix, or kinship matrix, to estimate the neutral or 

null model for underlying demographic structure (Coop et al. 2010; Gunther and Coop 

2013). Spearman’s p statistics were then calculated to provide non-parametric rankings of 

the strength of the association of each genotype with each environmental variable compared 

to the null distribution described by the kinship matrix alone (Gunther and Coop 2013). The 

non-parametric Spearman’s rank correlation coefficients have been shown to be more 

powerful in describing genetic-environmental relationships if there are extreme outliers 

(Whitlock and Lotterhos 2015; Rellstab et al. 2015).

CANDIDATE GENE IDENTIFICATION

Although each of the landscape genomic methods listed above detects GEAs, each program 

has been shown to vary in true-positive detection rate given sampling scheme, underlying 

demography, and population structure (Lotterhos and Whitlock 2014; Rellstab et al. 2015; 

Hoban et al. 2016). To reduce the false-positive rate without sacrificing statistical power, we 

used MINOTAUR (Lotterhos et al., 2017; Verity et al. 2017) to identify putative loci under 

selection. MINOTAUR takes the test statistic output from each of the GEAs and identifies 

the top outliers in multi-dimensional space; here, we used the Mahalanobis distance metric 

to ordinate our outliers. We selected this distance metric as it has been shown to have high 

statistical power on simulated genomic data sets (Verity et al. 2017) and because our data 

followed a parametric distribution. We chose our final set of candidate SNPs by selecting the 

top 1% of loci that had the largest Mahalanobis distance for each environmental variable. 
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Thus, we performed seventeen separate MINOTAUR runs: eight for the eight abiotic 

environmental variables tested pre-DFTD arrival and nine, including the eight abiotic 

environmental variables and a single biotic variable, post-DFTD arrival.

We then used bedtools (Quinlan and Hall 2010) to identify genes within one kb of each 

candidate SNP in the devil reference genome (Murchison et al. 2010). Protein-coding genes 

within these windows were included in the list of candidate genes. Gene annotations were 

retrieved from the ENSEMBL database (Akey et al. 2002), gene IDs were derived from the 

NCBI GenBank database (Wheeler et al. 2007), and descriptions of putative function and 

gene ontologies were gathered from www.genecards.org (Fishilevich et al. 2017) and the 

Gene Ontology (GO) Consortium (Ashburner et al. 2000). We then tested for enrichment of 

GO terms in our candidate gene list using the R package SNP2GO (Szkiba et al. 2014). 

SNP2GO tests for over-representation of GO terms associated with genes within a specified 

region using Fisher’s exact test and corrects for multiple testing using the Benjamini-

Hochberg and Yosef (1995) false-discovery rate (FDR). We ran this program on the pre- and 

post-disease candidate sets separately and used all genes within one kb of the original RAD-

capture data set as our reference set. Enriched terms were those with an FDR ≤ 0.05.

FISHER′S EXACT TEST

To determine if GEAs detected pre-DFTD remained post-DFTD arrival, we calculated the 

change in the MINOTAUR rank of each candidate locus following disease arrival. We 

ranked loci by Mahalanobis distance and compared the rank of the pre-DFTD candidate loci 

to post-disease arrival for each of the eight abiotic environmental variables. To determine 

whether a greater proportion of loci detected pre-disease had reduced MINOTAUR rankings 

post-disease arrival than we would expect by random chance, we conducted Fisher’s exact 

tests using an α = 0.05. If we detected a significantly higher proportion of models in which 

the MINOTAUR rankings were lower post-disease than pre-disease, then we considered the 

molecular signal of the genetic-environmental association to be swamped by disease.

Results

POPULATION STRUCTURE AND GENETIC DIVERSITY

Our analyses generally supported K = 6 both pre and post-DFTD arrival reflecting the six 

populations sampled during each time period. However, there was uncertainty of the optimal 

K-value in fastSTRUCTURE. Using the “chooseK” python script recom-mended in 

fastSTRUCTURE, K = 9 (Fig. S1A) received the greatest support pre-DFTD and K = 8 post-

DFTD (Fig. S1B). However, in both cases, the difference in the marginal likelihood between 

K = 4 and the selected K was very small (pre-DFTD ΔMarginal Likelihood = 0.003, post-

DFTD ΔMarginal Likelihood = 0.0032; Figs. S1 and 2). For visual comparison, we also 

plotted K = 6 pre-DFTD (Fig. 2A) and post-DFTD (Fig. 2B), which reflects the number of 

populations sampled. The K value for DAPC that minimized the BIC, as well as the number 

of components included, was K = 6 both pre-DFTD (Fig. 2C) and post-DFTD (Fig. 2D). 

Pairwise FST values produced using Weir and Cockerham’s estimator would also support K 

= 6 as all bootstrapped confidence intervals for population comparisons did not bound zero 

(Table 2). There were no substantial differences between estimated heterozygosity, Tajima’s 
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D, Nei’s Fis or effective population size (Ne) (Table S3) for any of the populations after 

DFTD arrived, suggesting there were no significant changes in genetic diversity following 

disease arrival.

ENVIRONMENTAL VARIABLES

We initially considered 18 abiotic environmental variables (Table S1) that may be relevant to 

the distribution of genetic variation across the devil’s geographic range. Eight of these 18 

variables (Table 3) explained a significant proportion (>0.99) of the variance in the 

environmental data as summarized in the top principal components (Table S4). Mean annual 

temperature and elevation were significantly correlated (mean annual = Spearman’s ρ = 

−0.964, p = 0.0028). We retained both of these environmental variables because we know 

they have a strong effect on gene flow in devil populations (Storfer et al. 2017). There were 

no statistically significant differences between the environmental values or any of the five 

randomly selected points for any of the environmental variables within each of the sampling 

locations (Table S2), indicating a lack of significant within-site heterogeneity. These eight 

abiotic environmental variables were subsequently used in the GEAs.

LANDSCAPE GENOMICS ANALYSES

Combining GEAs across all abiotic variables, we identified 365 unique SNPs pre-DFTD and 

483 unique loci post-DFTD, of which 56 SNPs overlapped temporally, that received the 

greatest support from MINOTAUR as candidate loci. We identified candidate genes based on 

linkage disequilibrium (within one kb) to the unique loci, which resulted in 71 genes pre-

disease (Table S5) and 105 genes post-disease (Table S6); twenty-four of those genes 

overlapped (Fig. S3, Table S5). Of the 483 unique loci post-DFTD, 59 unique loci were 

associated with disease prevalence. Of these 59 loci associated with disease prevalence, 

eight of these loci were also detected pre-disease arrival. Within one kb of these 59 SNPs, 

there were 13 annotated genes, two of which overlapped temporally with the pre-disease 

candidate set.

CANDIDATE GENE IDENTIFICATION FOR SELECTION BY THE ABIOTIC ENVIRONMENT

Mean annual temperature and annual temperature range were the two most common climatic 

variables significantly correlated with the allele frequencies of candidate SNPs among devil 

populations pre-disease arrival (Table S7). Twenty-six of the top 71 candidate genes pre-

disease were associated with at least one of these two environmental variables and broadly 

associated with response to protein binding and response to stress (Tables S5 and S7). 

Specifically, genes associated with annual temperature range had GOs including cellular 

response to stress and RNA transport and processing. Mean annual temperature, in contrast, 

was correlated with genes with intracellular protein transport and protein localization GOs.

In addition to climatic variables, surface area of bodies of water, elevation, and vegetation 

index explained a large proportion of the observed variance in the abiotic environment 

across our seven sampling sites (Table S2). Surface area of bodies of water was correlated 

with 18 of the candidate genes pre-DFTD arrival that were associated with NOTCH 

signaling pathways and regulation of transcription by RNA-polymerase (Tables S5 and S7). 

Elevation was correlated with seven of the candidate genes with ion binding and 
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oxidoreductase activity functions. Vegetation index was correlated with allele frequencies of 

13 of the candidate genes that had GOs including transcription and cellular protein binding. 

Although mean elevation and mean annual temperature among sampling locations were 

found to be correlated, there were no shared associations between these two variables and 

any candidate genes (Table S7).

In our abiotic GEAs post-disease arrival, annual temperature range, mean annual 

temperature, and vegetation index were the top environmental variables most frequently 

associated with candidate SNPs (Tables S6 and S8). Similar to pre-DFTD, GOs for genes 

associated with these two temperature variables included a cellular response to stimulus, 

RNA processing and regulation, and ion binding. In contrast to pre-DFTD, mean annual 

temperature and annual temperature range were associated with genes with cell signaling, 

immune response, and apoptotic processes. Vegetation index was associated with 17 of the 

candidate genes post-DFTD with GOs including cellular differentiation and cell signaling 

pathways (Tables S6 and S8).

There was no significant enrichment of any GO category of our candidates (pre-disease p = 
0.344; post-disease p = 0.297); there were commonalities in the putative functions of 

candidate genes pre-versus post-disease including regulation of transcription and translation 

and cellular response to external stress (Tables S5 and S6).

CANDIDATE GENE IDENTIFICATION FOR SELECTION BY THE BIOTIC ENVIRONMENT

Disease prevalence was significantly correlated with divergent allele frequencies among 

sampled devil populations (Tables S8 and S9). Thirteen of the 81 candidate genes detected 

uniquely post-DFTD arrival were associated with disease-prevalence (Tables S8 and S9). 

The associated GOs for these 13 genes included cell-cycle regulation, regulation of cell 

proliferation, and immune response (Table S6). All 13 genes were also associated with 

abiotic environmental variables. Genes TBXAS1 and FGGY were found in both the pre and 

post-DFTD candidate gene lists and associated with GOs including oxidoreductase activity 

and metabolism (Table S5).

FISHER′S EXACT TEST FOR DISEASE SWAMPING

Putative GEAs found pre-DFTD were consistently undetected post-DFTD arrival (Tables S5 

and S6). Using Fisher’s exact tests, fewer pre-DFTD candidate loci were detected post-

DFTD arrival than expected by random chance for each MINOTAUR analysis for each of 

the eight abiotic environmental variables (Fig. 3; Fig. S4). For example, we only detected 

three of the 69 putative pre-DFTD candidate loci using MINOTAUR post-DFTD arrival for 

genetic associations with mean annual temperature across sampled populations (Fisher’s 

Exact Test Odd’s ratio = 23.211, p < 0.001; Fig. 3).

Twenty-four of the original 71 candidate genes detected pre-disease overlapped with the 105 

candidate genes post-disease arrival (Table S5). Four were associated with at least one of the 

same environmental variables post-disease arrival as pre-disease, and 20 were correlated 

with different variables (Table S9). Two of the variants linked with TBXAS1 and FGGY 
were found to be associated with disease prevalence post-disease arrival, but abiotic 

environmental variables pre-disease arrival. For example, the FGGY gene was originally 
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associated with isothermality prior to disease arrival, but disease prevalence post-arrival. 

Putative functions of FGGY include carbohydrate phosphorylation and neural cell 

homeostasis (Singh et al. 2017; Dunckley et al. 2007; Table S5). Similarly, TBXAS1, which 

is putatively involved in oxidoreductase activity (Ullrich & Brugger 1994), was associated 

with vegetation index and mean annual temperature pre-disease arrival but was more 

strongly correlated with disease prevalence following disease arrival (Tables S5 and S9).

Discussion

Here, we showed Tasmanian devils are more genetically structured across Tasmania than 

previously documented (Miller et al. 2011; Brüniche-Olsen et al. 2014; Hendricks et al. 

2017) thereby creating conditions that favor local adaptation. Indeed, GEAs showed 

signatures of selection across populations, suggestive of adaptation to local abiotic factors 

prior to disease arrival. Mean annual temperature and annual temperature range were abiotic 

variables most frequently associated with candidate genes (Xu et al. 2017), and these abiotic 

factors have been established as important for devil habitat use (Jones and Rose 1996; Jones 

and Barmuta 2000). Surface area of bodies of water, elevation, and vegetation index were 

also associated with candidate genes and correlated with the largest amount of geographic 

heterogeneity across the landscape (Zhao et al. 2014; Schweizer et al. 2016; Mukherjee et al. 

2019). Nonetheless, most of the candidate genes detected prior to disease arrival were not 

detected post-DFTD emergence, reflecting the strong selection imposed by DFTD. Instead, 

GEAs showed evidence of significant correlations of disease prevalence with allele 

frequencies of several SNPs after disease arrival functionally related to immune response, 

apoptosis, and tumor regression. Taken together, these results suggest that DFTD swamps 

molecular signatures of local adaptation to abiotic variables. In contrast to previous findings 

(Brüniche-Olsen et al. 2016) and despite large declines in census population size across all 

diseased populations, no substantial changes in genetic diversity or effective population size 

were detected pre- versus post-disease, suggesting the detected patterns were likely not the 

result of genetic drift.

We found conflicting results among our demographic analyses of our sampled populations. 

Similar to previous studies, we detected admixture between several of the seven sampling 

locations using fastSTRUCTURE (Fig. 2A), which showed an optimal K value between 4 

and 9. However, using DAPC (Fig. 2B), we detected distinct genetic clusters among the 

sampling locations, regardless of disease presence. Pairwise population FST calculations 

were all significantly greater than zero, indicating significant population differentiation 

between all populations sampled (Table 2). Regardless of the analysis employed, we 

identified six genetic clusters throughout the study area, representing greater amounts of 

genetic structure than previously detected. Two previous studies found high levels of 

admixture between two genetic clusters separating eastern and western Tasmania (Brüniche-

Olsen et al. 2014; Hendricks et al. 2017), while another, based on mtDNA genomes, 

suggested three genetic clusters (Northwest, East, and Central; Miller et al. 2011). Our 

results differed from the previous work because we included much larger sample sizes and 

numbers of loci, which likely increased our power to detect population structure.
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Despite extensive, range-wide population declines, we found no evidence for loss of genetic 

diversity following disease arrival. Devil populations had low levels of heterozygosity across 

the species’ geographic range, regardless of whether DFTD was present (Table S3), 

consistent with findings from previous studies examining levels of genetic variation among 

populations pre-DFTD (Jones et al. 2004; Brüniche-Olsen et al. 2014; Hendricks et al. 

2017). While there was population genetic differentiation (FST) between sampled 

populations, there was little difference in inbreeding coefficient (FIS) among populations 

pre- versus post-disease arrival. Lack of a significant change in the positive Tajima’s D 

values across populations following disease arrival (Table S3) also suggests maintenance of 

standing genetic variation even after substantial population declines. One possibility for the 

lack of detectable changes in genetic diversity would be that simply not enough time has 

passed since the bottleneck. If we take into account the increased precocial breeding in 

diseased populations, which reduces the generation time of females from 2 to 3 years prior 

to disease outbreak to 1.5–2 years post-disease (Jones et al. 2008), the maximum number of 

generations in our data set since disease arrival would be in Freycinet for 8–9 generations 

(see Table 1; 2–9 generations across all populations). Detection of significant changes in 

genetic diversity requires substantial reduction in effective population size for several 

generations (Luikart et al. 2010). Following DFTD outbreak, devil populations typically 

decline by 90% after 5–6 years. This time lag, coupled with the short timescale, perhaps 

resulted in low power to detect changes in genetic diversity.

The abiotic environmental variables used in our GEAs have been shown to be important 

determinants of devil distribution (Rounsevell et al. 1991; Jones and Rose 1996; Jones and 

Barmuta 2000). Devils are distributed throughout the diverse habitats of Tasmania, but their 

core distribution comprises areas of low to medium rainfall which are dominated by dry, 

open Eucalypt forest and coastal shrubland. Devils use varying vegetation types across the 

environment for different functions. Devils prefer a clear understory for movement, forest-

grassland edges for hunting, and generally avoid structurally complex vegetation and 

landscape features, such as rocky areas and steep slopes (Jones and Rose 1996; Jones and 

Barmuta 2000). Candidate loci linked to the CUX1 gene were strongly associated with 

vegetation index in devils, especially in heavily forested populations such as WPP (Table 

S7). CUX1, which is putatively involved in transcription regulation (Sansregret & Alain 

2008) and limb development in morphogenesis (Lizarraga et al. 2002), has been detected in 

mammalian systems as a candidate for adaptation to environments with a complex 

understory (Schweizer et al. 2016; Mukherjee et al. 2019). Differential expression of this 

gene in muscle tissue of the bovine species Bos frontalis relative to domestic cattle was 

suggested to assist in reducing energetics required for navigating complex, hilly 

environments in India (Mukherjee et al. 2019).

Significant genetic variation among devil populations was also shown to be associated with 

the total surface area of bodies of fresh and marine water between sampling sites. A previous 

transcriptomics studies of Tasmanian devil populations showed significant enrichment of 

differential expression of pre-disease candidate genes associated with environmental 

variation between coastal and inland populations (Fraik et al. 2019). Strong genetic-

environmental associations across devil populations throughout their heterogeneous 

geographic range provide evidence for the presence of local adaptive genetic variation.
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Although we found no significant enrichment for any GO category in the 71 genes identified 

in strong linkage disequilibrium with the top 1% of SNPs pre-DFTD, 21 of the genes were 

putatively involved in the cellular response to the stimulus, and regulation of transcription 

and RNA polymerase II (Table S5). Climatic variables including mean annual temperature, 

annual temperature range, and isothermality were all important in describing observed 

genetic variation across the devil geographic range.

Following the arrival of DFTD, both the number of loci and proportion of variation in the 

allele frequencies of the pre-disease candidate loci explained by the abiotic environment 

were significantly reduced. The ANKYM2 gene, for example, was strongly correlated with 

mean annual temperature prior to disease arrival (pre-disease, MINOTAUR rank = 36), but 

the strength of the genetic-environmental association significantly decreased post-disease 

arrival and it was no longer detected as a candidate locus (post-disease, MINOTAUR rank = 

2696). Only 24 of the 71 candidate genes detected pre-disease were included in the 105 

genes detected post-disease, with only one gene, ARPC2 (Actin related protein 2/3 Complex 

Subunit 2), uniquely correlated with the same variable prior to disease arrival. FGGY, for 

example, was strongly correlated with mean annual temperature prior to disease arrival (pre-

disease, Pearson’s correlate = −0.745, MINOTAUR rank = 25). Post-disease arrival, the 

strength of this relationship significantly decreased (post-disease, Pearson’s correlate = 

−0.082, MINOTAUR rank = 6615), and the SNP linked to this gene was more strongly 

correlated with disease prevalence (post-disease, MINOTAUR rank = 59). These discordant 

patterns of association of candidate loci with environmental variables pre-compared to post-

disease arrival may possibly be explained by pleiotropy or loss of association due to DFTD.

We detected 105 candidate genes post-disease arrival associated with both abiotic 

environmental variables and/or disease prevalence. Although there was no significant 

enrichment of any GO category, most genes associated with abiotic variables had stress 

response GOs, whereas post-disease many genes had GOs involved in cellular processes 

including apoptosis, cell differentiation and cell development, similar to what has been 

previously detected (Epstein et al. 2016; Margres et al. 2018a; Frampton et al. 2018). Genes 

involved in apoptosis detected in our GEAs, including DNAJA3 in the heat shock protein 

family, have also been previously identified in DFTD literature as candidates for anticancer 

vaccines (Tovar et al. 2018) as well as for their putative involvement in immunogenicity 

(Graner et al. 2000) and tumor suppression (Shinagawa et al. 2008). Functionally similar to 

PAX3, a gene associated with apoptosis and angiogenesis (Asher et al. 1996) and devil 

tumor regression detected in previous studies (Wright et al. 2017), we detected genes 

including FLCN and BMPER post-DFTD arrival (Qi et al. 2009). We also identified MGLL 
and TLR6 in our post-DFTD candidate list that are involved in the inflammatory response 

(Epstein et al 2016; Margres et al. 2018a).

The identification of candidate genes putatively involved in immune response (e.g., RFN126 
and IL9R), tumor suppression (e.g., DMBT1, FLCN, and ITFG1), signal transduction (e.g. 

ARHGEF37 and PPP1R12B) and cell-cycle regulation (e.g. TK2) associated with disease 

prevalence post-DFTD arrival provide evidence that disease may have had a strong influence 

on devil populations (Mollenhauer et al. 2003; Tsapogas et al. 2003; Bannert et al. 2003; 
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Leushacke et al. 2011; Purwar et al. 2012; Tsai et al. 2014; Sun, Eriksson & Wang et al. 

2014; Hasumi et al. 2015).

The lack of GO enrichment may be an artifact of the RAD-capture panel. Loci targeted 

herein were linked to or found in coding regions of both putatively neutral genes as well as 

those involved in immune response, potentially biasing our GO enrichment analysis. 

Another explanation for the lack of enrichment could stem from our conservative approach 

for identifying outliers. Using MINOTAUR, we took the top 1% of loci from each GEA as 

our putative candidates. Although this approach reduces false positives, it also can reduce 

true positives and imposes an upper bound on the number of possible associations we can 

ascertain between our candidate loci and disease.

Intense, long-term monitoring of Tasmanian devils coupled with an expansive temporal and 

geographic dataset provided the unique opportunity to test for changes in statistical 

signatures of GEAs. We hypothesized that DFTD would serve as an extremely selective 

event as it is nearly 100% lethal (Hamede et al. 2015) and can produce a rapid adaptive 

response (Epstein et al 2016; Wright et al. 2017; Margres et al. 2018a, b) that could swamp 

pre-disease allele frequency correlations with the abiotic environment detected with GEAs. 

Indeed, variation in allele frequencies of loci linked to candidate genes among devil 

populations prior to DFTD arrival appeared to be strongly associated with surface area of 

water among our coastal and inland populations (Tables S7–S9; Fraik et al. 2019). However, 

following disease arrival these GEAs were not detected. Although annual temperature range 

and vegetation index appeared to be important sources of selection in devil populations 

regardless of disease presence, most candidate genes identified pre-DFTD were not 

correlated with these variables after DFTD arrived (Fig. 3; Fig. S4).

The observed loss of pre-DFTD GEAs following disease arrival could also be the result of 

stochastic processes, such as drift operating on our populations following a significant 

demographic event (Lande 1976, 1993; Brüniche-Olsen et al. 2016). Following large 

catastrophes, locally adapted genotypes may be displaced or swamped out randomly by new 

genetic variation from neighboring populations via genetic rescue (Waddington 1974; Brown 

and Kodric-Brown 1977). If this were the case, our observation of loss of pre-DFTD 

candidate genes may be due to drift resulting from demographic change induced by DFTD 

versus the selection that DFTD imposed. In a previous study, Brüniche-Olsen and colleagues 

used time-series analysis and FST outlier tests to test for parallel signatures of selection in 

response to DFTD emergence. Using 1482 SNPs from devils sampled from six populations, 

they found discordance between the use of single-point and multiple timepoint selection 

analyses that suggested a non-conserved evolutionary response to DFTD (Brüniche-Olsen et 

al. 2016). However, numerous follow-up studies using significantly more loci, including 

another time-series analysis (Epstein et al. 2016), have provided additional evidence for a 

rapid evolutionary response to DFTD across devil populations, suggesting that DFTD is 

selecting for particular genetic variants post-DFTD arrival (summarized in Russell et al. 

2018 and Storfer et al. 2018b). Additionally, despite large decreases in field- based estimates 

of population size, we find no detectable significant changes to genetic diversity or effective 

population size following disease arrival and therefore no evidence of genetic drift.
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Emerging infectious diseases are increasingly recognized as significant threats to 

biodiversity and in extreme cases can lead to species’ range contractions and extinctions 

(Smith et al. 2006). Yet, few landscape genomics studies have tested for statistical 

correlations of allele frequencies with biotic variables such as infectious diseases. Here, we 

document a novel, biotic variable swamping out molecular signals of association to the 

abiotic environment. This finding is consistent with previous work that showed rapid 

evolution of Tasmanian devils in response to disease (Epstein et al. 2016; Wright et al. 2017; 

Margres et al. 2018a, b). Additionally, no appreciable declines in genetic diversity were 

detected across multiple analysis methods. Taken together, these results suggest that the 

observed patterns of allele frequency correlations with disease prevalence are more likely 

attributable to selection than genetic drift. The findings of this study demonstrate the utility 

of landscape genomics as a tool to explicitly test the influence of biotic factors, such as 

disease, on the spatial distribution of genetic variation.

Supplementary Material

Refer to Web version on PubMed Central for supplementary material.
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Figure 1. 
Map of Tasmania with each sampling location. The red lines and the corresponding years 

indicate the first year that disease was detected in these locations.
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Figure 2. 
Population assignments computed by fastSTRUCTURE and DAPC for samples collected 

prior to (A and C) and post (B and D) DFTD arrival. (A and B) Each vertical bar in the 

fastSTRUCTURE plots represents a single individual sampled atone of the sampling 

locations which are abbreviated along the x-axis. Within population clusters, individuals are 

arranged by most common ancestry proportion. K = 6 is plotted here. Each color in all plots 

represents a distinct genetic cluster. (C and D) DAPC scatterplots show the first two 

principal components for K = 6.
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Figure 3. 
Mahalanobis distances from MINOTAUR for each SNP pre-DFTD arrival (left plot) and 

post-DFTD arrival (right plot) for GEAs with mean annual temperature. SNPs are ordered 

by position along the chromosomes. The top 1% of loci with the largest Mahalanobis 

distance values pre-DFTD are indicated in red. (b) Post-hoc analyses found that a 

significantly greater number of candidate loci detected pre-DFTD arrival were not detected 

post-DFTD arrival. This trend was detected consistently across all eight of the abiotic 

environmental variables tested in genetic-environmental association analyses (output from 

the remaining seven variables can be found in Fig. S2).
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