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ARTICLE INFO ABSTRACT

Keywords: COVID-19 is an ongoing global pandemic caused by severe acute respiratory syndrome coronavirus 2 (SARS-
COVID-19 CoV-2). As of July 29" 2020, more than 16,6 million cases have been reported in more than 188 countries/
SARS-CoV-2 territories, leading to more than 659000 deaths. One of the main challenges facing health authorities has been
Protocol

testing for the virus on a sufficiently comprehensive scale. The pandemic has been an impetus for the wastewater
community as it has inspired scientists to look to wastewater to help fill in the gap of measuring the prevalence
of SARS-CoV-2 within a given community. Testing the wastewater may serve as an early warning system al-
lowing timely interventions. Although viral shedding varies among individuals and over the course of their
infection, the sewage system can blend these variations into an average that represents the wider studied
community. The urgent need has led to a lack of coherent reporting of data regarding the analysis, as these huge
and remarkable efforts by the wastewater scientific community were made in a very short time. Important
information on the analytical approach is often lacking, while there is still no optimisation of the methodology,
including sampling, sample storage and concentration, RNA extraction and detection/quantification. This review
aims at identifying the main issues for consideration, relating to the development of validated methodological
protocols for the virus quantitative analysis in wastewater. Their inclusion will enable the methodological op-
timisation of SARS-CoV-2 wastewater analyses, transforming the wastewater infrastructure into a source of
useful information for the health sector.

Quality Control (QC)
Wastewater-Based Epidemiology (WBE)

1. Wastewater-Based Epidemiology: a litre of wastewater, an
ocean of information

In the framework of the COVID-19 pandemic, the development of an
early-warning and surveillance system through the utilisation of a
Wastewater-Based Epidemiology (WBE) approach aims at tackling im-
portant community public health questions that arise due to the COVID-
19 or any other future pandemic, which can be answered through the
investigation and surveillance of selected indicators of community
health and behaviour, reflected in the composition of urban waste-
water. As wastewater of an area is collected at an urban wastewater
treatment plant (UWTP), sampling and analysing the wastewater
composition can reveal the presence of the SARS-CoV-2 genetic fin-
gerprint in wastewater. Given sufficient information is provided on the
population served by the treatment plant, the fingerprint can be at-
tributed to it, providing a cross-section of the public health status of the

society.

Currently, public health interventions are initiated in a broad
manner; potentially not considering communities that would benefit
from them and burdening areas where the virus may currently not pose
a risk, thereby making hardship-inducing containment measures eco-
nomically and socially disruptive. The clinical diagnostic tests currently
used for COVID-19 are already proven insufficient for rapid and cost-
effective monitoring of the incidence of the virus at a community-wide
level [1]. Another problem concerns the worldwide high demand of
consumables (e.g. swabs, reagents) needed for the collection and
screening of samples for COVID-19. From the social point of view, there
were cases that revealed that people of a community were sceptical to
take the COVID-19 clinical test due to the fear of social stigma attached
to the pandemic.

With limitations on COVID-19 testing making it hard to know how
many people actually have the disease, turning to the sewer systems for
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a fast snapshot seems to be promising and a useful method to provide
complementary and additional information to the clinical testing. The
SARS-CoV-2’s faecal signature could actually turn out to be very useful,
helping track how and where disease is spreading among the popula-
tion. WBE has been used for decades to detect polio in countries like
Brazil and Israel, where the disease remains endemic. Israel’s sewage
surveillance system, set up in 1989 by the Israeli health authorities to
detect poliovirus in wastewater, enabled to track polio in sewage trunk
lines and UWTPs during polio re-emergence in 2013, and the response
of the public authorities to the epidemic was immediate [2]. More re-
cently, efforts have been made to set up a surveillance system for other
viruses via wastewater, such as the Zika virus, whose large-scale out-
break was reported in the Americas followed by 87 countries worldwide
in 2015, when Brazil first confirmed a novel febrile illness outbreak to
WHO and the virus emerged as a cause of serious birth defect micro-
cephaly and of the Guillain-Barre syndrome neurological disorder [3].

Sewage is a source of information on human health and habits and
can be transformed into a public health observatory and used as an
instrument for refining public health response to a pandemic caused by
a pathogen. Public health authorities could use this information to re-
fine their response and to help them evaluate when and how to start
scaling up or back quarantine-style policies and recommendations.
Among the various methods of public health and infectious disease
assessment and surveillance, WBE provides significant advantages to
face obstacles faced by other commonly applied techniques, such as
reliable provision of spatio-temporal trends in human behaviour and
infection, near-real-time and whole population data, including asymp-
tomatic people and those with mild symptoms resembling other
common viral infections and relatively low cost.

One critical point in relation to the application of WBE monitoring
program is the conduction of sampling from the sewer system in spe-
cific neighbourhoods. Sewer systems offer near-real-time outbreak data,
because they continually receive human excreta that contain viral
particles shed by infected humans, regardless of their symptomatology
status (symptomatic; asymptomatic [no symptoms]; paucisymptomatic
or subclinical [mild symptoms]; and presymptomatic [no symptoms for
the first few days before exhibiting COVID-19 symptoms]).
Furthermore, interestingly, during air travel and cruises, wastewater
monitoring may provide public health officials with an additional tool
of assessing the prevalence of SARS-CoV-2 infections among passengers
using on-board facilities, which can be spread in this way inter-
nationally [4]. This is important also in relation to the fact that at least
one COVID-19 patient was found to be positive after faecal specimen
examination, despite being negative after pharyngeal and sputum
analysis [5]. In this way, it is expected that the collected samples from
both the sewer lines and the wastewater treatment facilities will enable
the tracing of viral outbreaks to a more accurate location making
possible the identification of urban areas of concern. In addition, it is
envisaged that the virus spread and fate may vary among wastewater
treatment facilities in urban settings, which utilise enclosed under-
ground sewer pipes and rural areas, which use septic tanks and catch-
ments. WBE can also enable tracking the silent circulation of the virus
due to the detection of low levels of the viral RNA before cases appear.
[6] ([preprint]), who evaluated the impact of lockdown on the dynamics
of SARS-CoV-2 via the quantification of the viral RNA in wastewater,
revealed that genome units were concomitantly decreased along with
the amount of the recorded COVID-19 cases as a result of the lockdown
measures. Moreover, [7] ([preprint]) have shown the incidence of SARS-
CoV-2 in wastewater since November 2019, before the recording of the
first COVID-19 symptomatic cases in Santa Catalina, Brazil. This finding
suggests the shedding of the virus from paucisymptomatic and
asymptomatic persons in the community, months before the reporting
of the first cases by the national authorities ([7] [preprint]).

One important feature of WBE relies on the fact that it can detect
variations in the viral strains via phylogenetic analysis, providing a
substantial advantage for recognising virus trees that have evolved
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over time and among various regions. In the case of SARS-CoV-2, there
are only two studies available on the phylogenetic analysis of waste-
water samples. According to Nemudryi et al. [8] ([preprint]), the most
prevalent strains of SARS-CoV-2 detected in wastewater of Bozeman,
Montana were associated with those previously observed in Europe
(France and Iceland). Genome sequencing and phylogenetic analysis
carried out by [9] ([preprint]), revealed similarities among the isolated
viral strains with those found in Europe and in the Lombardy region in
northern Italy.

WBE can also track seasonal fluctuations in viral concentrations
in wastewater, reflecting the epidemiological patterns in a community.
To date, there is no information about the effect of the season on the
SARS-CoV-2 concentration in wastewater, while such information may
be available if we consider previous relevant analyses performed for
other viruses. For example, Nordgren et al. [10] reported seasonal
variations of noroviruses (NoV GGI and NoV GGII), with the highest
concentration of these viruses being recorded during winter and
summer, respectively. Also, NoV GGII exhibited higher seasonal peaks
compared to NoV GGI. The increase in NoV GGI during summer, which
is a ‘low season’ for clinically-reported norovirus-caused gastroenteritis,
gave way to milder or asymptomatic infections as compared to the NoV
GGII strains in circulation during winter. Another study conducted by Li
et al. [11] in China, has demonstrated that the concentration levels of
rotavirus were higher during November to March, corresponding to the
clinical data of the virus reported in the country [12]. The norovirus
concentration in wastewater was reportedly higher during November to
April [13], whereas the concentrations of adenovirus and enterovirus
were largely consistent throughout the year. Since a correlation be-
tween the COVID-19 spread and temperature exists [14], it is envisaged
that seasonal variations of the viral genetic material will also occur in
the sewage, with the detection levels being higher at the locations
falling inside of the climatologically favoured zones (4-12 °C).

Given the fact that SARS-CoV-2 is a novel coronavirus strain that
was not formerly identified in human excreta (and thus in sewage),
research in the WBE field is in its infancy and the position of the sci-
entific community is still unclear, especially when considering the es-
tablishment and validation of a methodology for the isolation, detection
and quantification of the virus genetic material in wastewater.

2. Main considerations related to the development of a
methodological protocol for detecting and quantifying SARS-CoV-
2 RNA in wastewater

The potential transmission via the fecal-oral pathway was recently
underlined by Foladori et al. [15], due to the detection of SARS-CoV-2
in the human gastrointestinal tract. Besides, potential transmission
through bioaerosols from stool through toilet flushing was demon-
strated in Hong Kong for the SARS-CoV epidemic cluster in Amoy
Gardens [16,17] and was recently proposed for SARS-CoV-2 [18].
During this outbreak, SARS-CoV shed in the feces of an infected
building visitor has been suggested to have spread the virus to other
building inhabitants via droplets and aerosols of virus-contaminated
commode water, which was transmitted to multiple flats through faulty
toilet plumbing and floor drains [19]. This outbreak scenario proposes
that wastewater of infected persons may be a means of transmission of
the infectious virus in stools. As a result, it may be deduced that the
fecal droplet-respiratory route is potentially possible. However, dif-
ferent aspects require further and deeper investigation, such as the
viability and infectivity of the virus in stools and urban wastewater. If
SARS-CoV-2 is capable of surviving for long periods of time in stools
and wastewater, exposure and transmission via faecally-contaminated
water droplets and aerosols may be more probable. In order to assess
the risks posed by this exposure pathway more effectively, more data
are needed on the survival and persistence of the virus in sewage, in
combination with evidence on the survival of the virus inside the gas-
trointestinal system and human excreta. Rimoldi et al. ([9] [preprint])
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have reported the examination of the infectious virus in UWTP influents
and effluents, as well as in two rivers, without any positive samples for
infectious SARS-CoV-2. However, this study used a small volume of
wastewater (2 mL) and no positive assay controls. As a result, negative
infectivity results do not necessarily mean absence of the infectious
virus, as the lack of adequate quality control measures and other
methodological considerations may complicate the determination of
the infectious virus in wastewater [20]. Moreover, because working
with this type of infectious virus requires specifically trained personnel
working in Biological Safety Level 3 (BSL-3) laboratory containment,
there are substantial analytical challenges involved in studying the
virus survival, while there is still currently limited available informa-
tion [15].

To this end, even though more information is needed on the exact
aspects of transmission of the alive virus through faeces via the oral-
faecal pathway and of its infectivity in sewage, the presence of SARS-
CoV-2 RNA in wastewater was described worldwide; in the Netherlands
([21] [preprint]; [38]), Italy ([22-23]; [24] [preprint]; [9] [preprint]),
France ([25] [preprint]; [6] [preprint]), Spain [26], Israel ([27] [pre-
print]), Turkey ([28] [preprint]), USA ([29] [preprint]; [8] [preprint];
[301; [31] [preprint]), India ([32] [preprint]), Japan ([33] [preprint]),
Brazil ([7] [preprint]) and Australia [4,34,35].

The studies reviewed herein, dedicated to the detection of SARS-
CoV-2 in urban wastewater, were published between the 30 of March
2020 to the 15" of July 2020, with the majority of them not being
certified by formal peer review. More specifically, at the time of pre-
paring this review, thirteen (13) out of the twenty (20) studies were
published in the literature as preprints ([27] [preprint]; [7] [preprint];
[29] [preprint]; [33] [preprint]; [28] [preprint]; [32] [preprint]; [21]
[preprint]; [8] [preprint]; [9] [preprint]; [25] [preprint]; [31] [preprint];
[6] [preprint]; [24] [preprint]). It is clear that there is an increased
scientific and public engagement with the COVID-19 preprints. Even
though the possibility exists that some will not be eventually published,
the present review solely discusses methodological aspects of the
sewage analysis reported in them, that most probably will not be im-
pacted by the peer review process. Hence, even though some may not
eventually appear in the literature as peer-reviewed manuscripts, the
aspects for methodological consideration reported by this review
paper will still be relevant.

Complementary information with respect to the location, UWTPs
and corresponding inhabitant/population equivalents, type of sample,
sample storage and transfer to the laboratory, sample pre-treatment and
concentration, RNA extraction, detection and quantification are pre-
sented in Tables 1-3,5 and 6. Also, since there is limited literature
surrounding the detection of the RNA of SARS-CoV-2 in wastewater,
and considering that the SARS-CoV-2 virus may behave similarly to
other coronaviruses, an effort was made to provide information about
previously identified coronaviruses that may be relevant to the findings
as defined by each study. The studies concerning the prevalence of
SARS-CoV-2 in sewage sludge ([36,37] [preprint]) were not included in
the tables but their major findings are discussed in the manuscript.
Special emphasis was given to the main parameters, processes, and
challenges that are associated with the efficiency and credibility of each
methodological protocol applied for the isolation, detection and quan-
tification (where available) of the virus RNA in wastewater.

The major focus of the studies conducted in the field of WBE relating
to SARS-CoV-2 was the isolation and detection of the viral RNA at the
inlet of UWTPs (raw wastewater), with very few of them providing
information on the prevalence of the virus during the various stages of
treatment applied at the UWTP. In general, there is lack of data on the
effect of various wastewater treatment technologies applied at the
UWTPs on SARS-CoV-2 as the first efforts were to firstly identify the
virus in the influent of UWTPs. The removal efficiency of SARS-CoV-2
with traditional biological treatment processes such as the
Conventional Activated Sludge (CAS) and the Membrane BioReactor
(MBR) process, remains unclear due to the absence of experimental
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data (40[preprint]). More specifically, the majority of the available
data focuses on a large range of surrogate viruses of bacteriophages and
laboratory-cultured viruses such as Enterovirus, Adenovirus and human
polyomavirus JC, with a large variety of removal exhibited, from 0.9 to
5.8 logs [41]. At the same time however, there is no confirmation that
SARS-CoV-2 behaves in a different manner than other coronaviruses
[42]. The impact of the presence of SARS-CoV-2 on the microbial
community in the sewage sludge during CAS or MBR treatment is an-
other issue that remains to be clarified, as any effects may lead to al-
terations of the microbial community that performs the biological de-
gradation of contaminants in incoming wastewater. Previous work has
shown that introduced or ‘foreign’ viruses may significantly affect
bacterial populations, via bacterial cell lysis and horizontal gene
transfer (HGT) [43]. Viruses are suggested to selectively lyse bacteria
whose populations in their habitat is large, influencing in this way the
richness of their population, while their concentrations in activated
sludge have been shown to increase in the course of CAS treatment of
wastewater, suggesting the promotion of viral reproduction in the
presence of bacterial hosts [44]. However, the exact degree to which
specific viruses have such an impact on host bacterial communities still
remains unclear, as more trials and experimental work is needed to
prove the action of specific viral species such as the SARS-CoV-2 on
sludge microbial communities.

Gundy et al. [45] compared the viability (percentage of live viruses
in a whole viral population) of the human coronavirus 229E (HCoV)
and the Feline Infectious Peritonitis Virus (FIPV) in tap water and
wastewater, and their findings indicated that coronaviruses survived
longer when present in primary-treated wastewater compared to sec-
ondary-treated wastewater, a fact that may be attributed to the higher
solids content that may offer viral protection from inactivation. Another
study by [39] ([preprint]) which was available on the 17% of April 2020
has indicated the reduction of SARS-CoV-2 RNA load by 100 times in
treated effluents of three Parisian UWTPs compared to the raw sewage
wastewater. However, this finding was not discussed in the 2™ version
(May 6“‘, 2020) of the same manuscript ([6] [preprint]).

The disposal of SARS-CoV-2 in untreated sewage wastewater is of
concern in countries where untreated sewage is disposed in rivers, due
to the high risk of infection of the population and animals (livestock
and wildlife) in contact with downstream wastewater. Swimming in
sewage-contaminated water has previously been linked to respiratory
disease, with earlier studies of respiratory infection in the Great Lakes
being associated to adenoviruses [46]. More recently, researchers in
Ecuador, a country that commonly practices this type of disposal, have
shown the presence of SARS-CoV-2 RNA in three locations along Quito’s
river, at concentrations of 2.84 x 10° to 3.19 x 10° gene copies/L for
N1 target and 2.07 x 10° to 2.23 x 10° gene copies/L for N2 target
[47]. The authors suggest that the measured concentrations reflect a
large undiagnosed fraction of COVID-19 patients, as well as asympto-
matic or pre-symptomatic cases. Another study by Haramoto et al. [33]
([preprint]) has shown the absence of SARS-CoV-2 from river water in
the Yamanashi Prefecture Japan on three different sampling occasions
between 17" and 7% of May, 2020, using four quantitative (N_Sarbeco,
NIID_2019-nCoV_N, CDC N1 and N2) and two nested PCR assays
(ORFla and S protein). Rimoldi et al. [9] ([preprint]) also examined
river water for the presence of SARS-CoV-2. Samples from the Lambro
river and the Lambro Meridionale River were taken on April 14™ and
April 22" 2020. Positive signals were obtained on the 14" of April
2020 in samples from both rivers, while only samples from Labro river
were positive for the virus on the 22" of April. The presence of the
virus RNA in river samples has been attributed, according to the au-
thors, to discharge of untreated sewage into the rivers, a situation that
was exacerbated during an anomalous and long drought observed
within the sampling period and to the lack of separation of the urban
runoff waters from domestic effluents, leading to combined sewer
overflows.

According to the World Health Organisation (WHO), SARS-CoV-2 is
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likely to possess a poor stability in wastewater and to be more sus-
ceptible to disinfectants (e.g. chlorine) compared to non-enveloped
human enteric viruses (e.g. adenoviruses, rotavirus, norovirus, and
hepatitis A) ([48,49]). The physicochemical conditions prevailing in
wastewater such as pH, solids and the presence of micropollutants [15]
may have a significant impact on the stability and survival of viruses
such as noroviruses, astroviruses, rotaviruses and hepatitis viruses in
wastewater, with alkalinity showing a strong detrimental effect on virus
persistence in the solid and liquid wastewater component, due to in-
activation of a large fraction of the viral population at high alkalinity
levels [50].

In a study by Wang et al. [51], the virus most closely linked to SARS-
CoV-2, being SARS-CoV-1, was shown to be very vulnerable to chlorine
and chlorine dioxide disinfection, compared to E. coli and coliphage
[51]. Chlorine dioxide (40 mg/L, 5 min) was found to be less efficient
for the inactivation of SARS-CoV-1 than chlorine (20 mg/L, 1 min). The
effect of wastewater disinfection on SARS-CoV-2 has not been eluci-
dated yet, as there have been no reports to date on whether this virus is
susceptible or persistent during the application of such processes. In the
study of Randazzo et al. [26], 11% of samples collected after secondary
treatment were found to be positive to SARS-CoV-2, while none of the
tertiary effluent samples (sand filtration, flocculation/coagulation,
NaClO disinfection coupled, is some cases, with UV) tested positive for
the virus. Although these findings do not decipher the effect of the dose
of the disinfectant and contact time on virus survival, they show that
tertiary treatment and disinfection process may be adequate. In addi-
tion, the inactivation kinetics of SARS-CoV-2 (log inactivation vs Ct
values) during various disinfection processes such as chlorination,
ozonation, peracetic acid treatment, and UV irradiation in combination
with oxidants (e.g., hydrogen peroxide) should be examined so that
solid knowledge on the specific virus is obtained. Silverman and Boehm
[52] provided a comprehensive review on the decay rates of human
coronaviruses and of their viral surrogates (animal coronaviruses and
the enveloped Pseudomonas phage ®6) during disinfection with chlorine
and UV irradiation in water/wastewater, suggesting that even though
there is limited available data on the inactivation of coronaviruses upon
their exposure to disinfectants, it is expected that the inactivation of
coronaviruses may be efficient when doses of disinfectant re-
commended for non-enveloped viruses are applied. It is also critical that
wastewater treatment facilities implement effective disinfection to en-
sure the virus does not spread via wastewater discharge or reuse
schemes. Furthermore, a reduction in the used amounts of disinfectants
can be achieved through the use of membrane technologies such as the
Membrane Bioreactor (MBR) utilising ultrafiltration to separate virions
of a size of 60-140 nm [15]. Currently, the potential route of the
transmission of SARS-CoV-2 to humans in the wastewater-receiving
environments via the reuse practice for agricultural irrigation has not
been elucidated. Oliver et al. [40] ([preprint]) reported that the selec-
tion of irrigation technique is critical for minimising the spread of the
virus to the environment and suggested that alternative irrigation
techniques, e.g. micro-irrigation, should be considered. Taking into
account that enveloped viruses are more likely to partition to solids and
more susceptible to wastewater treatment than their non-enveloped
enteric counterparts, the authors of this review paper are of the opinion
that multi-barrier wastewater treatment processes will be effective in
removing SARS-CoV-2, so that the associate environmental- and public
health-associated risks for wastewater reuse are likely to be negligible.

2.1. Effect of wastewater sampling, storage conditions and sample pre-
treatment on the vitality of SARS-CoV-2 RNA

2.1.1. Effect of sampling method

Both grab ([8][preprint];[34]; [9][preprint]; [26]) and composite
([27][preprint];[29][preprint];[21][preprint];[23,38]; [8][preprint];
[31][preprint]) sampling methods have been reported for the collection
of wastewater samples for the detection of SARS-CoV-2. In the case of
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composite samples, both time- (i.e. fixed aliquot volume at defined time
interval, e.g. 24 h) and flow-proportional (i.e. fixed aliquot volume at
defined flow volume interval) samples were used. Among the studies
conducted, ([8] [preprint]) have demonstrated that the most reliable
average concentration of the virus RNA in wastewater was provided by
the composite samples compared to grab samples. The viral titers in
composite samples were found to be lower (~1500 viral genomes/L)
than those in the grab samples (~2 x 10* viral genomes/L), while the
variation between replicates was considerably lower. In general, there
is limited literature regarding the impact of the type of sampling on the
detection of viruses in wastewater. Gerba et al. [53] suggested that 24-h
composite samples can enable catching the peak flows, and in the case
where untreated wastewater is used for determining the level of viral
inactivation requirements, peak concentrations of viruses should be
considered rather than the average ones. The selection of the sampling
time is also of crucial significance to the methodology applied for the
detection of the virus. For example, in the case where grab samples are
used, the viral concentration will be a mere snapshot of the particular
sample. In most cities, the flow rate of sewage is highest in the morning
and evening hours. It is noted that only few studies reported the time of
grab sampling for the detection of SARS-CoV-2 in wastewater; 7-12 pm
[26] and 1.00 pm ([9] [preprint]). Moreover, recording grab sampling
time enables the accurate portrayal of the peak daily faecal load in
wastewater via the measurement of indicators which are abundant in
the wastewater specifically because of human shedding, are highly
abundant in urban wastewater and are of specific geographic variability
[54] (i.e. through the enumeration of faecal load indicators such as: i)
faecal coliforms, ii) cross-assembly phages (CrAssphages), iii) nor-
ovirus, iv) Pepper Mild Mottle Virus and v) enterovirus concentrations),
which may potentially be linked to the highest SARS-CoV-2 shedding
within a day, from the infected persons within a community. On the
other hand, the collection of composite samples will represent the
average concentration of the virus RNA during the collection period,
without being able to discriminate any peak values recorded within the
sampling duration.

2.1.2. Effect of temperature of sample storage

Samples collected for viral determinations in environmental ma-
trices are usually analysed within a short time span, but, in most cases,
there is a need for storage at the laboratory prior to further processing
and analysis. According to the virology and microbiology guidelines
[55,56], samples intended for viral analysis within less than 48 h are
usually kept at 4 °C in the dark, whereas storage at lower temperatures
(20 °C or—80 °C) is deemed necessary for longer periods in order to
maintain sample integrity. Generally, there is a paucity of information
available on the effect of freezing process on the virus vitality (phy-
siological capability of the live examined viruses [57]. The study of
Olson et al. [58] on the effect of storage temperature on the viability of
the MS2 bacteriophage in wastewater, revealed that viral degradation
does not seem to occur when samples are stored at 4 °C for one week
before degradation of the virus equalled the initial virus loss due to
freezing at —80 °C. It was also observed that the virus titers were
substantially lower after sample storage for an approximately 40-day
period at 4 °C compared to those observed upon sample storage at — 80
°C. Interestingly, viral degradation was shown to increase at -20 °C
compared to 4 °C and — 80 °C, due to the formation of large ice crystal,
which provokes viral damage. Cryoprotectants (e.g. glycerol) have also
been employed to retain phage infectivity over time [59]. Nevertheless,
these agents have not been used in environmental samples (e.g. was-
tewater) and it remains unclear whether such preservatives will provide
protective shield to the viruses from the detrimental effects of freezing
and storage without affecting sample’s integrity. In the case of SARS-
CoV-2, the storage of wastewater samples was performed at 4 °C
([34,351; [21] [preprint]; [29] [preprint]; [26]; [6] [preprint]), -20 °C
[23] and —80 °C ([27] [preprint]) with no information provided on the
effect of temperature on the viral viability and vitality. Gundy et al.
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[45] have shown that coronaviruses (human coronavirus 229E, and
feline infectious peritonitis virus) were more sensitive to temperature
than poliovirus 1 (PV-1) and their survivability in the water matrix was
shown to be affected by the level of the organic content, and the pre-
sence of antagonistic bacterial microorganisms. The inactivation of
coronaviruses (decrease by 99.9%; To9 ¢) was found to be more rapid in
tap water at 23 °C (10 days) than in the same medium at lower tem-
perature (4 °C; > 100 days), while they were completely inactivated in
wastewater, with Tog ¢ Values being 2 to 4 days.

2.1.3. Effect of thermal sample pre-treatment

In some studies, samples were subjected to thermal treatment (56 °C
for 30 min or 60 °C for 90 min), prior to viral concentration, to increase
the safety of the laboratory personnel during sample handling ([22];
[31] [preprint]). The thermal treatment of the sample was shown to
reduce the infectivity of SARS-CoV-2 with over 5 logs without affecting
its RNA structure ([60] [preprint]). Experiments using a surrogate virus
(Mengovirus), confirmed that no loss of the viral RNA occurred when
samples were treated at 56 °C for 30 min [23]. Similarly, raw sewage
samples were pasteurized at 60 °C for 90 min to inactivate SARS-CoV-2
([31] [preprint]). The thermal treatment of samples is consistent with
previous studies dealing with enveloped virus survival in pasteurized
wastewater [61]. Ye et al. [62] reported discrepancies in the inactiva-
tion of the non-enveloped MS2 virus compared to the enveloped viruses
(MHV and ¢6) in pasteurised and non-pasteurised wastewater, sug-
gesting that this may be attributed to the bacterial extracellular enzyme
activity as well as protozoan or metazoan predation. The time needed
for 90% viral inactivation (Tyo) ranged between 7-13 h for the envel-
oped viruses ¢6 and MHV in unpasteurised wastewater at 25 °C,
whereas an increase in the Tq values to 28-36 h was observed at 10 °C.
This suggests that enveloped viruses excreted in faeces may therefore
reach UWTPs in an infective state, especially in regions with cool cli-
mate zones.

2.1.4. Effect of organic matter and suspended solids

Coronavirus (FIPV and HCoV) inactivation was shown to be higher
in tap water which was subjected to filtration compared to unfiltered
water and the survival of the coronaviruses was found to be affected by
the level of suspended solids and organic matter as the viruses survived
longer in primary-treated wastewater than secondary-treated waste-
water [45]. In addition, it was observed that the titer of the cor-
onaviruses significantly decreased by 99.9% in wastewater, compared
to PV-1 (10% decrease) possibly due to the presence of organic com-
pounds that may interact with the viral envelope and provoke in-
activation. This observation also indicates that coronaviruses adsorb
more readily than PV-1 to solids originally present in the wastewater,
due to the hydrophobic character of the viral envelope, which renders
coronaviruses less soluble in water and could therefore increase the
propensity of these viruses to adsorb to the solids. Ye et al. [62] re-
ported that the MHV virus and the Pseudomonas phage &6, which
possess an enveloped structure, exhibited higher partitioning to solids
present in wastewater compared to non-enveloped viruses (26% of
MHV and ®6 was adsorbed to solids compared to the 6% of the two
non-enveloped viruses). Based on these findings, it can be inferred that
a significant portion of SARS-CoV-2, may be adsorbed to solids and
sewage sludge. Also, the adsorption kinetic experiments performed by
Ye et al. [62] in both solids-containing and solids-free samples revealed
that once equilibrium is reached, enveloped viruses seem to have
greater affinity to solids than the non-enveloped viruses, and thus it
may be assumed that the latter would be removed to a lesser extent
than the former during primary treatment. The heterogeneity of col-
lected wastewater samples in aircrafts due to a large fraction of parti-
culate matter such as toilet paper, was also reported by Ahmed et al.
[4], who consider this presence to act as a limiting factor for obtaining
representative samples. Sewage sludge has been also shown to act as
carrier of SARS-CoV-2 viral particles. Peccia et al. [37] ([preprint])
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have shown that the concentration of SARS-CoV-2 RNA ranged from
two to three orders of magnitude higher in primary sludge compared to
raw wastewater due to the higher content of solids. The presence of the
virus RNA in both primary and secondary sludge was also reported in
[36] ([preprint]), who found that the copy numbers of SARS-CoV-2 in
both types of sludge were similar (Ct ranging from 33.5 to 35.8 cor-
responding to titers of SARS-CoV-2 ranging from 1.17 x 10* to 4.02 x
10* per liter). It should be noted at this point, that the presence of the
genetic sequence of the virus in the sludge solids, does not warrant the
virulence of the virus itself [42]. Moreover, on the basis of the data
currently available, it is currently not feasible to precisely define the
level of the virus contamination for untreated sludge, or to specify a
storage period beyond which the virus is inactivated. To date, there is
also lack of information in relation to the sampling, storage and pro-
cessing of sewage sludge for the detection of SARS-CoV-2.

2.2. Virus RNA concentration in wastewater as a key step in the detection
methodology

2.2.1. Concentration in environmental matrices

Various sample concentration methods have been used in relation to
virus detection and quantification in complex environmental matrices
such as wastewater. The main challenge of the application of such
methods concerns the low abundance of viral particles and the estab-
lishment of low enough Limits of Detection (LOD), requiring thus the
utilisation of reliable concentration methods prior to viral RNA ex-
traction [63]. The wastewater, due to its high chemical and biological
complexity, may result in low viral recovery yields, or poorly re-
producible yields or both [64], which may hinder the association of
waterborne viruses to specific disease outbreaks. In addition, the
complex composition of wastewater hinders the easy detection of
viruses in such matrices, as both particulate and dissolved constituents
inherently present in wastewater get concentrated along with the target
virus and can influence the virus recovery yield of the concentration
method. It is thus crucial to methods that yield low enough LOD that
reflects the lowest possible concentrations of the virus that may be
present in wastewater, which will accurately estimate very low pre-
valence of COVID-19 cases within the community. Various methods,
either individual or combined (i.e. primary and secondary), were re-
ported in the scientific literature for the concentration of viruses from
aquatic matrices [65,66], including among others polyethylene glycol
(PEG) precipitation [67,68], ferric chloride (FeCls) precipitation [69],
skimmed milk flocculation (SMF) [70], glass wool (GW) filtration [71]
or monolithic adsorption filtration (MAF) [72], ultrafiltration (UF)
[73], and ultracentrifugation [74].

The concentration method to be considered effective and applicable
should be technically simple and fast, be able of processing large vo-
lume of water, provide a high viral recovery yield, be applicable for a
variety of viruses, be repeatable (within a laboratory) and be re-
producible (between laboratories), and be cost- and time-effective. No
single concentration method was shown to fulfil all these requirements
so far. One important observation made is that the effect on viral di-
versity, specificity, detection and viral community composition was
found to be strongly affected by the type of concentration and the ex-
traction method, and vice versa (Hjelmso et al., 2016). Also, it was
clearly demonstrated that the recovery yields during concentration
differ significantly between the non-enveloped and enveloped viruses,
with the studies focusing on the enveloped viruses, such as SARS-CoV-
2, being limited. Since non-enveloped and enveloped viruses possess
distinct structural characteristics, it is logical to be assumed that both
viral types will not behave similarly. Thus, it is expected that the re-
covery of SARS-CoV-2 will be different from that of non-enveloped
viruses, a fact that may result in high discrepancies (e.g. an order of
magnitude) in the virus concentration in untreated wastewater. Given
that the recovery of non-enveloped viruses was reported to be varied
among the type of virus and the matrix under investigation [75], it is
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apparent that viral concentration controls are necessary to be used for
assessing recovery efficiencies. The recovery of various viruses and of
their surrogate controls in various matrices, including wastewater and
sewage sludge, is provided in the comprehensive review of Haramoto
et al. [75]. Nevertheless, relevant information on enveloped viruses is
currently lacking.

PEG precipitation was found to be effective for concentrating
human viruses in environmental samples, with recovery yield being
86% for hepatitis A virus, 87% for simian rotavirus, and 68% for po-
liovirus [68]. The PEG concentration method was also shown to have a
remarkably higher proportion of viral reads compared to the SMF and
GW methods, and the highest recovery of murine norovirus (MNV) and
adenovirus 35 (HAdV) was obtained with PEG followed by MAF, GW,
and SMF [63]. Instead, Falman et al. [69] reported that SMF resulted in
a higher recovery of poliovirus type 1 (106 + 24.8%) when compared
to PEG/NaCl precipitation (59.5 * 19.4%) in wastewater.

UF, employing tangential flow (i.e. cross-flow), has been also suc-
cessfully utilised for the concentration of viruses in wastewater, but
challenges of engineering such as membrane fouling and non-reversible
adsorption of viruses to filtration components unit may affect the
duration of the sample concentration and result in low recovery yields
[64]. The use of pre-filtration prior to UF to minimise the fouling
phenomena may result in the loss of viruses, especially when the latter
are present in low concentrations in the effluent organic matter that
may be retained by the membranes [46]. Fumian et al. [76] employed
ultracentrifugation (100000 X g for 1 h), as well as an electronegative
membrane followed by secondary concentration with a centrifugal ul-
trafilter. The former concentration method resulted in a mean recovery
of 47% (range of 34-60%) of rotavirus A from wastewater, while a
lower mean recovery of the virus was observed (3.5%, range of 1.5-
5.5%) using the combination of the membrane and the ultrafilter. In the
study of Prata et al. [74], an average viral (Adenoviruses, Rotaviruses)
recovery of 69% and 76% was observed for wastewater and recrea-
tional water samples, respectively, whereas the SMF flocculation
method led to a much lower recovery of both viruses (38 and 22%,
respectively).

Results also showed that GW filtration resulted in higher recoveries
of the non-enveloped virus Poliovirus 3 (57.9%) compared to the other
non-enveloped viruses (Bovine Coronavirus = 18.1%, Bovine Rotavirus
group A = 22.1%, Bovine Viral Diarrhea Virus [type 1 and 2] = 15.6-
19.7%) [77]. Blanco et al. [78] employed adsorption/elution onto GW
and PEG precipitation for the concentration of the porcine coronavirus
Transmissible Gastroenteritis Virus (TGEV) and the non-enveloped
Hepatitis A virus (HAV) in environmental samples. The results have
shown that the recovery of TGEV was improved by increasing the GW
and eluent contact time and the elution pH, increasing PEG con-
centration, or performing the elution either by recirculation or under
agitation. Also, it was reported that the addition of a detergent (Tween
80) hindered the TGEV recovery, by degrading the lipid-containing
envelope of the virus.

Ye et al. [62] assessed PEG precipitation, ultracentrifugation, and
ultrafiltration for concentrating the enveloped MHV virus and the non-
enveloped phage MS2 in wastewater. Their findings indicated that the
ultracentrifugation method resulted in negligible recovery yields
(~5%) for both studied viruses possibly due to the effect of the high g-
force applied during ultracentrifugation on the viral survival. Also, it
was found that 26% of the murine coronavirus was adsorbed to solids
compared to 6% for MS2, suggesting that a proportion of the viruses
particles may have been removed by the centrifugation step. The PEG
precipitation method also yielded low recovery (~5%) for the envel-
oped MHV virus, whereas in the case of MS2, the recovery was sig-
nificantly higher (43.1%). However, the ultrafiltration method resulted
in 25.1% recovery of MHV and 55.6% of MS2, indicating that higher
recoveries may be achieved for the non-enveloped viruses using this
concentration method. Following the SARS-CoV-1 outbreak of 2003,
Wang et al. [51] assessed the recovery of SARS-CoV-1 and of a
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surrogate virus, bacteriophage f2, in both urban and hospital waste-
water, using an electropositive filter media particle (Al(OH)3) packed in
a glass column. Interestingly, the virus recovery ranged from 0%
(sewage from a housing estate) to 21.4% (sewage from the hospital),
while the recovery of phage f2 under the same conditions was found to
be significantly higher (33.6% - > 100%).

2.2.2. Concentration of SARS-CoV-2 in wastewater

In the case of SARS-CoV-2, a variety of concentration methods has
been used, with ultracentrifugation being the most studied method
([29]1 [preprint]; [21] [preprint]; [381; [6] [preprint]). In general, the
different wastewater matrices, the different concentration methods,
and the fact that few studies exist that provide the recovery yield of
the virus with the concentration methods used, do not allow for a
systematic comparison among the various studies performed.

The volume of wastewater to be concentrated can influence the
viral recovery yield and it seems that there is a discrepancy in the
scientific literature on the appropriate volume that each concentration
method requires. According to Haramoto et al. [79], concentrating a
volume of < 100 mL of untreated wastewater seems to be considered
adequate for detecting enteric viruses, whereas higher volumes (1 L) of
sample were suggested as able to obtain high concentration of enteric
viruses in both untreated and treated wastewater [80], depending of
course on the concentration method. In the case of the SARS-CoV-2, up
to 500 mL (minimum volume used: 100 mL) of raw wastewater were
concentrated ([21] [preprint]; [38]; [8] [preprint]; [26]; [31] [preprint];
[6] [preprint]), whereas in only one study, 2 L of untreated wastewater
were collected [35]. It is highlighted that a higher volume of waste-
water sample should be used for sample concentration in the regions
where the number of COVID-19 recorded cases is low and thus the
prevalence of SARS-CoV-2 in wastewater is expected to be low as well.

A surrogate virus possessing similar structural/molecular char-
acteristics (e.g. shape, functional groups, surface charge, etc.) as
SARS-CoV-2 was used as an indicator for assessing the recovery yield
of the concentration methods. The enveloped murine hepatitis virus
(MHV), which belongs to the Coronaviridae family as SARS-CoV-2, has
been used as surrogate virus for assessing the recovery yield of SARS-
CoV-2 in wastewater [35]. Murine norovirus (Caliciviridae family) has
been also used as model virus for both enveloped and non-enveloped
viruses [62,81]. In addition, the porcine epidemic diarrhea virus
(PEDV), an enveloped virus belonging to the Coronaviridae family, as
well as the mengovirus (MgV) vMCO (CECT 100000), a non-enveloped
member of the Picornaviridae family, have been also utilised to eval-
uate the recovery of SARS-CoV-2 in wastewater [26]. There are many
points that need to be taken into consideration when using surrogate
viruses, such as the level of the surrogate especially when high volumes
of wastewater are processed.

The recovery values reported so far in relation to the surrogates of
SARS-CoV-2 vary greatly (3.3-73%), and currently, there is no con-
sensus on the threshold recovery yield. This great variability of re-
coveries by the different applied methods in the available studies,
dictates for optimization of the detection and quantification method
for more reliable measurements that are comparable among them, as a
method with a 5% of spiked surrogate virus recovery cannot be di-
rectly comparable with a method that has shown a recovery of 73% of
the same surrogate. Randazzo et al. [26] used the porcine epidemic
diarrhea virus (PEDV) strain CV777 and the mengovirus (MgV) vMCO
(CECT 100000) to evaluate the aluminum hydroxide adsorption-pre-
cipitation method followed by ultracentrifugation (1700 x g for 20 min
and 1900 x g for 30 min). Both MgV and PEDV in wastewater influent
yielded similar recovery values of 11 = 2.1% and 11 * 3.5% for PEDV
and MgV, respectively, indicating that more trials are needed for the
improvement of the recovery value of the enveloped viruses and their
surrogates in complex matrices such as wastewater. On the other hand,
there was a significant difference between the recovery of PEDV
(3.3 £1.6%) and MgV (6.2 = 1.0%) in wastewater effluents. The
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recovery of F-specific RNA phages by ultracentrifugation (4654 x g for
30 min followed by 1500 x g for 15 min) was found to be 73 + 50%
[38]. According to Medema et al. [38], no specific trends were observed
for the sample volume processed and the phage recovery, and it was
suggested that the non-enveloped F-specific RNA phages may lead to
overestimation of the recovery efficiency of enveloped SARS-CoV-2. In
another study conducted by Ahmed et al. [35], various concentration
methods (i.e. adsorption-extraction, PEG precipitation, centrifugal filter
device method, and ultracentrifugation), were assessed in relation to
their efficiency to recover MHV from untreated wastewater. The MHV
recovery was calculated based on the quantified copies by RT-qPCR by
dividing the total viral RNA gene copies recovered with those seeded.
The findings have shown that the recovery of MHV was in the range of
26.7-65.7%, with the most effective methods being the adsorption-ex-
traction method (in both the presence and absence of MgCl, pre-
treatment) followed by the Amicon® Ultra-15 centrifugal filter device.
Adsorption-extraction method with acidification and PEG resulted in
the lowest MHV recovery. An interesting observation made was that the
MHV recovery obtained using PEG precipitation (44%) was much
higher than the value reported in Ye et al. [62] (~5%), and this may be
attributed to the fact that MHV was concentrated from both liquid and
solid wastewater fraction, whereas in Ye et al. [62], the concentration
of the virus was performed only from the liquid portion. The results of
this study highlighted that virus concentration should be carried out
not only in the liquid phase of wastewater but also the solid fraction
should not be overlooked.

[27]1([preprint]) successfully applied centrifugation to remove large
particles in wastewater samples, and secondary concentration using
alum or PEG (20 mg L), followed by additional centrifugation, re-
sulting in positive Ct values of SARS-CoV-2 of 33.6 and 33 for alum and
PEG, respectively. In the study of La Rosa et al. [22], the concentration
of samples was performed using the PEG-dextran method, according to
the WHO guidelines for poliovirus (the latter was adapted to enveloped
viruses, and the chloroform treatment included in the protocol was
neglected to retain the integrity of the viruses). The PEG concentration
method in conjunction with centrifugation (40 mL, 12000 x g for 120
min) was also used by [31] ([preprint]). Sample concentration with
electronegative membranes and ultrafiltration produced inconsistent
results according to the study of Ahmed et al. [34], as different values
(positive/negative) were observed for SARS-CoV-2. According to the
authors, the rationale behind the use of the electronegative membrane
was that enveloped viruses (e.g. MHV, phage ®6) exhibit higher ad-
sorption to the solids compared to non-enveloped viruses [62]. This is
also in agreement with the findings of Haramoto et al. [79], who ob-
served high adsorption of the enveloped koi herpesvirus virus (KHV) to
the electronegative membranes [79].

It is obvious that a tailored to the SARS-CoV-2 method is required
for its concentration in the wastewater, and optimisation should take
place in terms of sample characteristics and effective volume, whilst
considering both organic and inorganic inhibitors that could affect
viral recovery efficiency and subsequently virus detection.

2.3. Concerns in relation to RNA extraction of SARS-CoV-2 in wastewater
samples

Following the concentration of wastewater samples, the viral RNA
extraction process aims at obtaining the RNA from the sample matrix,
without damaging it. The choice of an appropriate protocol can be a
challenge, as the breakage of the viral particles must be considered
without damaging the nucleic acids, whilst maximising nucleic acid
recovery. The three main utilized techniques used for RNA extraction
currently include organic extraction with the use of solutions such as
phenol-guanidine isothiocyanate, silica-membrane based spin column
techniques and the use of paramagnetic particles. The first one being
the most popular, has the disadvantage of sample contamination with
proteins and other substances such as organic solvents like phenol-
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chloroform, salts and ethanol [82]. Silica columns and paramagnetic
particle-based RNA extraction techniques do not make use of organic
solvents and are simpler to use, efficient and low cost while they have
lower levels of contamination from proteinic and other compounds.
Nevertheless, despite their advantages, they bear the disadvantage of
potentially high levels of genomic DNA contamination [82].

The main steps of RNA extraction in any type of sample, are the
following (other methods may utilize some of the steps or similar ones)
(Table 3):

1 Cell lysis: The step of cell lysis or cellular disruption leads to the
breaking down of the cell membrane outer boundary for the release
of RNA from the cell. Ceramic, steel or silica beads (magnetic or not)
with sharp edges are particularly useful for physical damage of the
viral membrane, for the release of the nucleic acids contained inside
viral particles. Currently, a lysis step is incorporated into the ex-
traction process, either after a cell extraction step from the matrix or
directly within the matrix, followed by released nucleic acid re-
covery. Viral cell lysis can be otherwise achieved with the use of
buffers or reagents such as guanidinium isothiocyanate, guanidi-
nium chloride, sodium dodecyl sulphate (SDS) and others. To this
end, solutions such as TRIzol can be used for the maintenance of
RNA integrity. Various steps may be added by each manufacturer,
aiming at improving purity, yield and analyte detection [83].

2 Denaturation of DNA and proteins: DNase may be used for DNA
degradation, while commonly, proteinase K is used for protein di-
gestion. Otherwise, organic extraction using phenol and chloroform
or dissolving the sample in buffers which contain guanidium salts
can be used for protein removal.

3 Denaturation and inactivation of RNases: the use of any organic
chaotropic agent such as phenol and chloroform can be efficient for
RNase inactivation and denaturation.

4 Separation or removal of cellular components: In order to se-
parate RNA from the rest of the cellular components present in a
solution, chloroform may be added followed by centrifugation, in
order to separate the organic from the aqueous phases (RNA com-
ponent).

5 RNA recovery: RNA recovery from the aqueous phase is done using
isopropyl alcohol or with ammonium acetate or lithium chloride for
selective precipitation of RNA from DNA.

6 RNA elution: The final treatment of RNA is done in the elution step,
where the total RNA obtained during the RNA extraction is eluted
into a 40-100 pL of eluent buffer.

Regarding SARS-CoV-2, various extraction systems have been qua-
lified and validated by the USA Center for Disease Control (CDC) for use
with the 2019-nCoV real time RT-PCR diagnostic panel. However, the
rapid increase in testing during the COVID-19 pandemic, has led to a
global shortage in commercially available extraction kits. Thus, other,
non-CDC-validated RNA extraction kits have been studied by various
authors in respect to SARS-CoV-2 detection and enumeration by RT-
PCR. However, no studies so far, have compared different RNA ex-
traction methods in order to establish their RNA extraction efficiency
in influent wastewater. To this end, no standardization of RNA ex-
traction protocols exists, to allow for comparable extraction of the
SARS-CoV-2 from influent wastewater, a matrix that is highly complex
that also contains a high variety of compounds, organic and inorganic,
that may be inhibitory towards RT-qPCR analysis.

The main difficulties that may be faced during RNA extraction and
subsequently the detection of SARS-CoV-2 in influent wastewater using
a variety of RNA extraction protocols and commercially available Kkits,
include obtaining sufficient nucleic acid amounts which may arise from
incomplete cell lysis and surface binding of nucleic acids, low yields of
nucleic acids and inter- and intra-process variability [83]. Besides, a
potentially high degree of secondary RNA folding leading to low yield
and difficult downstream analysis, inaccurate copying during
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replication leading to high mutation rates may lead to under-estimation
of RNA content and to inaccurate RT-PCR analyses.

Besides matrix-introduced interfering substances, care must be
taken during RNA extraction of complex matrices such as influent
wastewater, which contains various enzymatic molecules including
RNases that degrade RNA, due to the fact that RNA, a single-stranded
molecule is more prone to damage and disintegration than DNA, a
double stranded molecule. Besides the fact that RNases are abundant in
environmental matrices and also on hands and surfaces, they are dif-
ficult to remove or destroy completely. Other introduced inhibitors
include glove powder, salts such as sodium chloride and potassium
chloride, detergent molecules such as EDTA, ethanol, phenol and iso-
propyl alcohol [84]. Therefore, careful handling of samples and utili-
sation of aseptic techniques is crucial, along with the use of RNase-free
reagents and solutions as well as RNase-free glassware and pipette tips.

All substances that may cause problems of the RT-PCR process have
been collectively called PCR inhibitors, and the main impact of partial
or total reaction inhibition is decreased sensitivity or false-negative
results, respectively [85]. PCR inhibitor compounds include calcium
ions, bile salts, urea, phenol, ethanol, polysaccharides, sodium dodecyl
sulphate (SDS) and other proteins including collagen, myoglobin, hae-
moglobin and proteinases [85,86]. Different process steps may be af-
fected by the presence of inhibitors. Nucleases may degrade template
RNA produced after RNA extraction while phenols may cross-link to
RNA under oxidising conditions, leading to hindering of the RNA ex-
traction process. Polysaccharides present in wastewater may limit re-
suspension of precipitated RNA capacity, while melanin may inhibit
reverse transcription. Competitive binding of inhibitors to the template
RNA instead of primer annealing leads to the need for careful primer
design which aims at higher melting temperatures [87]. The detection
of low viral concentrations in treated wastewater or fresh waters may
require the concentration of large volumes of samples. However, in-
creasing the sample volume also means that the concentration of the
sample leads to the concentration of different inhibitors in the sample,
which interfere with RT-PCR reactions, such as humic and fluvic acids.

Suggested methods to deal with the presence of inhibitors in sam-
ples include solvent extraction, column chromatography and silica
columns, cation exchange resins and magnetic silica beads which purify
complex samples such as wastewater. The rationale behind treating
samples before RNA extraction is to use the viral capsid to protect the
viral nucleic acids. Another widely accepted method of interference
reduction, is the dilution of samples of extracted nucleic acids, resulting
in an immediate dilution of inhibitory substances. Despite the ad-
vantage of the reduction of inhibition, there is a decrease in sensitivity
due to the dilution of the nucleic acid concentration in extracts. For this
reason, the addition of compounds in the extracted RNA that may
counteract inhibition such as betaine, bovine serum albumin (BSA),
glycerol, non-ionic detergents, polyethylene glycol (PEG) and protei-
nase inhibitors has been suggested [85,88].

2.4. RT-qPCR aspects during SARS-CoV-2 analysis

The main detection and quantification method of SARS-CoV-2 in
water and wastewater is the RT-qPCR, which is based on the presence of
TagMan detection probe assay. This type of assay is specifically de-
signed for the increase of specificity of qPCR reactions and relies on: a)
the 5’-3’exonuclease activity of Taq polymerase for cleaving a dual-la-
belled probe during the hybridization step of qPCR and b) fluorophore-
based detection. During the exponential phase of the PCR process,
quantitation of the product is made possible through the fluorescent
signal emitted. Furthermore, this assay involves the labelling of the
probes with two different fluorescent dyes that emit at different wa-
velengths. More specifically, the probe is a sequence (DNA or RNA
oligo) that has the purpose of hybridising in the DNA target region
between two PCR primers. Normally, the annealing temperature of the
probe is higher compared to the one of the PCR primers (forward, F and
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reverse, R primers). In this way, the probe hybridizes along with the
start of extension of the primers. The two different fluorescent dyes are
the ‘reporter’ (R) dye that is attached to the 5-end of the sequence of
the probe, and on the other end of the sequence, a ‘quencher’ (Q) dye is
synthesized. Common dyes for the TagMan detection probe assay in-
clude among others 6-carboxyfluorescein (FAM), carboxyrhodamine
(ROX) and tetrachlorofluorescein (TET) reporter dyes [89]. Quenchers,
whose role is the quenching of the emitted fluorescence by the reporter
when excited by a light source when the fluorophore is in close
proximity to the quencher, include the Black Hole Quencher (BHQ),
TAMRA and Deep Dark Quenchers I and II [90].

TagMan assays that have been utilised for the detection and quan-
tification of the SARS-CoV-2 nucleic acids in wastewater so far, target
the virus nucleocapsid (N1, N2 and N3) protein genes, the RNA-de-
pendent RNA polymerase (RdRp) and the envelope (E) of the virus [91].
The discrimination of SARS-CoV-2 genetic material from other types of
SARS-CoV including bat-related SARS-CoV has been made possible
through the availability of two different fluorescent probes for the RARp
gene. However, it was shown that the RT-qPCR assay for the E gene can
react with SARS-CoV-2 and with SARS-CoV [46]. There are reports that
only the three N protein gene detection assays have worked well for the
detection of SARS-CoV-2 [46,92]. Ahmed et al. [4] report that among
five different RT-qPCR assays (CDCN1, CDC N2, N_Sarbeco, NIID_2019-
nCoV_N and E_Sarbeco), the CDC N1 assay has been shown to be the
most sensitive one while the N_Sarbeco showed the least sensitivity,
while positive samples among wastewater samples of a cruise ship and
three aircrafts were near the assay LOD (37 to 40 cycles), providing
inconsistent results among the tested assays. To this end, various
protocols and target gene regions have been recommended for research
use by national and international organizations, including the Charité,
Berlin (WHO) protocol primer and probe panel which includes the
RdRp and the E_Sarbeco (E gene) primers and probes and the CDC has
published a Real-Time RT-PCR Diagnostic Panel including all materials,
reagents and guidelines needed for qualitative detection of SARS-CoV-2
[48,49]. The primers and probes included in the CDC guidelines include
the primers and probes for specific detection of the N1, N2 and RdRp
genes, whose quality control and authorization was completed (US
CDC, 2020). However, it must be highlighted that these assays have
been developed for clinical samples and not for environmental ones,
making their application one that requires additional attention in
wastewater-based analyses.

It is important to note that a positive result for one out of the whole
assay of gene targets, does not guarantee the presence of SARS-CoV-2 in
the analyzed samples. False positive results may influence the analy-
tical process in the absence of sound and coherent quality control
procedures, due to potential cross-contamination of the qPCR assays.
Moreover, the lack of confirmation of the positive result of one gene
target with a second gene target, may cause doubt about the actual
presence of the virus. To avoid the misinterpretation of laboratory
contamination of samples as false positive results, the use of positive
controls (synthetic or natural) species-specific sequences is re-
commended, which contain a readily detectable sequence with the
applied RT-qPCR methodology [93]. On the other hand, [24] ([pre-
print]) suggest the confirmation of the specificity of the reaction and
thus eliminating any concerns about cross-reactivity of the SARS-CoV-2
assays with untested organisms or uncharacterized viruses, through the
absence of amplification in negative control or ‘blank’ samples.

A complete list of the available primer and probe assays available by
acknowledged institutions and organizations and adopted by the World
Health Organisation (WHO), is provided in Table 4. Despite the avail-
ability of only few primer and probe assay sets available for the de-
tection and quantification of the SARS-CoV-2, there is a lack of co-
herence in the combinations of assay sets used, in each available
study, so far. In more detail, each available study uses a different
combination of primer and probe assays (Table 5). This analytical
heterogeneity also bears the inherent disadvantage of the differentiated
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Table 4
Adopted from the World Health Organisation (2020).

Institution Gene targets
US CDC, USA N1, N2, N3
Charité, Berlin, Germany RdRp, E, N

ORFlab and N
Two targets in RARp (IP2 and IP4)
Pancorona and multiple targets,

China CDC, China
Institute Pasteur, France
National Institute of Infectious Diseases,

Japan Spike protein
HKU, Hong Kong ORF1b-nspl4, N
National Institute of Health, Thailand N

sensitivity of each assay, especially to low numbers of SARS-CoV-2
copies/volume of sample, which is determined by the LOD of the RT-
qPCR reaction, the efficiency of sample processing (sample concentra-
tion and RNA extraction) and the cycling conditions present. A differ-
ence in performance of SARS-CoV-2 assays has been observed due to
differences in priming efficiency, the protocols used and the viral RNA
secondary structure and/or stability. As stated by Bustin and Nolan
[94], primers are the single most critical component of a reliable RT-
qPCR assay, due to the fact that their properties influence the specificity
and sensitivity of the method. As a result, poor experimental design in
combination to poorly optimized reactions may lead to false negative
results [95].

As already stated in previous work, a low enough LOD is required
for testing samples with low virus concentration, mainly due to virus
concentration dilution effects and low prevalence of the COVID-19. This
may be achieved through further improvement of the analytical sensi-
tivity of the existing SARS-CoV-2 assays in wastewater, by employing
concentration and extraction methods able to recover more than 50% of
the SARS-CoV-2 RNA from wastewater [4]. However, many of the
studies ineffectively document the quality control measures of their
study, including the LOD of their method. Rapid developments during
the COVID-19 pandemic and the need to apply rapid testing and
screening of samples, has led to a lack of coherent gathering of data in
produced studies and thus to a lack of LOD and quality control in-
formation in published works.

The use of process controls in order to keep track of the levels of
target recovery and measurement efficiency is crucial. The application
of such quality control measures prevents the appearance of false
negative results and assures the analyst that even very low con-
centrations of SARS-CoV-2 in complex matrices such as influent
wastewater can be detected with the utilized methods, to accurately
detect low incidences of COVID-19 within examined communities.
Potential inhibition of measurement arising from each step of the
sample treatment/analysis process is also more obvious after the use of
process controls, which include according to Haramoto et al. [75] three
types: i) whole process surrogate controls to be inoculated in a water
sample before virus concentration, ii) molecular process controls in-
oculated into the viral concentrate and iii) RT-qPCR controls which
must be inoculated before RT-qPCR. Especially inoculation before RT-
gPCR of a positive surrogate control virus, along with the appropriate
negative controls and non-template controls, provides adequate evi-
dence of potential sample and reagent contamination, low reaction
efficiency as well as need for further optimisation of the process.

To increase the robustness of RT-qPCR results and assure the ab-
sence of false positive results of such a highly diverse selection of assays
applied in the different research work so far, sequencing of positive
samples has been highly recommended. Besides confirmation of the
presence of the specific virus, the phylogenetic origin and mutations of
the SARS-CoV-2 virus strains present in positive samples can be iden-
tified by amplifying phylogenetically informative regions ([8] [pre-
print]).

The check of the process performance and efficiency is also critical
in the quality assurance procedure, as comparison of two or more
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reactions where a condition is changed (e.g. different reaction mixes,
different instruments etc.) is only enabled once it is assured that all
process steps and their associated parameters have been checked. To
achieve the successful intra- and inter-laboratory comparison of pro-
cesses and results, it is thus important to evaluate the following process
efficiency-associated parameters [96]:

i) Linear dynamic range is the mathematical variation of the slope or
efficiency when testing serial dilutions of the same sample, in re-
plicates. Repeated analysis of the same dilution provides a standard
deviation that provides information on the ability to repeat a single
measurement.

ii) R?value is a statistical term which indicates how good a value is at
predicting another, and ranges from 0 to 1. An R? value above 0.99
gives good statistical confidence in the correlation between two
values.

iii) Precision is estimated through the standard deviation among
measurements. The closer that the majority of measurements are to
the mean value, the smaller the standard deviation. For example, in
a 100% efficient PCR analysis, the difference among successive
serial dilution measurements is close to 1.

iv) Sensitivity is the ability of a system to successfully amplify and
detect one copy of the starting template. To achieve high sensitivity
of measurement, a high number of replicates would be required for
high statistical significance.

Regarding the RT-qPCR analytical aspect of the SARS-CoV-2 in
wastewater, there was shown over the past few months, an enormous
variety in selected reagents used for the detection and enumeration of
the virus nucleic acids. After RNA extraction, the quality of the RNA
(either concentration or 260/280 and 230/260 ratios). As shown in
Table 5, it is evident that each study uses different PCR reaction mixes,
which may have a different reaction efficiency with the specific pri-
mers. The composition of each PCR reaction mix (salt concentration, pH
level) may have an impact on the threshold of the Ct values and thus of
related viral concentrations, in cases of quantification. The variety
observed in reagents and methodology, highlights the need for method
and reagent optimisation among testing laboratories, to assure that
analyses are being done in a coherent and correct way, with all the
necessary controls and checks of quality all along the process.

2.5. Reporting of results

One key aspect among conducted studies on the presence and
quantity of SARS-CoV-2 in wastewater is the type of reporting, and the
ability to perform inter-laboratory comparisons among studies. So far,
the results of the available studies have been reported in two distinct
ways, based on the type of result sought (Table 6): i) absence or pre-
sence of the virus in the form of Ct values reported directly by the used
qPCR instrument and ii) gene copies/volume of sample, with the use
of a quantitative calibration curve of Ct values against known con-
centrations of the virus for the calculation of the gene copies present in
a certain sample volume (relative quantification).

The Ct value comprises an intersection between the qPCR amplifi-
cation curve and a threshold line and is a relative measure of gene
target concentration, through fluorescence emission based on the con-
centration of the target gene fragment in the analysed samples. The
fluorescence signal is recorded during every cycle and represent the
amount of product amplified during the exponential phase of the gPCR
reaction up to that point, while a higher amount of template leads to
fewer cycles (Ct values) needed to record a fluorescent signal above the
background. However, important aspects of the Ct value results are not
always presented in the available studies, so far. More specifically,
according to Bustin and Nolan [94], Ct values are subjected to inter-run
variation and should not be conveyed without proper calibration
standards. Further, artefacts in the prepared reaction mix may change
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Table 6
Quantification of the RT-qPCR results in the available studies.

Journal of Environmental Chemical Engineering 8 (2020) 104306

Reference Location Quantification of targets Units of reporting Positive sample Ct values and quantification results
The papers marked with an asterisk (*) were (yes/no)
not certified by peer review (preprints)
[34] Australia Yes Ct values 37.5 Ct = 12 copies/100 mL of WW
39 Ct = 1.9 copies/100 mL of WW
(1 sample positive for N_Sarbeco and 1 positive for NIID_2019-
nCOV_N)
[35] Australia Yes Copies/MHV Recovery efficiency: Method C > Method B > Method D >
recovered Method F > Method G > Method E > Method A
[4] Australia Yes Ct values Copies/ 4/5 aircraft samples positive for N or E target
100 mL Both concentration methods recovered SARS-CoV-2 RNA from
aircraft wastewater (N_Sarbeco and E_Sarbeco)
Cq values of positive samples: 36-39
CDC N1, N2 and NIID_2019-nCoV N assays did not provide any
positive results
7/21 cruise ship samples were positive for all assays
14/21 samples were positive for at least one assay
[71* Brazil No Ct values 1 log increase observed from November 2020 to March 2020
Genome copies/L 5.49 log;o genome copies/L (November 2019) to 6.68 log;o
genome copies/L (March 2020)
[25]* France Yes Ct values No direct temporal relationship between SARS-CoV-2
RNA copies/100 detection and epidemiological features of COVID-19
mL
[61* France Yes Genome units/L 5.4 x 10* -3 x 10° genome units/L
[32]* India Yes Ct values 27.92-29.52 Ct
Copies/L 2.42 x 108 copies/L
[27]* Israel No Ct values 32.76-38.5 Ct
[22] Italy No Ct values 4/8 days positive signals in plant A
4/8 days positive signals in plant B
2/8 days positive signals in plant C1
2/8 days positive signals in plant C2
[24]* Italy Yes Genomic copies/uL.  15/40 samples positive signals
LOD to 5.9 x 10° genomic copies/L to 5.6 x 10* genomic
copies/L
[9]1* Italy No Ct values ORF1lab, N and E positive signal in raw influent
No positive signal in treated wastewater
[331* Japan Yes Copies/L 1/5 secondary treated WW were positive
0/5 influent samples were positive for SARS-CoV-2
[26] Spain Yes Ct values 35/42 influent positive samples for at least one gene target
Genomic copies/L.  2/18 secondary treated positive samples for at least one gene
target
Concentration: 5.1-5.5 log;o genomic copies/L
[21]%, [38] The Netherlands Yes (N1-N3) Ct values Concentration of N1, N2 and N3: 1.2 x 10" genome copies/mL
No (E) Gene copies/mL E: 18/29 UWTPs positive signals
[28]* Turkey Yes Ct values 34.67-39.54 Ct
Copies/L 3.11 x 10%-7.78 x 10° copies/L
[29]* USA Yes Copies/mL 18/22 positive samples
42.7 + 32.9-112.35 + 8.01 genomes/mL
[30] USA Yes Ct values Positive samples during April (Method A)
Copies/L 2.5-3.2 logyo copies/L
[31]1* USA No Ct values 33.87-38.39 Ct
(southern-filtrate and northern-unfiltered samples positive for
N1, N2 and N3, and N1 and N3 respectively)
[81* USA Yes Viral genomes/L Not provided

the fluorescence associated with Ct and the subsequent quantification
calculations, resulting in template-independent Ct shifts. Besides,
quantification made in low-efficiency conditions may lead to a different
calibration curve with a different slope to one under high-efficiency
conditions, for the same target concentration. Low concentrations of the
target sequence may lead to inadequate pairing of primers with the
template during the first qPCR cycles. As a result, different fractions of
the template may get amplified, leading to large variability giving a
high margin of uncertainty.

The calculation of gene copies/volume of sample must be carefully
prepared, initially with the calculation of mean Ct from associated
technical replicates, followed by the calculation of the relative quantity
of gene copies after the estimation of the efficiency of the process and
finally by the enumeration of gene copies per volume of samples
alongside the performance of statistical analysis.

Beyond applying the quality control measures necessary for the
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assurance of the quality of the results, it is important when publishing
gPCR experimental data, to make sure that the data complies to the
Minimum Information for Publication of Quantitative real-time PCR
experiments (MIQE) guidelines [97]. These guidelines provide a clear
framework of qPCR experiment conduction and guidelines on the use of
qPCR results in scientific manuscripts, with the purpose of achieving
consistent, comparable and homogenised high-quality reported data.
According to the MIQE guidelines, it is important to provide detailed
information on the data analysis methods, the estimation of confidence
and software used. The reporting of assay precision with the use of
statistical methods for analysis of variances is also key, along with the
report of the concentration of gene copies/volume of sample, for
quantitative and qualitative reported results.

Qualitative analysis (reporting of presence/absence of the SARS-
CoV-2 gene targets) has been shown to be a highly utilised reporting
method. However, a qualitative assessment of the presence of the virus
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target genes still necessitates the assessment of the sensitivity of the
qPCR assay to very low target concentrations to prove if indeed the
applied method can detect even a few gene copies of the virus. Thus, the
reporting in the scientific literature of assay performance character-
istics, including the linear dynamic range, the R?, the precision, the
sensitivity and the LOD of the applied method is essential. Moreover,
differences in abundance and recovery efficiency of SARS-CoV-2 among
different studies, may not be due to the actual concentration of the virus
found in wastewater, but because of methodological discrepancies that
currently exist, including the concentration methods, RNA extraction
strategies and used RT-qPCR assays [30]. Unfortunately, the COVID-
19 pandemic restrictions to laboratory access, to purchase of stan-
dards and appropriate reagents to effectively validate the applied
assays, have made the comparison of different studies difficult, while
at the same time improvement in the quality controls used within each
laboratory need to be improved according to validated standards such
as the MIQE guidelines.

The currently available studies provide a good basis for the pre-
liminary assessment the concentration of SARS-CoV-2 in wastewater, in
relation to the number of COVID-19 patients in the catchment area. In
order to be able to utilise the obtained information to the SARS-CoV-2
WBE framework, it is necessary to be able to precisely associate the
gene copies/volume of sample results, to the prevalence of COVID-19
cases within the WWTP-served community. This estimation requires
background knowledge which remains to be answered to date, on the
number of diseased individuals, the rate of shedding of the virus in
human faeces and the range of time within this shedding takes place, to
reach the sewage network. An effort was made by Medema et al. ([21]
[preprint]; [38]) to estimate the prevalence of infected persons among a
UWTP population which may yield positive signals during wastewater
analysis for the virus. The results showed a prevalence of 0.1 case per
100000 when using N1 and N2 targets [38], while N3 and E targets
provided a positive signal at 3.5 cases per 100000 people [21] [pre-
print]. Another study by Jorgensen et al. [99][preprint] has estimated
that a positive signal of the viral RNA in wastewater may be produced if
there are around 3 cases per 10000 people. However, it is highlighted
by the authors that this estimation is based on assumptions that may
likely convey lower than normally accepted precision. Moreover, the
amount of travel time once in the sewage network, to the UWTP is
needed. However, an important aspect of the COVID-19 to consider is
the residence time of the virus in each diseased individual, keeping in
mind that asymptomatic or paucisymptomatic (few symptoms) people
that have not been included in COVID-19 estimations also contribute to
the SARS-CoV-2 in wastewater. At a community level, to drive the
development of the analytical methodology of SARS-CoV-2 in waste-
water forward, the determination of the minimum number of COVID-19
cases present within a community that allows the detection and exact
quantification of SARS-CoV-2 in wastewater remains to be explored.

In the currently available studies, a change in SARS-CoV-2 RNA
concentration has been observed as the number of COVID-19 cases
changed ([27] [preprint]; [38]). Interestingly, in the study by Medema
et al. [38], the slopes of the quantified gene targets N1 and N2 were
shown to change according to the prevalence of COVID-19, by 0.1 case
per 100000 person equivalent, something that was not noticed in the
case of the N3 gene target, suggesting a reduced sensitivity of the
concentration of this gene to the prevalence of cases in the served
UWTP area. Moreover, in a study by [27] ([preprint]), the Ct values of
SARS-CoV-2 RNA (E gene) has been correlated to the general number of
COVID-19 positive individuals in Tel Aviv, with a high R? correlation
value (R = 0.998). [6] ([preprint]) also proved an increase in SARS-
CoV-2 concentration along with COVID-19 cases, providing also in-
direct evidence of significant reduction of virus transmission (via SARS-
CoV-2 concentrations in wastewater) as a result of lockdown measures
in Paris. On the other hand, Randazzo et al. [26] showed an average
concentration of 5.4 = 0.2 log; gene copies/L (N1, N2, N3) in influent
wastewater in Spain without an association to the COVID-19 cases in
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the UWTP catchment area, highlighting the need for an improved
quantitative model that includes further information on the variables
that affect wastewater data, for a better interpretation of the available
information. However, the limitations that span the detection metho-
dology in general as discussed herein, impose limitations to the cau-
sation that may prevail by the COVID-19 cases, to the SARS-CoV-2
concentration. Despite the current findings, all available studies ac-
knowledge the fact that an absolute comparison between COVID-19
cases with SARS-CoV-2 RNA is still difficult, due to the variability in
COVID-19 case testing and reporting in each country, as well as the
regulatory framework in place regarding testing of COVID-19.

3. Next steps in methodology development

The discussion provided herein has presented the main aspects of
the methodology of SARS-CoV-2 detection and quantification in was-
tewater to be considered. The review of the available information has
thus led to the conception and proposal of key points that, if considered
collectively, may lead to significant improvements of the produced
research work, worldwide. The suggested key points, according to the
process step to which they belong, are provided in Fig. 1.

Systematic evaluation of each step of the applied methodology must
take place to assure the quality of results as well as their accuracy. This
can be achieved through the application of recovery efficiency controls
of the examined virus and of its related surrogates, and of quality
controls at each step of the way along the methodology (LOD, LOQ,
positive controls, negative controls). The evaluation of process effi-
ciency-associated parameters is also of crucial importance for process
and result credibility. These parameters (i.e. linear dynamic range,
value of R?, precision, sensitivity) provide the base for intra- and inter-
laboratory comparisons of different processes and results, as crude re-
sults are evaluated. Moreover, homogeneity of reporting of results is
another key aspect that needs to be optimized among research groups
and studies. Homogeneous reporting enables global comparison and
assessment of results despite the use of different methods among re-
search groups, providing also a basis for further collaborations and
creation of databases that will target the gathering of all relevant in-
formation in one place for all interested parties. Increased methodolo-
gical reliability and reliable estimation of infected cases in a given
population that are needed for a positive analytical signal in waste-
water, will furthermore provide an additional tool to the health sector
for the assessment of the status of an infectious disease such as COVID-
19 before its spread among the community, especially in areas in-
cluding vulnerable infectious disease zones such as refugee camps, el-
derly residences and medical facilities [98]. In this way, zones of in-
fection ‘peaks’ which may not have symptomatic patients may be
detected in a timely manner, allowing for early measures and precau-
tions to prevent the further spread of the disease, making WBE a truly
powerful tool for the protection of public and environmental health.

4. Concluding remarks and outlook

Taking into account the current situation and the various conditions
created due to the COVID-19 pandemic, as well as the need for a swift
response to deal with its health- and social-side implications, WBE may
transform the wastewater infrastructure into a public health ob-
servatory. Currently, as confirmed in the available literature, there is an
absence of an optimised and univocal methodological framework con-
cerning the detection and quantification of SARS-CoV-2 in wastewater.
Testing and comparing various processes for achieving the same
methodological step by single laboratories, with the use of appropriate
process controls and quality assurance, and also inter-laboratory com-
parisons should take place. The wastewater community is to be com-
mented on the huge efforts it made during the current pandemic. As
history has shown, necessity is the mother of invention. And in this
case, the need is pushing science and research towards important
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size, flow, weather conditions)

SAMPLING o Sample storage temperature
o Thermal sample pre-treatment

o Volume of concentrated sample
o Concentration method

CONCENTRATION a

o RNA extraction kit
o Final eluted RNA volume
o Use of internal standard

RNA EXTRACTION

o Final RNA concentration
o Presence of inhibiting substances

o Gene targets and reaction mix
RT-QPCR o Thermal cycling parameters
o Quality Control/Quality Assurance

REPORTING E
OF RESULTS o Uncertainty of quantification
o Overall efficiency of method

o Organic matter and suspended solids

o Type of analysis (e.g. gPCR, sequencing)
o One or two-step RT-gqPCR and type of qPCR instrument

o Information on UWTP (e.g. capacity, population served, catchment

o Sampling method (e.g. type of sample, volume of sample)

o Time lapse from sampling to concentration

Type of internal surrogate control and viral recovery yield
o Examination of liquid phase and solid fraction of wastewater

o Type of reported values (e.g. Ct values or gene copies/mL)
o Concentration of SARS-CoV per volume of sample
Concentration of SARS-CoV per ng RNA
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Fig. 1. Suggested key points according to each process step of the SARS-CoV-2 methodology for consideration.

advances in relation to the current state of knowledge as to what
wastewater monitoring can achieve, and at the same time is opens new
directions toward transforming the wastewater infrastructure into a
source of obtaining credible information for the benefit of the health
sector and our societies.
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