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Effects of human mobility restrictions on the spread 
of COVID-19 in Shenzhen, China: a modelling study using 
mobile phone data
Ying Zhou, Renzhe Xu, Dongsheng Hu, Yang Yue, Qingquan Li, Jizhe Xia

Summary
Background Restricting human mobility is an effective strategy used to control disease spread. However, whether mobility 
restriction is a proportional response to control the ongoing COVID-19 pandemic is unclear. We aimed to develop 
a model that can quantify the potential effects of various intracity mobility restrictions on the spread of COVID-19.

Methods In this modelling study, we used anonymous and aggregated mobile phone sightings data to build 
a susceptible–exposed–infectious–recovered transmission model for COVID-19 based on the city of Shenzhen, China. 
We simulated how disease spread changed when we varied the type and magnitude of mobility restrictions in different 
transmission scenarios, with variables such as the basic reproductive number (R0), length of infectious period, and 
the number of initial cases.

Findings 331 COVID-19 cases distributed across the ten regions of Shenzhen were reported on Feb 7, 2020. In our basic 
scenario (R0 of 2·68), mobility reduction of 20–60% within the city had a notable effect on controlling COVID-19 spread: 
a flattening of the peak number of cases by 33% (95% UI 21–42) and delay to the peak number by 2 weeks with 
a 20% restriction, 66% (48–75) reduction and 4 week delay with a 40% restriction, and 91% (79–95) reduction and 14 week 
delay with a 60% restriction. The effects of mobility restriction were increased when combined with reductions of 25% or 
50% in transmissibility of the virus. In specific analyses of mobility restrictions for individuals with symptomatic infections 
and for high-risk regions, these measures also had substantial effects on reducing the spread of COVID-19. For example, 
the peak of the epidemic was delayed by 2 weeks if the proportion of individuals with symptomatic infections who could 
move freely was maintained at 20%, and by 4 weeks if two high-risk regions were locked down. The simulation results 
were also affected by various transmission parameters. 

Interpretation Our model shows the effects of various types and magnitudes of mobility restrictions on controlling 
COVID-19 outbreaks at the city level in Shenzhen, China. The model could help policy makers to establish the optimal 
combinations of mobility restrictions during the COVID-19 pandemic, especially to assess the potential positive 
effects of mobility restriction on public health in view of the potential negative economic and societal effects.
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Introduction
In January 2020, an outbreak of COVID-19 began in 
Wuhan, China, and this disease spread rapidly to more 
than 200 countries.1 COVID-19 is caused by a novel 
coronavirus known as severe acute respiratory 
syndrome coronavirus 2 (SARS-CoV-2), which has a 
very high transmissibility.2,3 Restricting public mobility 
is a crucial public health tool to control respiratory 
infectious diseases. Such restrictions include physical 
dis tancing and community containment measures for 
reducing public transport use and public gatherings, 
school closures, and working from home where 
possible. Previous studies investigating influenza epi-
demics provided evidence for the small effects of these 
measures. For example, mobility restrictions were 
estimated to only reduce the peak number of individuals 
infected with H1N1 virus in local trans mission by 10% 
and delay the peak incidence by 2 days.4 However, this 

scarcity of evidence is probably because such studies 
only captured information on some subpopulations, 
such as school children or people at work, not the whole 
population.5,6

In the context of COVID-19, mobility data including 
airline data and app-based data suggest that realistic 
travel restrictions at a national or even international 
level substantially mitigates disease spread between 
cities.2,7 However, there is debate over what type and 
magnitude of mobility restrictions could be appropriate 
for con trolling the COVID-19 outbreak. The optimal 
balance between the potential positive effects of mob-
ility restric tions on public health and the adverse effects 
on freedom of movement, the economy, and society 
is unclear.

Mobile phone use in China among those aged 
15–65 years is almost 100%; as such, mobile phone 
users can be consi dered representative of the entire 
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population in this age group.8 With this knowledge, we 
used anonymous aggre gated mobile phone sightings 
data to build a COVID-19 transmission model for the 
Chinese city of Shenzhen.

Methods
Study design
In this modelling study, we combined the effects of intra-
city mobility with the force of infection (ie, the rate at 
which susceptible individuals acquire an infectious 
disease) to predict the shape of the epidemic curve of 
COVID-19 in Shenzen, China. We then assessed the 
effects on the shape of the epidemic curve when we 
simulated changes in type and severity of mobility res-
trictions and disease transmission suppression (eg, inter -
ventions such as using face coverings and improving 
personal hygiene) in the scenarios of various disease trans-
mission parameters.

This study was approved by the Institutional Review 
Board of Shenzhen University. Personal privacy was 
strictly protected by using only anonymous and aggregated 
mobile phone data rather than individual records of travel 
or behaviour patterns. The anonymous and aggregated 
data was provided by the mobile phone service provider 
under the strict relevant laws and regulations. All data 
were supplied and analysed in an anonymous format, 
without access to personal identifying information. As 
such, the need for written consent from each mobile 
phone user was waived by the Institutional Review Board 
of Shenzhen University.

Overview of the model
For this modelling study, we built a modified 
susceptible–exposed–infectious–recovered (SEIR) com-
partmental transmission model that categorised the 

study population as follows: susceptible, vulnerable to 
SARS-CoV-2 infection; exposed, individuals exposed to 
the virus who are in the incubation period with no 
symptoms yet; infectious, symptomatic and capable of 
spreading the infection; or recovered, immune to 
infection or no risk of further infection. People newly 
infected and in the incubation period were assumed to 
be infectious because several studies have reported pre-
symp tomatic infections.9,10 Models were constructed for 
each of Shenzhen’s ten administrative regions. By the 
model, COVID-19 could spread both within a region or 
between regions, mirroring the movement of people. 
The model design (appendix p 2) was similar to 
a previously described model to assess the dynamics of 
respiratory infectious diseases associated with human 
mobility.11

Mobility data from mobile phone records
Mobile phone sightings data from working days 
(Monday to Friday) from Jan 10 to March 10, 2019, were 
provided by one of the leading mobile phone service 
providers in Shenzhen, China Unicom, which holds 
the records of more than 4 million anonymous 
subscribers. A user only needed to have their phone 
switched on (and not necessarily use it) for their 
location to be recorded. The origin–destination matrices 
were con structed by computing the number of people 
that move between different locations daily. The 
location where movements started between 0700 h to 
0900 h were inferred as the resident location, because 
most people start their daily activities in the morning.12 
We considered the mobile phone data representative of 
the Shenzhen general popu lation within the age range 
15–65 years. We retrieved data on the borders of 
Shenzhen’s admin istrative divisions and the official 

Research in context

Evidence before this study
We searched PubMed and preprint archives for articles published 
in English that contained information about the COVID-19 
pandemic published up to May 27, 2020, using the search terms 
“coronavirus”, “CoV”, “COVID-19”, “mobility”, “movement”, 
and “flow”. The data thus far suggests that realistic travel 
restrictions can substantially mitigate the spread of COVID-19 
at the national and international level. However, because there 
is no complete picture of human community mobility patterns, 
it is unclear whether restricting mobility is effective at the city 
level and constitutes a proportionate response for controlling 
the COVID-19 outbreak.

Added value of this study
We built a susceptible–exposed–infectious–recovered 
transmission model for COVID-19 based on the city of 
Shenzhen, China. We harnessed mobile phone data, which 
reported human mobility patterns with an unprecedented level 

of detail. We quantified the effect of controlling the COVID-19 
outbreaks by the types (eg, general mobility restrictions, 
lockdown of high-risk regions, intraregion mobility restriction, 
or mobility restriction for infectious people) and magnitudes 
(eg, 20%, 40%, or 60%) of restriction interventions. These 
effects were greater when combined with measures to reduce 
viral transmission. The degree to which mobility restrictions 
at a certain level increase or decrease the epidemic size depends 
on the level of risk in the community and the characteristics 
of the COVID-19.

Implications of all the available evidence
The effect of different types and magnitudes of mobility 
restriction measures on controlling the COVID-19 outbreak 
was quantified in this study and could be modified with updated 
transmission characteristics. This model might aid policy makers 
in the management of the epidemic by predicting risk and 
assessing the effect of mobility restrictions at the city level.

See Online for appendix
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estimated population size of around 11 million (4·8% 
population growth from 2018) for 2020 from the 
Shenzhen Government website.13

Characteristics of COVID-19
The daily number of confirmed cases of COVID-19 in 
Shenzhen was obtained from the Government website 
of Shenzhen, where all cases were organised by region of 
residence.14 The incubation time for SARS-CoV-2 was 
5·2 days (95% CI 4·1–7·0 days) and serial interval was 
7·5 days (5·3–19).15 Existing estimates of the basic re-
productive number (R0) for COVID-19 vary widely from 
1·9 to 6·5.16,17 Similarly, the inferred duration of the infec-
tious period of COVID-19 was from 6·5 to 21·0 days for 
various subpopulations.18 Here, an R0 of 2·68 (2·47–2·86) 
and an infectious period of 12·7 days (9·4–26) was used 
for the basic scenario.2 We applied various values for the 
R0 (4·0, 3·0, and 2·0), infectious period (15, 10, and 
8 days) and initial number of cases (2, 5, and 15 times 
increases in initial cases) in the simulation analysis. Case 
definitions used by the local Government were obtained 
from the Chinese Centres for Disease Control 
(appendix p 1). The effective reproduction number (Rt) in 
Shenzhen from Jan 10 to Feb 20, 2020, was estimated 
using the likelihood-based estimation method based on 
the observed dates for symptom onset using pairs of 
cases.19 The hot areas (with high Getis-Ord spatial 
statistics values) in Shenzhen were established by daily 
incidence data, which analysed where features with 
either high or low values cluster spatially.20

Transmission model structure
For the basic simulation, the confirmed cases reported in 
ten administrative regions at the start date (Feb 7, 2020) 
served as the number of infected cases for epidemic mod-
elling—ie, at time (t)=0. A SEIR model was then built for 
the subpopulation constituting each of Shenzhen’s ten 
regions. The model was built by using ordinary differential 
equa tions, such that for the ith region (with i from 
1 to 10) where:

Si(t), Ei(t), Ii(t), and Ri(t) are the number of susceptible, 
exposed, infectious, and recovered indivi duals at time t. In 
the formula, σi corresponds to the inverse of the mean 
incubation period and γi was the recovery rate (the inverse 
of the mean infectiousness period), where an infected 

patient recovers and is assumed to become immune to 
COVID-19 infection. The force of infection (λ) in the ith 
region is: 

Where Nl was the total population in the region l, and Pm 
represents the proportion of mobile infectious cases. 
βj represents the transmission rate from infectious people 
and is estimated by dividing R0 by the infectious period. 
The entire population of Shenzhen was assumed to be 
susceptible. It was assumed that people in both the 
exposed and infectious categories had the same ability to 
infect susceptible people.

Mobile phone data was used to establish the number of 
people who were moving from region i to region j (Lij), 
including the number of people who were moving within 
region i with movement distance of more than 250 m 
(i=j). Those who did not move further than 250 m in 1 day 
were presumed to be in home isolation, and the force of 
infection for these people was denoted as 0 (βisolate=0). 
Then, a K × (K + 1) mixing matrix M={mab} was con-
structed, as follows: 

Where mij (1 ≤ i, j ≤ K) is the average proportion of time 
that a resident of population i spends in population j on 
daily basis, and the mi,isolate (1 ≤ i ≤ K, isolate = K + 1) is the 
proportion of time that a resident of population i is in 
home isolation. We assumed that the average time of stay 
in each movement was 8 h per day.

Transmission scenarios
In the model, the magnitude of human mobility reduc-
tion in the city varied from 0% to 60%, at 20% intervals, 
to quantify the effect of general mobility restriction. The 
next set of scenarios thus modelled the effects of com-
bining the graded restrictions in mobility (20–60%) with 
reduced disease transmissibility (at 25% and 50%). Some 
types of mobility restriction, including reducing the 
inter-region mobility for all regions or locking down 
high-risk regions by reducing their inter-region and 
intra-region mobility, were assessed in the model. The 
proportion of mobility for those in the infectious category 
was assumed to be 60% in the basic scenario; more than 
25% of these people reported symptom onset before they 
travelled to Shenzhen from Hubei.14 To quantify the 
effect of mob ility restriction for those in the symptomatic 
infectious category (such as case isolation), simulations 
were established with the level of mobility set at 20%, 

dSi(t)
dt

= –λiSi(t)—

dEi(t)
dt

= λiSi(t) – σiEi(t)—

dIi(t)
dt
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40%, or 60% for infectious people. No simulation was 
done for 0% mobility for the infectious category, because 
in real-world situations it is hard to control all 
symptomatic patients, including those with mild and 
moderate symptoms. The effect of mobility restriction 
was assessed in scenarios with various values of 
transmission and parameters of disease (R0, duration of 
infectious period, and initial number of cases).

The effect of controlling the COVID-19 outbreak was 
investigated from two perspectives: (1) slowing the growth 
rate of the epidemic and (2) flattening the epi demic curve 
(ie, reducing the peak number of cases). We set a goal of 
no peak in the first half of 2020 (up to June 30) as the goal 
for infection control for comparison when applying 
different mobility restrictions. The 95% uncertainty 
intervals (UIs) were calculated using 1000 draws by 
bootstrap method for incubation period (log-normal dis-
tribution) and the serial interval (γ distribution). All 

analyses were done with R version 3.6.2, ArcGIS 
version 10.5, and QGIS version 2.81.

Role of the funding source
The funder of the study had no role in study design, data 
collection, data analysis, data interpretation, or writing of 
the report. The corresponding author had full access to 
all the data in the study and had final responsibility for 
the decision to submit for publication.

Results
331 COVID-19 cases distributed across the ten regions of 
Shenzhen were reported on Feb 7, 2020 (Baoan [n=48], 
Nanshan [n=77], Futian [n=65], LuoHo [n=31], Yantian 
[n=3], Guangming [n=10], Longhua [n=31], Long Gang 
[n=58], Pingshan [n=6], and Dapeng [n=2]). We mapped 
these initial cases geographically, alongside the positions 
of the mobile phone base stations in Shenzhen 

Figure 1: Effects of human mobility restrictions in Shenzhen on COVID-19 incidence with and without transmissibility reduction, February to October, 2020
Cumulative incidence of COVID-19 (A) and daily incidence of COVID-19 (B) with varying mobility restrictions. Shaded areas in (A) are 95% uncertainty intervals. 
Daily incidence of COVID-19 with varying mobility restrictions with 25% reduction in transmissibility (C) and 50% reduction in transmissibility (D).
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(appendix p 3). Alongside, we provide the actual local 
spread of COVID-19 in Shenzhen (appendix p 4). Most 
cases were imported from Wuhan; minimal local 
community transmission occurred in the city. The R(t) 
was less than 1·0 within 2 weeks after the first imported 
case was reported because of a series of immediate public 
health inter ventions being imple mented (appendix p 4).

In the simulated basic scenario (R0 of 2·68; figure 1), 
the Shenzhen epidemic was predicted to peak in March, 

2020, in the absence of any public health interventions. If 
intra-city mobility was reduced by 20%, the epidemic 
peak would be delayed for about 2 weeks and the peak 
incidence would decrease by about 33% (95% UI 21–42). 
With a moderate (25%) reduction in disease transmissi-
bility, a 20% mobility reduction (vs no mobility reduction) 
further delayed the epidemic peak, by around 4 weeks, 
and the peak incidence of the epidemic decreased by 42% 
(29–48; figure 1C). A 40% reduction in intracity mobility 

Figure 2: Effects of mobility restrictions on COVID-19 incidence under different transmission scenarios, February to October, 2020
Daily incidence of COVID-19 with varying mobility restrictions and a varied reproduction number (A), infectious period (B), and initial numbers of cases in Shenzhen (C). The baseline scenario is an 
R0 of 2·68, an infectious period of 12·7 days, and 331 initial cases in the city. R0=basic reproductive number.
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would delay the peak by 4 weeks and reduce the peak 
daily incidence by around 66% (48–75). A 40% reduction 
in intracity mobility in conjunction with a moderate 
(25%) reduc tion in disease transmissibility delayed the 
peak by 7 weeks, and the magnitude of the epidemic 
dropped by 76% (61–82). A 60% reduction delayed the 
peak by 14 weeks, and decreased the magnitude of the 
epidemic by 91% (79–95). Notably, if 60% mobility 
reduction was combined with 25% reduction in disease 
transmissibility, the epidemic would grow slowly without 
peaking in the first half of 2020. The effectiveness of 
reduced mobility (20–60%) was greatest when combined 
with a strong (50%) reduction in transmissibility.

The effect of reducing mobility varied under different 
disease transmission conditions, including basic repro-
duction number, infectious period, and number of initial 
cases (figure 2). For example, the peak reduction effects 
were greatest for all levels of mobility reduction when 
R0 was 2·0, and the peak was fastest and highest when 
R0 was close to 4·0. Specifically, the model showed that 
a 60% reduction in mobility could prevent a peak from 
occurring during the first half of 2020 in the scenario 
with an R0 of 2·0; resulting in a peak occurring in the 
second week of June with an estimated peak number of 
four cases per 1000 population in the scenario with 
R0 of 3·0; or cause the epidemic peak to occur within the 
first week of May with an estimated peak number of 
cases of nine per 1000 population in the scenario with 
R0 of 4·0. At a given R0, a longer infectious period was 
associated with lower transmissibility because the R0 is 
essentially proportional to the product of the infectious 
period and transmissibility. Therefore, 60% mobility 
reduction could be closer to the goal of preventing a 
peak in the first half of the year when the infectious 
period was 15 days rather than when the infectious 
period was 10 days or 8 days. Notably, increasing the 
initial number of cases 2–15-times could accelerate the 

arrival of the epidemic peak by 2–3 weeks but had 
a negligible effect on the magnitude of the epidemic.

We assessed the effects of mobility reduction for sub-
groups or regions (figure 3). If the proportion of indivi-
duals in the infectious category who could move freely 
was controlled at 20%, the epidemic could be delayed by 
2 weeks and the peak number of cases could be reduced 
by 50% compared with a no public health intervention 
scenario. If inter-region mobility was reduced by 80%, 
the peak of the epidemic could be delayed by around 
4 weeks and the peak number of cases could be reduced 
by 50% compared with a no public health intervention 
scenario. We also simulated the effects of locking down 
two regions with the highest number of initial cases 
(Nanshan and Futian). The epidemic peak could be 
delayed by 4 weeks. Furthermore, the effect of the mob-
ility reduction could be substantially affected by 
R0 (appendix p 5).

Discussion
Mobility restriction is an important public health tool 
and has been used globally to control the COVID-19 
pandemic. In this study, we used anonymous and 
aggregated mobile phone sightings data to establish the 
transmission dyn amics of COVID-19 in a megacity 
(Shenzhen) in China. Our simulation reflected the 
potential effect of different types and magnitudes of 
human mobility restriction measures on controlling 
the spread of COVID-19. Mobility restriction measures 
could be more effective if combined with transmissibility 
reduction measures. The effects of mobility reductions 
were also greatly affected by the trans mission charac-
teristics of the disease itself, which need further 
exploration in future studies.

We built a transmission model that considers human 
mobility patterns derived from anonymous and aggre-
gated mobile phone data, which is expected to change 

Figure 3: Effects of various mobility restrictions for subgroups and high-risk regions on COVID-19 incidence, February to July, 2020
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epidemiology.21,22 To date, available mobility data (including 
data from air and rail travel authorities, GPS loggers, apps 
or social media sources) could only capture the trajectories 
of subpopulations who use specific transport tools or 
install specific applications on their mobile phones.23 By 
contrast, the almost 100% coverage of mobile phone use in 
the population aged 15–65 years means that anonymous 
mobile phone data are: (1) more representative for the 
whole population and (2) an accurate reflection of overall 
movement patterns on various spatial and temporal 
scales.24 Therefore, mobile phone data can be a vital res-
ource to understand the transmission dynamics of infec-
tious diseases such as COVID-19 in the context of human 
mobility.25,26

Although public health interventions might differ at 
different stages of the outbreak, our model provides 
information in the different epidemiological processes. 
In the acceleration stage of the pandemic when incidence 
increases exponentially, the foci become the public 
health interventions for containment. Our model is 
important to assess how various types and magnitudes 
of mobility restriction interventions might have affected 
the spread of COVID-19 in Shenzhen, especially to find 
the optimal combination of the interventions (eg, general 
mobility restrictions, lockdown of high-risk regions, or 
intra-region mobility reduction) and magni tudes (eg, 
20%, 40%, or 60% restriction) of interventions at the 
right time. Our model could also help policy makers to 
balance the potential benefit of mobility restriction along 
with any potential negative societal and economic costs.27 
In the deceleration stage or after the epidemic, our 
model could be modified to assess the effect of realistic 
inter ventions on the progression of COVID-19 in future.

In the basic scenario that we modelled (R0 of 2·68), the 
epidemic in Shenzhen was predicted to peak around 
March, 2020, with daily incidence of 27 per 1000 population. 
Mobility reduction of 20–60% within the city had a notable 
effect on controlling COVID-19 spread: a flattening of the 
peak number of cases by 33–90% and a delay in the 
forward trajectory of the epidemic by 2–14 weeks. With a 
60% reduction in mobility, no obvious peak occurred in 
the first half of 2020 if combined with 25% transmissibility 
reduction. The transmissibility reduction measures have 
substantial effects on the control of COVID-19 outbreaks 
(appendix p 4), but would be more effective if combined 
with mobility reduction measures. In practice, the world 
has witnessed various mobility reduction strategies app-
lied to some subgroups (eg, reducing the mobility of 
infectious individuals with symptoms by isolation or 
admission to hospital) or regions (eg, lockdown in high-
risk regions). The lockdown measures imposed on Wuhan 
substantially mitigated the spread of COVID-19 to other 
cities.28 In our model, a lockdown in high-risk regions 
within a city can have a substantial effect on controlling 
local transmission of COVID-19 in that city.

When the value of R0 increased, a higher proportion of 
the mobility reduction needed to be implemented to 

achieve the same goal. Numbers of initial cases had a 
minor effect on the extent of local outbreaks, which is 
consistent with previous reports that suggested the pre-
vention of movement in Wuhan would have had a 
negligible effect on local transmission in other cities 
because the increasing number of initial infections was 
substantially smaller than the size of the susceptible 
population in the megacities.2,7 We set a goal of achieving 
no peak of infection in the first half of the year for 
comparison; others have defined their disease control 
target as achieving no peak within 3 months.26 Policy 
makers worldwide are still trying to use this paradigm 
when setting their goals for controlling the outbreak of 
COVID-19,27 but goals depend on availability of medical 
resources or management policies. Our model can be 
modified further to reflect other specific definitions of 
outbreak control.

Our study has several major limitations that must be 
noted. First, the R(t) was controlled to less than 1·0 
within 2 weeks after the first case was detected in 
Shenzhen. Therefore, it was impossible for us to validate 
our model using the real spread data. However, the 
modelling techniques that we used in this study are very 
similar to a previous study on the epidemic dynamic of 
influenza.11 Second, the mobility data that we used from 
2019 might not necessarily reflect mobility patterns in 
2020. Third, the mobile phone data we used in this 
analysis was from one of the leading operator companies 
and was extrapolated to represent the whole population 
flow in the city. Due to scarcity of demographic 
information for the floating population (ie, migrants 
with no local household regis tration), who account for 
about 65% of the whole population in Shenzhen,29,30 it is 
unclear whe ther demo graphic distributions of mobile 
phone users are pro portional to the distributions of the 
whole population in the city. However, by covering the 
floating population, the mobile phone data made it 
possible to assess human mobility in Shenzhen. Fourth, 
our model did not include asymptomatic infections; 
thus, outbreak size might have been underestimated if 
there were many highly infectious individuals, but these 
data are unknown.3 The tran smission parameters in our 
model, such as R0, infectious period, serial interval (ie, 
the time between successive cases in a chain of 
transmission), and mobility reduction for infectious 
individuals had substantial effects on the results of our 
model. However, a precise under standing of COVID-19 
transmission characteristics is an area that still requires 
further research. Additionally, our model assumed that 
individuals in the exposed category were infectious and 
had similar infectiousness as the infectious category. 
Assuming that these individuals were less infectious 
would decrease the size of the COVID-19 epidemic curve. 
We simplified our model to establish the effect of 
mobility restrictions on the control of outbreaks; however, 
as more reliable scientific evidence becomes available, 
the model can be updated in future.
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In summary, our modelling based on population dyn-
amics in Shenzhen, China, suggests that human 
mobility restrictions in the city had a large effect on con-
trolling the COVID-19 outbreak, especially when imple-
mented in conjunction with efforts to reduce 
transmissibility. This model could be modified in future, 
as more information comes to light on COVID-19 
transmission characteristics. This model might provide 
evidence to policy makers and planners to help manage 
COVID-19 outbreaks worldwide.
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