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Abstract

Molecular dynamics (MD) simulations employing classical force fields (FFs) have been widely 

used to model molecular systems. The important ingredient of the current FFs, atomic charge, 

remains fixed during MD simulations despite the atomic environment or local geometry changes. 

This approximation hinders the transferability of the potential being used in multiple phases. Here 

we implement a geometry dependent charge flux (GDCF) model into the multipole-based 

AMOEBA+ polarizable potential. The CF in the current work explicitly depends on the local 

geometry (bond and angle) of the molecule. To our knowledge, this is the first study that derives 

energy and force expressions due to GDCF in a multipole-based polarizable FF framework. Due to 

the inclusion of GDCF, the AMOEBA+ water model is noticeably improved in terms of describing 

the monomer properties, cluster binding/interaction energy and a variety of liquid properties, 

including the infrared spectra that previous flexible water models were not able to capture.
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Classical force fields (FFs) are commonly used to describe inter-and intramolecular 

interactions in molecular dynamics (MD) simulations. In popular fixed charge FFs, the 

atomic charges remain fixed during simulations. It is well understood however charges 

distributions are affected by both chemical environments through polarization effect and 

local geometry changes.1 The former is explicitly treated in “polarizable” FFs such as Drude 

oscillator,2 atomic induced dipole,3 and fluctuating charge models, where the charges can be 

calculated from the energy equilibration,4–6 or bond capacity model.7 The latter is ignored 

by almost all classical FFs even though it is well known it causes issues. For example, the 

HOH angle of water in gas (104.5),8 liquid (~106)9 and ice (~109.5°)10 cannot be described 

consistently by common flexible model models.11–12 This is due to incorrect dipole 

derivative of these flexible water models, without accounting for intramolecular charge 

transfer or charge flux (CF) when water geometry changes. The spectroscopically 

determined force field (SDFF) electrostatics by Krimm and co-workers was one of the few 

FFs that adopt a CF contribution.13–15 Their study showed that CF is not only the key to the 

water angle opening from an isolated water molecule to its liquid phase but also helps in 

describing the conformational potential energy surface of the peptide.13 TTM-family models 

by Xantheas and coworkers are other examples that incorporate CF effect.16–17 Both the 

SDFF and TTM models show the necessity of incorporating CF for successfully describing 

vibrational spectroscopy which requires an accurate description of the molecular dipole 

surface.11, 13–17 Dinur pointed out that CF is a first-order contribution to the electrostatic 

force in general and should not be neglected in MD simulations for flexible molecules.12 

Dinur and Hagler proposed a geometry dependent charge flux (GDCF) model, where atomic 

charges are explicitly dependent on the local geometry (bond, angle and torsion), for a series 
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of small organic molecules. Based on the molecular dipole moments of organic molecules 

and amino acids calculated with density functional theory and point-charge FFs, Jensen and 

coworkers concluded that the majority (~85 %) of the conformational dependence of 

molecular dipole moments can be attributed to the pure geometry effect and the remainder 

should be explicitly modeled by GDCF model.18–19 Thus they suggested an inclusion of CF 

contribution from bond, angle and dihedral for developing more transferable FFs. By 

contrast, Dinur and Hagler demonstrated that CF due to bonds and angles is much more 

significant than that from dihedral.20

AMOEBA (Atomic Multipole Optimized Energetics for Biomolecular Applications) FF uses 

multipoles up to quadrupole to describe electrostatics and induced dipole to capture the non-

additive many-body effect.3, 21–24 AMOEBA+ potential was developed very recently, where 

the “short-range” physics including charge penetration25 and intermolecular charge 

transfer26 effects were incorporated. In addition, in the AMOEBA+ model, the original 

Thole polarization model (direct component)27–29 was improved to better capture the MP2 

many-body energy, along with better combining rules for empirical van der Waals potential.
30 Nevertheless, the atomic charge in the AMOEBA+ model is still independent of the local 

geometry changes. Consequently, similar to the current AMOEBA model and other flexible 

water models, an artificially large equilibrium HOH angle of 108.8° was used in AMOEBA+ 

in order to reach the correct bending angle in the liquid phase (~106°). As mentioned above, 

it has been well recognized that this is attributed to the fact that the molecular charge 

distribution cannot properly adjust to the changing geometry, i.e. dipole derivatives are 

incorrect. In this work, we implement the GDCF model into AMOEBA+ potential. Different 

from the model proposed by Dinur and Hagler,20 only the CF along bond and angle 

contributions are considered. In addition, we systematically integrated the GDCF model 

with permanent and polarizable multipole interactions, with analytical gradients. With CF 

inclusion, the previous AMOEBA+ water model was reparametrized using ForceBalance 

toolkit31 by targeting on both gas-phase QM data and liquid-phase observables, resulting in 

the current AMOEBA+(CF) water model.

To use a water molecule as an illustration (Figure 1), CF along each bond is described as a 

function of the deviation of bond and angle from their equilibrium values. For water, 

experimental angle and bond length (104.5° and 0.9572 Å) are used as the reference. The CF 

direction rules are kept the same as those suggested by Dinur and Hagler.20 The CF on each 

atom is added to its permanent monopole values prior to energy and force computations. 

Derivation of the GDCF model in the AMOEBA+ framework, including permanent 

multipole and polarization energy and forces, is detailed in the Methodologies section and 

Supporting Information (SI). The newly parametrized AMOEBA+(CF) water model is 

extensively compared with the previous AMOEBA+ and other advanced water models. 

Below, to clearly demonstrate the improvement due to the inclusion of GDCF, we 

systematically report the results on the new water model from monomer to clusters and to 

liquid properties.
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Water monomer properties.

As mentioned above, GDCF potentially leads to the automatic angle opening in liquid phase 

simulations of water. This allows us to use an angle of experimental geometry as the initial 

parameter. As shown in Table 1, AMOEBA+(CF) angle and bond final parameters (after 

cluster/liquid refinement) resemble the experimental values of an isolated water molecule. 

The force constants of bonded terms are adjusted slightly to better describe the experimental 

vibration frequencies of an isolated monomer. In addition, using the minimal-energy 

geometry, we show that the quality of molecular dipole, quadrupole and polarizability is 

significantly improved over the AMOEBA+ model, which has a compensative bigger dipole 

and quadrupole moments but smaller molecular polarizability. Early AMOEBA models are 

not shown here but they are quite similar to AMOEBA+. As expected, the final/optimal non-

bonded parameters change only in small fraction comparing to those of the AMOEBA+ 

model (Table S1).

Water dimer properties.

Both the binding energy (Eq. 1) and interaction energy (Eq. 2) were computed. The former 

used optimized monomers as references where keeps the monomers the same as in the dimer 

geometry. The dissociation energy (negative of binding energy) of the canonical hydrogen-

bonding water dimer from the AMOEBA+(CF) model is 4.87 kcal/mol, which is slightly 

improved comparing to AMOEBA+ (4.81 kcal/mol) and in agreement with the 

CCSD(T)/CBS37 value of 4.98 kcal/mol. In addition, the AMOEBA+(CF) predicts 

intermolecular interaction energy components, including electrostatics, induction and van 

der Waals matching those from the SAPT2+ model (Figure S1). Besides the canonical HB 

dimer, the “Smith dimers”38 formed through different directional HBs often serve as model 

dimers to examine the anisotropy of water models. AMOEBA+(CF) predicts the binding 

energy of 10 Smith dimers extremely well with an RMSE 0.25 kcal/mol comparing to that of 

0.59 kcal/mol of AMOEBA+ model. As an additional comparison, the results from the MB-

UCB water model,39 which shares many similarities with the AMOEBA+ model, are also 

provided in Table 2.

ΔEbinding = Edimer
opt − 2Emonomer

pt (1)

ΔEinteraction = Edimer − Emonomer1* − Emonomer2* (2)

In the above equations, superscripts opt means optimized geometry and * means monomer 

geometry kept the same as in dimer.

Larger water clusters.

We demonstrate here that AMOEBA+(CF) model is capable of accurately predicting both 
binding energy (BE) and interaction energy (IE) for large water clusters from trimer to 17-

mers comparing to available CCSD(T)/CBS data. Here the BEs of water models were 

calculated from FF-optimized geometry while the CCSD(T)/CBS used the MP2-optimized 

geometry. The IEs were calculated using the MP2-optimized cluster geometry for both the 
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QM and FFs. As seen from Figure 2a–c for BEs for clusters from trimer to 17-mers, MB-

UCB and AMOEBA+ give overall RMSEs of 2.95 and 1.89 kcal‧mol−1 respectively. 

AMOEBA+(CF) model remarkably reduces the error to 0.67 kcal/mol (Table S2). For the 

IEs of tetra-, penta-and hexamer isomers, the AMOEBA+ model gives an RMSE of 1.74 

kcal/mol and AMOEBA+(CF) significantly reduces the error to 0.36 kcal/mol, which is 

slightly better than MB-pol water model (0.39 kcal/mol) (Table S3). It is worth mentioning 

that the MB-pol model was explicitly fitted on the IEs of water clusters41 while only the BEs 

were included as the targets in AMOEBA+(CF) parameterization (in addition to selected 

liquid properties). These results further indicate the importance of a correct monomer 

geometry for a flexible water model to accurately capture the complicated energy surfaces of 

water clusters.

Liquid properties.

As shown above, the addition of CF to AMOEBA+ significantly improves its ability to 

describe the structural and energetic properties of gas-phase water clusters. Here we examine 

the performance of AMOEBA+(CF) in liquid. Overall, AMOEBA+(CF) model maintains 

the quality of the AMOEBA+ model on predicting the average thermodynamic, structural 

and dynamic properties over a broad range of temperatures (Figure 3). For six 

thermodynamic properties included in the parametrization targets, density (Figure 3a), 

enthalpy of vaporization (Figure 3b), thermal expansion coefficient (Figure 3c) and 

isothermal compressibility (Figure 3e), AMOEBA+(CF) captures the experimental 

properties as well as the previous AMOEBA+ model. AMOEBA+(CF) liquid water density 

at room temperature is 997.4±0.1 kg/m3, almost exactly the same as experimental 

measurement (997.0 kg‧m−3), when a larger box of 60 Å3 and a van der Waals cutoff of 12 

Å are used. At 298 K, AMOEBA+(CF) is slightly worse than the AMOEBA+ model by 1.0 

cal/mol/K on predicting the isobaric heat capacity (Figure 3f), which is known to be difficult 

for flexible classical water models due to nuclear quantum effect.42 AMOEBA+(CF) notably 

improves the agreement with experiment for the static dielectric constant in the whole 

temperature range comparing to AMOEBA+ (Figure 3d). This can be attributed to a better 

quality of electrostatics, including CF-augmented-multipole moments and polarizability of 

the AMOEBA+(CF) model than AMOEBA+ (Table 1). At ambient conditions (298K, 1 

atm), AMOEBA+(CF) results in a static dielectric constant of 78.8±3.1, in excellent 

agreement with the experiment (78.4). The liquid properties which were not included in the 

parametrization targets are also well reproduced by AMOEBA+(CF) model, as shown in 

Figure 3g and Figure S2 (SI) for the radial distribution function at ambient conditions and 

Figure 3h for the self-diffusion constant at a series of temperatures (also Figure S3 and Table 

S4). The average O-H bond length and H-O-H angle in liquid by AMOEBA+(CF) are 0.96 

Å and 105.5°±4.7°, while experimental values are 0.97 Å and 106.1°±1.8°.32 Coincidently, 

AMOEBA+(CF) liquid HOH angle is consistent with the value of ab initio MD simulations 

(105.5°).43 By contrast, AMOEBA+ gives an appropriate average angle (106.3°±4.7°) but 

shorter bond length (0.95 Å) in liquid (also in cluster as shown by Hughes et al.44). It is 

worth noting that although both water models correctly predict the average angle, as 

mentioned above, AMOEBA+ angle is originated from an artificially large equilibrium angle 

parameter (108.8°) while the AMOEBA+(CF) water automatically expanded from 104.5° in 
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isolation to 105.5° in liquid due to CF. The average amount of charges transferred for a 

water molecule due to the geometrical deviation is only −0.0031 e on the oxygen atom, of 

which −0.0040 e is contributed from angle bending, +0.0004 e from symmetrical bond 

stretching and +0.0005 e from asymmetrical bond stretching.

Infrared spectra of liquid water.

It has been shown by the SDFF water model that charge flux is necessary to describe the 

dipole surface and vibrational spectra.15 It is also observed that iAMOEBA fails to predict 

the correct relative intensity of experimental infrared (IR) spectra.45 To investigate the 

impact of CF on the liquid IR spectra, we examined several AMOEBA-based water models 

either with or without CF. IR spectra were obtained within linear response theory through 

Fourier transforms of time correlation of net dipole (simulation details in SI). To compare 

with experimental IR spectra, corrections accounting for quantum effects were added to the 

calculated IR intensity by using a previously suggested approach.46 Figure 4 clearly 

indicates that without CF implementation, both AMOEBA14 and AMOEBA+ models 

predict a higher bending peak (~1600 cm−1) than the libration peak (~480 cm−1), which was 

similarly observed for the AMOEBA03 water (Figure S4) and iAMOEBA models.45 By 

contrast, AMOEBA+(CF) reduces the height of the bending peak and results in correct 

relative intensity comparing to the experiment. In the OH stretching region, it is seen that the 

stretching is shifted to low frequencies (blue shift) from 3755 cm−1 (asymmetric) and 3656 

cm−1 (symmetric) of an isolated water molecule (Table 1) to ~3550 cm−1 (Figure S4). This 

blue shift magnitude is insufficient comparing to experiment, which can be attributed to the 

lack of the explicit treatment of the nuclear quantum effect in this high-frequency region for 

classical models.47–48 With an adjusted bond stretching force constant, AMOEBA+(CF) 

model is able to predict the correct peak position (~3400 cm−1). Additionally, it is clear that 

a “stiffer” bond stretching force constant also helps to prevent the peak splitting observed in 

AMOEBA+(CF) using gas-phase force constant, as well as other models (Figure 4 and 

Figure S4). Thus this modified model is suggested for vibrational spectroscopy simulation in 

water. This modification on the bond stretching force constant has no effect on average 

liquid thermodynamic or dynamic properties we have computed.

Ice properties.

Three crystal forms of ice, Ih, Ic and II, were simulated at 1 atm pressure and experimental 

temperatures by employing AMOEBA+ and AMOEBA+(CF) water models. The 

computational details are provided in SI and the results are summarized in Table S11 and 

S12. The average density simulated by our models agree reasonably well with experiment 

within ~2% for Ih, ~4% for Ic and ~6% for ice II (Table S11), which can be attributed to two 

factors: (1) the lack of nuclear quantum effect, which normally leads to a reduction of the 

simulated density and (2) the exclusion of solid-phase properties in our parametrization. As 

shown in Table S12, AMOEBA+(CF) model shows the reasonable capability to predict other 

properties of ice Ih without explicitly parametrizing to ice data. For example, simulated 

enthalpy of sublimation for ice Ih at 269 K and 1 atm is −12.13 kcal/mol, which excellently 

agrees with experiment (−12.20 kcal/mol).50 By contrast, TTM-family models over-predict 

enthalpy of sublimation of ice Ih, with TTM4-F being −14.40 kcal/mol and TTM2-F being 
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13.39 kcal/mol.51 The average intermolecular OO distance (2.73 Å) is ~1% shorter than 

experimental value (2.76 Å), which is consistent with slightly higher simulated density. The 

intramolecular OH distance (0.97 Å) is in agreement with experiment (0.98 Å).52 

Experimental value of the HOH angle is commonly referenced as ideal tetrahedral angle of 

109.5°. A trend of HOH angle expansion (gas < liquid < ice) consistent to experiment is 

observed for the AMOEBA+(CF) model in three phases while the AMOEBA+ model gives 

the opposite trend as gas > liquid > ice.

In summary, we implemented the GDCF model into the multipole-based polarizable 

AMOEBA+ potential. The GDCF model was originally proposed by Dinur and Hagler and 

examined on small organic molecules within the point charge electrostatic framework.20 In 

this work, we integrated the GDCF model with atomic multipole electrostatics (with 

permanent multipoles up to quadrupole) and many-body atomic dipole polarization in the 

AMOEBA+ framework. The energy and force expressions due to the inclusion of GDCF 

were derived. We examined the impact of GDCF by updating the AMOEBA+ water model. 

Our results indicate that GDCF allows the use of appropriate equilibrium angle and bond 

length for an isolated water molecule which will spontaneously adjust to the correct values 

in liquid. The correct monomer geometry and GDCF lead to noticeable improvements in 

both the binding energy and the interaction energy of water clusters. Finally, AMOEBA+

(CF) water model shows excellent liquid properties, along with improved IR spectra in terms 

of capturing the relative intensity of bending and libration peaks.

The preliminary implementation of AMOEBA+(CF) was finished on our developing version 

of Tinker (CPU) and Tinker-OpenMM (GPU). MD simulations under NVE ensemble were 

carried out on both CPU and GPU codes to evaluate the energy conservation of the 

AMOEBA+(CF) model (simulation details in SI). To take advantage of the double precision 

of Tinker CPU code, simulation using a very tight induced dipole convergence (polar-eps 

10−12 D) with the iterative SCF method leads to only −0.01 kcal/mol/ns of total energy drift 

(out of ~ −3800 kcal/mol) (Figure S5a). Alternatively, simulation with the “OPT4” 

extrapolated polarization scheme53 on CPU gives a total energy drift of −0.03 kcal/mol/ns 

(Figure S5b). As expected, simulations on Tinker-OpenMM GPU (mixed precision) give a 

greater total energy drift of −0.2 kcal/mol/ns (Figure S5c) and +0.1 kcal/mol/ns (Figure S5d) 

for SCF (polar-eps 10−6 D due to single precision) and “OPT4” scheme respectively. These 

results indicate the excellent energy conservation of our implementation. Besides, it is 

shown that a negligible additional cost (less than 1%) arises from the GDCF algorithms. 

Further code implementation and optimization in the latest version of Tinker,54 Tinker-

OpenMM55 and Tinker-HP56 are ongoing, as well as the parametrization of AMOEBA+(CF) 

for a wide range of molecular systems.

METHODOLOGIES

Here we briefly describe the theoretical methodologies of CF implementation. AMOEBA+ 

potential adopts atomic multipoles to represent atomic charge distributions, with short-range 

penetration effect.25 Multipole moments on atom i can be expressed as
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Mi = q, μx, μy, μz, Θxx, … (3)

To implement the GDCF model, we followed the algorithms proposed by Dinur and 

Hagler20 by only including the bond and angle contributions. For a pair of bonded atoms a 
and b, CFs on atom a and b due to bond stretching are expressed as

dqa = − dqb = jb rab − rab
0 (4)

where rab and rab
0  are the actual and equilibrium bond lengths; jb is the determining 

parameter specific to this bond. The CF direction rule is kept the same as previous work.20 

Briefly, − dq is added to the (1) atom with a bigger atomic number; (2) atom with more 

connections if rule (1) is not applicable; (3) atom with more connected hydrogen atoms if 

both (1) and (2) are not applicable. For an angle ∠abc, the CFs due to angle bending are 

expressed as

dqa = jθ1 θ − θ0 + jb1′ rbc − rbc
0 (5)

dqc = jθ2 θ − θ0 + jb2′ rab − rab
0 (6)

dqb = − dqa + dqc (7)

where θ and θ0 are actual and equilibrium angle values; the second terms on the right side is 

due to asymmetric stretching, in which case change of rbc also affects atom a. jθ1, jθ2, jb1′

and jb2′  are CF parameters determined by the chemistry (atom types). The initial CF 

parameters of water were derived by fitting to the molecular dipole surface using MP2/aug-

cc-pvtz level of theory. In ForceBalance optimization, only the jθ is allowed to be further 

optimized as we found it is more sensitive to the HOH angle than the bond-related CF 

parameters. For organic molecules and peptides, density functional theory may be applied to 

calculate the dipole surface, as also suggested by other researchers.18–19

With the CF dqi for atomic site i determined for a given geometry, the monopole in 

AMOEBA+ multipole moments then is replaced by q + dqi. The modified multipole is then

Mi′ = q + dqi, μx, μy, μz, Θxx, … (8)

With the above multipoles, permanent electrostatics of AMOEBA+ is calculated as

Eele = ∑
i, j

Mi′T dampedMj′ (9)

wherein the AMOEBA+ potential, the multipole-multipole interaction T matrix is damped to 

account for the charge penetration effect.25–26 Induced dipole and polarization energy are 
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calculated in the same manner as current AMOEBA+ model with the updated multipoles 

M’.

In order to use the GDCF model in MD simulations, one needs the gradient of the potential 

energy w.r.t. atom coordinate. We found that the final form of the electrostatic and 

polarization forces can be expressed in the following formula

Fi, α(CF ) = Fi, α + Fi, α′ (α = x, y, z) (10)

The first term on the right side stands for the usual AMOEBA+ electrostatics and 

polarization terms with CF-updated charges. The second chain-rule term arises from CF 

which explicitly depends on the internal bonds and angles. In SI, we show that F’ can be 

calculated using the accumulated potential on each atom (Vi) and the derivative of CF w.r.t. 

coordinates ∂d i
∂α  . The Vi term in AMOEBA+ framework is contributed from permanent 

multipoles (charge, dipole, and quadrupole) and induced dipole. These expressions of Vi are 

already calculated in the AMOEBA+ potential.25–26 In addition, since charges in our model 

now depends on the atomic coordinates, extra force contribution to Ewald self-energy 

appears (see detailed derivation in SI).

Supplementary Material

Refer to Web version on PubMed Central for supplementary material.
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Figure 1. 
Schematic illustration of the GDCF model. (a) CF due to bond stretching and (b) CF due to 

angle bending, where dqb and dqθ1 represent the absolute charge fluxes due to bond 

stretching and angle bending. The direction (sign) of CF is defined in the Methodologies 

section.
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Figure 2. 
Binding energy and interaction energy computed with water models compared with 

available ab initio CCSD(T)/CBS data. (a)-(c): BEs of water trimer to 17-mers and (d)-(f): 
IEs of water tetramer, pentamer and hexamer conformers. The BEs from MB-UCB39 and 

IEs from MB-pol41 water models are provided for comparison. The numerical data, cluster 

indices and references are provided in Table S2 and Table S3.
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Figure 3. 
Liquid properties of water at a broad range of temperatures and 1 atm pressure. Properties in 

(a)-(f) were included in the ForceBalance optimization while (g)-(h) were not used in para 

metrization. Error bars are also plotted if they are notable. The radial distribution function of 

oxygen-hydrogen and hydrogen-hydrogen pairs are provided in Figure S2.
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Figure 4. 
IR spectra of liquid water calculated with water models with/without charge flux and 

compared to the experiment. Experimental data were taken from the literature of ambient 

conditions (298 K and 1 atm).49 Quantum corrections were added to each calculated spectra 

using the same approach suggested by a previous study.46 More simulation details are 

provided in SI.
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Table 1.

The vibrational frequencies, geometrical, and moment properties of an isolated water molecule.
a

Property Experiment
c

AMOEBA+
d

AMOEB A+(CF)
e

vibrational frequency
b
 (cm−1)

Vss 3657 3658 3656

Vas 3756 3757 3755

Vb 1595 1627 1594

geometry bOH (Å) 0.957 0.939 0.950

θHOH (°) 104.52 108.82 104.54

dipole (Debye) dz 1.86 (1.84) 1.95 1.88

Quadrupole (Debye∙Å) Qxx 2.63 (2.57) 3.17 2.83

Qyy −2.50 (−2.42) -2.69 −2.34

Qzz −0.13 (−0.14) -0.48 −0.49

Polarizability (Å3) αxx 1.53 (1.47) 1.59 1.62

αyy 1.42 (1.38) 1.21 1.24

αzz 1.47 (1.42) 1.33 1.36

a
Values in bold indicate a better consistency with the experimental data;

b
vss: symmetrical stretching; vss: asymmetrical stretching; vb: bending vibration;

c
Experimental data were taken from references: vibrational frequencies,32 geometry,32 dipole,33 quadrupole,34 and polarizability;35 values in 

parentheses are ab initio data taken from reference;36

d
Calculated with AMOEBA+ optimized monomer geometry;

e
Calculated with AMOEBA+(CF) optimized monomer geometry.
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Table 2.

Binding energies (with MP2-optimized geometry) of Smith dimers predicted by several water models 

comparing to CCSD(T)/CBS data. All energies are in kcal/mol.

Structure CCSD(T)/CBS
ab

AMOEBA+
ac

AMOEBA+(CF)
a

MB-UCB
d

Smith01 −4.97 −5.42 (−4.96) −4.98 −5.15

Smith02 −4.45 −4.57 (−4.11) −4.37 −4.78

Smith03 −4.42 −4.45 (−4.00) −4.29 −3.86

Smith04 −4.25 −5.20 (−4.75) −4.09 −3.11

Smith05 −4.00 −4.53 (−4.08) −3.53 −3.68

Smith06 −3.96 −4.36 (−3.90) −3.38 −3.21

Smith07 −3.26 −4.15 (−3.69) −3.19 −2.93

Smith08 −1.30 −1.85 (−1.39) −1.38 −1.15

Smith09 −3.05 −3.67 (−3.22) −3.03 −2.99

Smith10 −2.18 −2.79 (−2.34) −2.27 −2.07

RMSE 0.59 (0.28) 0.25 0.51

a.
BEs using MP2-optimized geometry for dimer and monomer;31, 38

b.
CCSD(T)/CBS values were taken from reference;40

c.
Values in paresntheses are BEs using MP2-optimized dimer and experimental monomer. These values were reported in the previous AMOEBA+ 

publication;26

d.
These values were taken from reference.39
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