In silico assessment of the impact of 2019 novel coronavirus genomic variation on the efficiency of published real-time quantitative polymerase chain reaction detection assays

Hang Fan, Xiang-Li-Lan Zhang, Ya-Wei Zhang, Yong Huang, Yue Teng, Yan Guo, Zhi-Qiang Mi, Rui-Fu Yang, Ya-Jun Song, Yu-Jun Cui

State Key Laboratory of Pathogen and Biosecurity, Beijing Institute of Microbiology and Epidemiology, Beijing 100071, China.

To the Editor: In December 2019, coronavirus disease 2019 outbreak caused by the 2019 novel coronavirus (2019-nCoV) happened in Wuhan, China. Now, it has posed a worldwide public health threat. Real-time quantitative polymerase chain reaction (RT-qPCR) was recommended as an effective pathogen detection method and has played an important role in prevention and control of the current outbreak. Many research institutions have released their primer sets for RT-qPCR. If the variant sites were located in the primer regions, the efficiency of RT-qPCR would be reduced, thus possibly causing false negative results, and leading to unpredictable impact on the diagnosis of patients and the control of this outbreak. Therefore, a comprehensive investigation on 2019-nCoV genome variation is necessary to evaluate the effectiveness of current released RT-qPCR methods.

Here, we analyzed 77 public full-length genome sequences of 2019-nCoV from the GISAID website [Supplementary Table 1, http://links.lww.com/CM9/A222]. All the sequences were aligned by using MAFFT v7.450.^[1] A total of 85 variant sites were found, all of which are single nucleotide variants. Among the 85 variant sites, seven were shared by two 2019-nCoV sequences and nine were found in three or more sequences [Supplementary Table 2, http://links.lww.com/CM9/A223].

We investigated the published 2019-nCoV RT-qPCR detection assays and found a total number of 13 RT-qPCR primer sets designed by eight institutions [Table 1, Supplementary Table 3, http://links.lww.com/CM9/A224]. These primers were designed to amplify genes of ORF1ab, Spike (S), Envelope (E), and Nucleocapsid (N). The reverse primers of primer sets 3 and 6 had one mismatch against all of the

Access this article online				
Quick Response Code:	Website: www.cmj.org			
	DOI: 10.1097/CM9.000000000000817			

released 2019-nCoV sequences. Among all the observed variation sites, three (positions on the reference genome IVDC-HB-01: 28291, 28688, and 29200) are separately located on the region of forward primers of the primer sets 7 and 9, and the probe of the primer set 8. It is noted that the above three variations was found in the sequences BetaCoV/Shenzhen/SZTH-003/2020, BetaCoV/Shandong/IVDC-SD-001/2020|EPI_ISL_408482, and BetaCoV/Chongqing/YC01/2020|EPI_ISL_408478, respectively. These variants may affect the RT-qPCR detection efficiency. In particular, variations on the probe region of the primer set 8 may have largely negative effects on detection efficiency according to the previous research.^[2]

In conclusion, using any of the five RT-qPCR primer sets mentioned above to detect 2019-nCoV may potentially cause false-negative results. Among the five, two have mismatches and three contain some 2019-nCoV genome variants which occurred during the outbreak. It is worth noting that the three primer sets containing variants are all located on the N gene. Therefore, it is suggested that conservative regions, such as nsp12 (RdRp) gene, would be preferable primer targets. Although the multiple-targets designation of RT-qPCR protocol would reduce the falsenegative results caused by genome variation, more careful performance evaluation of the currently used primers is needed. Moreover, it is necessary to keep continuous surveillance on the genome variants and their effects on the RT-qPCR assays during the whole outbreak.

Acknowledgements

We gratefully acknowledge the Authors, the Originating and Submitting Laboratories for their sequences and metadata shared through GISAID, on which this research

Chinese Medical Journal 2020;133(13)

Received: 26-02-2020 Edited by: Pei-Fang Wei

Correspondence to: Dr. Yu-Jun Cui, State Key Laboratory of Pathogen and Biosecurity, Beijing Institute of Microbiology and Epidemiology, Beijing 100071, China E-Mail: cuiyujun.new@gmail.com

Copyright © 2020 The Chinese Medical Association, produced by Wolters Kluwer, Inc. under the CC-BY-NC-ND license. This is an open access article distributed under the terms of the Creative Commons Attribution-Non Commercial-No Derivatives License 4.0 (CCBY-NC-ND), where it is permissible to download and share the work provided it is properly cited. The work cannot be changed in any way or used commercially without permission from the journal.

Table 1: The detailed information of publicly released 2019-nCoV RT-qPCR primers.

Primer No.	Target gene	Primer type	Primer name	Primer sequence (5'-3')	Pos. on Ref.	Variation site
1	ORF1ab	Forward	HKU-ORF1b-nsp14F	TGGGGYTTTACRGGTAACCT	1877818797	
		Reverse	HKU- ORF1b-nsp14R	AACRCGCTTAACAAAGCACTC	1888918909	
		Probe	HKU-ORF1b-nsp141P	FAM-TAGTTGTGATGCWATCATGACTAG- TAMRA	1884918872	
2	Ν	Forward	HKU-NF	TAATCAGACAAGGAACTGATTA	2914529166	
		Reverse	HKU-NR	CGAAGGTGTGACTTCCATG	2923629254	
		Probe	HKU-NP	FAM-GCAAATTGTGCAATTTGCGG-TAMRA	2917729196	
3	ORF1ab	Forward	RdRP_SARSr-F2	GTGARATGGTCATGTGTGGCGG	1543115452	
		Reverse	RdRP_SARSr-R1	CARATGTTAAA <u>S</u> ACACTATTAGCATA	1550515530	15519
		Probe	RdRP_SARSr-P2	FAM-CAGGTGGAACCTCATCAGGAGATGC- BBQ	1547015494	
4	Е	Forward	E_Sarbeco_F1	ACAGGTACGTTAATAGTTAATAGCGT	2626926294	
		Reverse	E_Sarbeco_R2	ATATTGCAGCAGTACGCACACA	2636026381	
		Probe	E_Sarbeco_P1	FAM-ACACTAGCCATCCTTACTGCGCTTCG- BBQ	2633226357	
5	Ν	Forward	NbatCoV_F1	TTTGGTGGACCCTCAGATTC	2832228341	
		Reverse	NbatCoV_R1	GGGTGCCAATGTGATCTTTT	2869928718	
6	Ν	Forward	NIID_2019-nCOV_N_F2	AAATTTTGGGGACCAGGAAC	2912529144	
		Reverse	NIID_2019-nCOV_N_R2	TGGCA <u>G</u> CTGTGTAGGTCAAC	2926329282	29277
		Probe	NIID_2019-nCOV_N_P2	FAM-ATGTCGCGCATTGGCATGGA-BHQ	2922229241	
7	Ν	Forward	2019-nCoV_N1-F	GACC <u>C</u> CAAAATCAGCGAAAT	2828728306	28291
		Reverse	2019-nCoV_N1-R	TCTGGTTACTGCCAGTTGAATCTG	2833528358	
		Probe	2019-nCoV_N1-P	FAM-ACCCCGCATTACGTTTGGTGGACC- BHQ1	2830928332	
8	Ν	Forward	2019-nCoV_N2-F	TTACAAACATTGGCCGCAAA	2916429183	
		Reverse	2019-nCoV_N2-R	GCGCGACATTCCGAAGAA	2921329230	
		Probe	2019-nCoV_N2-P	FAM-ACAATTTGCCCC <u>C</u> AGCGCTTCAG-BHQ1	2918829210	29200
9	Ν	Forward	2019-nCoV_N3-F	GGGAGCC <u>T</u> TGAATACACCAAAA	2868128702	28688
		Reverse	2019-nCoV_N3-R	TGTAGCACGATTGCAGCATTG	2873228752	
		Probe	2019-nCoV_N3-P	FAM-AYCACATTGGCACCCGCAATCCTG- BHQ1	2870428727	
10	ORF1ab	Forward	F	CCCTGTGGGTTTTACACTTAA	1334213362	
		Reverse	R	ACGATTGTGCATCAGCTGA	1344213460	
		Probe	Р	FAM- CCGTCTGCGGTATGTGGAAAGGTTATGG- BHQ1	1337713404	
11	Ν	Forward	F	GGGGAACTTCTCCTGCTAGAAT	2888128902	
		Reverse	R	CAGACATTTTGCTCTCAAGCTG	2895828979	
		Probe	P	FAM-TTGCTGCTGCTTGACAGATT-TAMRA	2893428953	
12	Е	Forward	F	ACTTCTTTTTCTTGCTTTCGTGGT	2629526318	
		Reverse	R	GCAGCAGTACGCACACAATC	2635726376	
		Probe	P	CY5-CTAGTTACACTAGCCATCCTTACTGC- BHQ1	2632626351	
13	Ν	Forward	WH-NIC N-F	CGTTTGGTGGACCCTCAGAT	2832028339	
		Reverse	WH-NIC N-R	CCCCACTGCGTTCTCCATT	2835828376	
		Probe	WH-NIC N-P	FAM-CAACTGGCAGTAACCA- BQH1	2834128356	

The reference genome is IVDC-HB-01. The underlined letters in the column of primer sequence represent the variant sites. 2019-nCoV: 2019 Novel coronavirus; RT-qPCR: Real-time quantitative polymerase chain reaction; Pos: Position; Ref: Reference genome.

is based. All submitters of data may be contacted directly via https://www.gisaid.org.

Funding

This work was supported by the National Key Research & Development Program of China (No. 2020YFC0840900) and the Beijing Municipal Science and Technology Project (No. Z201100001020004).

Conflicts of interest

None.

References

- Katoh K, Standley DM. MAFFT multiple sequence alignment software version 7: improvements in performance and usability. Mol Biol Evol 2013;30:772–780. doi: 10.1093/molbev/mst010.
- Süss B, Flekna G, Wagner M, Hein I. Studying the effect of single mismatches in primer and probe binding regions on amplification curves and quantification in real-time PCR. J Microbiol Methods 2009;76:316–319. doi: 10.1016/j.mimet.2008.12.003.

How to cite this article: Fan H, Zhang XLL, Zhang YW, Huang Y, Teng Y, Guo Y, Mi ZQ, Yang RF, Song YJ, Cui YJ. *In silico* assessment of the impact of 2019 novel coronavirus genomic variation on the efficiency of published real-time quantitative polymerase chain reaction detection assays. Chin Med J 2020;133:1612–1613. doi: 10.1097/CM9.00000 00000000817