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Context‑aware experience 
sampling reveals the scale 
of variation in affective experience
Katie Hoemann1,6*, Zulqarnain Khan1,6, Mallory J. Feldman2, Catie Nielson1, 
Madeleine Devlin1, Jennifer Dy1, Lisa Feldman Barrett1,3, Jolie B. Wormwood4,5,7 & 
Karen S. Quigley1,5,7

Emotion research typically searches for consistency and specificity in physiological activity across 
instances of an emotion category, such as anger or fear, yet studies to date have observed more 
variation than expected. In the present study, we adopt an alternative approach, searching inductively 
for structure within variation, both within and across participants. Following a novel, physiologically-
triggered experience sampling procedure, participants’ self-reports and peripheral physiological 
activity were recorded when substantial changes in cardiac activity occurred in the absence of 
movement. Unsupervised clustering analyses revealed variability in the number and nature of patterns 
of physiological activity that recurred within individuals, as well as in the affect ratings and emotion 
labels associated with each pattern. There were also broad patterns that recurred across individuals. 
These findings support a constructionist account of emotion which, drawing on Darwin, proposes that 
emotion categories are populations of variable instances tied to situation-specific needs.

Scientists who study emotion acknowledge that there is variability in the expression of emotion across individu-
als and cultures, but differ in whether they view this variability as an intrinsic or epiphenomenal property of 
emotion (see supplementary Figure S1). Classical views of emotion, for example, propose that there is a single 
pattern of autonomic nervous system (ANS) activity that is diagnostic of each emotion category (e.g., anger, fear), 
and consider variability to be epiphenomenal to emotion. In these views, variability is assumed to derive from 
regulatory processes, display rules, an inability to sample intense emotional events in the lab, and/or stochastic 
noise1–6. Prototype views of emotion propose that ANS activity varies across instances of the same emotion 
category, but it is still assumed that each category has a diagnostic (i.e., typical or frequent) pattern that can be 
used to consistently and specifically identify its instances (consonant with several theorists’ work7–9). We refer to 
the idea of an emotion-specific diagnostic pattern as a fingerprints hypothesis10. This hypothesis is often assumed 
by basic emotion and causal appraisal approaches to emotion1,3,6,7,9. Real fingerprints vary from one instance to 
the next depending on a host of variables (such as the amount of sweat, pressure or surfaces touched) but are 
presumed to be sufficiently unique to identify a person across instances. In the same way, if the ‘fear’ fingerprint 
were an increase in heart rate and electrodermal (i.e., sweat gland) activity and a decrease in skin temperature11, 
then this fingerprint may not be present in full for every instance of fear. However, it would be present in many 
instances of fear both within people across situations and across persons, and it would not be observed at levels 
above chance in instances of any other emotion category (such as anger or happiness).

Similarly, multiple scientists have proposed that emotion categories are uniquely associated with the affective 
features of valence and arousal, implying that emotion categories also have affective fingerprints7,9,12,13. From these 
perspectives, for example, the experience of fear would be consistently and specifically associated with negative, 
high arousal affect, and would not be associated with pleasant or low arousal affect at levels above chance. Fur-
thermore, by these accounts, affective features should have diagnostic biological correlates, such that experienced 
pleasantness and activation should be consistently and specifically associated with patterns of biological activity.
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Alternatively, other theoretical views in the science of emotion employ a populations hypothesis, proposing 
that each emotion category is a population of context-dependent instances whose features, including ANS fea-
tures, vary in a situated fashion. This hypothesis has been proposed by constructionist, behavioral ecological, 
and functionalist approaches to emotion. These views hypothesize, a priori, that there is substantial within-
category variation as well as between-category similarity that far exceeds what is accounted for by a classical 
or prototype approach14–20. A populations hypothesis draws on Darwin’s discovery of population thinking21, in 
which a biological category, such as a species, consists of heterogeneous individuals. Biological categories do not 
represent discrete physical types (e.g., consistent and specific patterns of features), and in fact, ‘ideal’ instances 
of categories (i.e., their prototypes) are statistical summaries that need not exist in nature22. Accordingly, these 
categories are conceptual: they are collections of variable instances that are treated as similar for some function 
or purpose16–18. A populations view of emotions thus posits that emotions, as biological categories, consist of 
heterogeneous instances which vary in their physiological and psychological features, but which are treated as 
similar for some function or purpose.

With regard to affect, a populations hypothesis proposes that valence and arousal are features of conscious-
ness that can vary within an emotion category23,24. For example, the experience of fear can be affectively pleas-
ant, such as when riding a roller coaster. Critically, a populations hypothesis proposes—and past research has 
demonstrated—that both valence25,26 and arousal27 can vary in their biological correlates.

Consistent with a populations hypothesis, a recent meta-analysis found considerable variability in patterns of 
peripheral physiological activity within emotion categories as well as considerable similarities across categories10, 
replicating prior meta-analyses28,29 and demonstrating that ANS patterns for emotion categories are neither 
consistent nor specific. These findings parallel results showing a lack of consistency and specificity in other 
biological measures taken during instances of emotion, including facial muscle movements30 and neural cor-
relates—whether measured at the level of individual neurons31, as activity in specific brain regions23,32,33, as 
activity or connectivity in brain networks34,35, or as distributed patterns of activity36. Despite the accumulating 
evidence in support of a populations hypothesis, however, contemporary research continues to be designed with 
the assumptions of a fingerprints hypothesis in mind37,38.

Meta-analytic findings, while consistent with the populations hypothesis, cannot rigorously test it; meta-
analytic approaches rely on merely summarizing data across people and situations rather than designing stud-
ies to specifically assess intra-individual and inter-individual variability across instances. Moreover, standard 
lab-based emotion induction methods limit the intensity of the emotional instances sampled5, and thus may 
under-estimate context-specific variation in the physiological features of emotional instances. In the present 
study, we used a more idiographically-sensitive method that provided us with the opportunity to observe and 
characterize the extent of physiological variability within and across emotion categories in real-world situations39. 
Previous studies that have attempted to observe within-category variation using experience-sampling in daily 
life have found evidence supporting the populations hypothesis. For example, an analysis of momentary reports 
of experienced affect found that the relationship between valence and arousal varied widely across individuals 
and situations40. Experience sampling approaches are often employed to assess self-report features of experi-
ence in natural settings41,42, yet this work has only just begun to integrate ambulatory monitoring of peripheral 
physiology39,43,44. Research that collects both self-report and physiological features of experience in everyday life 
is therefore a critical next step in testing a populations hypothesis.

Our method—a novel, physiologically-triggered experience-sampling approach—was specifically designed 
to sample evocative moments defined in a biological way. Participants were prompted to report on their affective 
experience upon substantial, sustained changes in their cardiac activity in the absence of physical movement 
or posture change. By triggering experience samples in this way, we were able to efficiently obtain self-reports 
when individuals evidenced greater physiological change, and when those changes were most likely due to greater 
psychological salience rather than gross bodily movement. We then employed an unsupervised machine learning 
approach to discover the number of distinct, frequently repeated patterns of physiological activity within each 
individual, and we assessed whether any of these patterns recurred across participants. We also assessed the extent 
to which any of these patterns were associated with participant-provided labels for emotional experience and/or 
affective features. This approach allowed us to investigate the relationship between physiological reactivity and 
emotion categories within individuals in a data-driven way.

As part of a larger study on affective experience and decision making in daily life, 52 participants completed 
approximately 14, eight-hour days of ambulatory peripheral physiological monitoring. Each day, participants 
visited the lab and were outfitted with sensors and portable equipment to measure their electrocardiogram (ECG) 
and impedance cardiogram (ICG) as well as bodily movement and posture (via accelerometers). A custom-built 
smartphone application initiated an experience sampling prompt any time the interbeat interval (IBI; also called 
heart period) changed by more than ± 167 ms over an eight-second period, with these thresholds adjusted per 
participant to ensure they received a comparable number of prompts per day. Prompts were not generated if 
participants had moved substantially or shifted posture within the proceeding 30 s. In response to each experience 
sampling prompt, participants first rated their felt valence and arousal on 100-point continuous slider scales and 
then freely labeled their current affective experience. Confirming that our approach helped us to target evocative 
affective experiences in everyday life, we found that experience sampling events included ratings for valence 
(M = 10.16, SD = 17.43) and arousal (M = 6.40, SD = 19.42) that each covered the entire possible range from -50 
to + 50. To ensure comparability of results across the sample, we excluded participants who had fewer than 70 
events devoid of major physiological artifact. This resulted in the removal of six participants, resulting in a final 
sample size of 46 (see “Methods” for participant demographics).

Using the ambulatory physiological data, we derived six cardiovascular features for analysis (Table 1): inter-
beat interval (IBI), respiratory sinus arrhythmia (RSA), pre-ejection period (PEP), left ventricular ejection time 
(LVET), stroke volume (SV), and cardiac output (CO). These cardiovascular features are frequently used in 
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the motivated performance literature, making them highly relevant to sampling evocative experiences in-the-
world45–48. Change scores for each feature were computed for each experience sampling event, as the difference 
in physiological activity between the 30 s preceding the IBI change that initiated the experience sampling prompt 
and the 30 s following (see supplementary Figure S2). Change scores for each participant were submitted to a 
within-person clustering analysis using Dirichlet Process-Gaussian Mixture Modeling (DP-GMM)49–51. Each data 
point in the model represented a single experience sampling event and was characterized by a six-dimensional 
vector of within-person standardized change scores for IBI, RSA, PEP, LVET, SV, and CO. The model for each 
participant yielded a solution comprising clusters of increasingly smaller size, until remaining data represented 
clusters of single events. Rather than assign each event to only one cluster, DP-GMM assigns and weights cluster 
membership probabilistically. Thus, each event could be associated with more than one cluster, and contributed 
proportionally to calculations of weighted mean change scores for the six physiological features across multiple 
clusters.

Consistent with a populations hypothesis, we predicted that participants would vary in the number of clus-
ters discovered in their data, and that these clusters would represent diverse patterns of change in physiological 
activity both within and across participants. However, we also predicted that we would find structure within 
this variation, such that we would find some patterns of change in physiological activity that broadly recurred 
across participants. We further predicted a many-to-many relationship between clusters (i.e., recurring patterns 
of change in physiological activity) and the words and affect ratings used to label events in those clusters. Con-
versely, support for a fingerprints hypothesis would be evidenced by similar patterns of change in physiological 
activity within and across participants, with each cluster consistently and specifically associated with particular 
emotion words or valence and/or arousal ratings.

Results
Variation in patterns of change in physiological activity within participants.  We examined the 
number of clusters of physiological activity that accounted for at least five percent of the within-person events 
submitted for analysis, along with the percentage of events for which physiological data were not included in 
clusters of this size (i.e., those left unclustered). In total, 219 clusters of physiological activity were identified 
across participants, with a mean of 4.76 clusters per person (SD = 1.25; see additional summary statistics in sup-
plementary Table S4). The discovered clustering solutions fit the data well; events’ average probability of cluster 
membership was high (M = 0.87; SD = 0.06). See “Methods“ and pages 28–30 of the supplementary information 
for details regarding model and parameter validation. As predicted, we observed variability in the clusters of 
physiological change across participants, both in their number (minimum = 3; maximum = 8) and in their nature 
(supplementary Table S5). Clusters associated with a greater number of events typically evidenced small physi-
ological changes. This makes sense because in everyday life we would expect to see commonly-occurring events 
associated with smaller physiological changes.

Figure 1 displays the findings for two participants with an average number of clusters. Participant #1′s data 
was described by four clusters of physiological activity, in contrast to participant #2′s data, which was described 
by five. For participant #1, there was limited change in sympathetic nervous system (SNS) function (i.e., change 
in PEP) and modest decreases or no change in parasympathetic (PNS) function across the clusters (i.e., change 
in RSA), whereas for participant #2, physiological changes were primarily driven by changes in SNS function 
(especially in clusters D and E), with little overall change in PNS function (except in cluster D where there is 
coactivation of the SNS and PNS).

Mental features associated with patterns of change in physiological activity within partici‑
pants.  Because each event was probabilistically associated with multiple identified clusters per person, the 
freely labeled emotion words and valence and arousal ratings for each event were assigned weights describing 
their association with each identified cluster. As predicted, there was a many-to-many relationship between 
clusters of physiological activity and the words used to label events in those clusters. Within participants, the 

Table 1.   Cardiovascular features derived from ambulatory physiological data.

Feature Definition Interpretation

Interbeat interval (IBI) Time (in ms) between heartbeats (inverse of heart rate) IBI describes how fast the heart is beating; greater IBI values denote 
a slower heart rate

Respiratory sinus arrhythmia (RSA) High frequency variability in IBI which occurs at the respiratory 
frequency

RSA is an estimate of parasympathetic (PNS) influence on the heart; 
greater RSA values typically indicate PNS activation

Pre-ejection period (PEP) Time (in ms) between the beginning of electrical stimulation of the 
heart and the opening of the aortic valve

PEP is an inverse estimate of cardiac contractility and sympathetic 
(SNS) control of the heart; greater PEP values typically indicate 
reduced contractility and SNS withdrawal

Left ventricular ejection time (LVET) Time (in ms) between the opening and closing of the aortic valve
LVET describes how long it takes the heart to pump blood out of the 
heart on a given heartbeat; greater LVET values are associated with 
greater time to eject blood per heartbeat

Stroke volume (SV) Volume (in mL) of blood ejected by the heart with each beat
SV describes the volume of blood ejected from the heart during 
each heartbeat; greater SV values indicate greater blood volume per 
heartbeat

Cardiac output (CO) Volume (in L) of blood circulated in the body per unit of time (min) CO describes blood flow over time; greater CO values indicate 
greater blood flow rate (in L/min)
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same emotion word was used to label instances associated with multiple clusters, and, correspondingly, multiple 
words were used to label events in each cluster. Table 2 lists the number of unique words used by participants 
over the course of experience sampling (minimum = 9, maximum = 147), the average number of per-person 
clusters associated with each emotion word, and the average number of words associated with each cluster per 
person.

This lack of consistency and specificity in emotion word usage is well illustrated by our example participants. 
Participant #1 (Fig. 2; left panel) used “tired”, “calm”, “uncomfortable”, and “bored” (among other words) to refer 
to a substantial number of events in all four clusters (i.e., no specificity), and events in each cluster were labeled 
with a large number of words (i.e., low consistency). The number and identity of words used to label events var-
ies by cluster, with cluster C associated with the fewest words. Even though most of the words in this cluster are 
normatively low arousal experiences (e.g., “tired”, “bored”), the normative valence52 of these words does vary (e.g., 
“calm” vs. “sad”). Participant #2 (Fig. 2; right panel) likewise displays a lack of consistency and specificity in word 

Figure 1.   Mean weighted change scores for physiological features across identified clusters for example 
participants #1 (left panel) and #2 (right panel). Below the figure, each cluster is labeled with a letter and the 
percentage of that participant’s events that the cluster includes. Physiological features are along the vertical axis. 
The numbers in each cell are the raw, weighted mean change score for that feature for a given cluster. Cells are 
colored based on within-person effect size estimates (mean change relative to within-person standard deviation 
for that feature) on a continuum from red (more negative changes) to blue (more positive changes). Participant 
#1: in cluster A, the heart rate slows modestly (i.e., IBI lengthens) and overall blood flow increases modestly 
(i.e., CO increases); in cluster B, heart rate is slightly faster (i.e., IBI shortens), and blood flow and RSA decrease 
modestly; in cluster C, the heart rate is faster, and blood flow and RSA decrease more substantially; in cluster 
D, the heart rate slows, but there are few changes in other features. Participant #2: cluster A shows virtually no 
change in heart rate with slightly decreased blood volume ejected from the heart (i.e., SV decreases, LVET also 
decreases); cluster B shows a very slightly slowed heart rate and a slightly increased blood volume; cluster C 
shows a considerably slowed heart rate, and greatly increased blood flow; cluster D shows a faster heart rate, 
a notable increase in contractility (i.e., PEP decrease), and modestly decreased blood flow; cluster E shows a 
slightly slowed heart rate, with a slight decrease in blood flow.

Table 2.   Summary statistics for emotion word usage. Note: We calculated the number of unique words each 
participant self-generated to label their affective experience, as well as the mean number and percent of clusters 
for which these words were used to label events. Additionally, we calculated the weighted percentage of unique 
emotion words used to label events in each identified cluster.

Number unique words
Mean number clusters per 
word Mean percent clusters per word

Mean percent unique words 
per cluster

Mean 37.11 2.00 43.72 13.76

SD 26.57 0.38 11.96 8.42

Median 29 2.00 41.23 10.95

Min 9 1.25 22.84 3.81

Max 147 2.71 78.43 50.36

Range 138 1.46 55.59 46.55



5

Vol.:(0123456789)

Scientific Reports |        (2020) 10:12459  | https://doi.org/10.1038/s41598-020-69180-y

www.nature.com/scientificreports/

use. This participant used far more words than participant #1, with each word used relatively infrequently, and 
words like “happy”, “relaxed”, “calm”, and “excited” being used comparably across most clusters. Taken together, 
we see virtually no evidence of a one-to-one correspondence between physiological changes and categories of 
emotional experience. (Bubble plots for all participants are in supplementary Figure S4; these also show virtually 
no evidence of consistency or specificity.)

A similar pattern of results was observed for ratings of valence and arousal, such that there was a many-to-
many relationship between clusters of physiological activity and the affective features of the events in those clus-
ters. Across participants, grand means were large for the within-cluster ranges in valence (M = 45.86, SD = 15.06) 
and arousal (M = 47.16, SD = 13.90), suggesting that these affective features varied substantially within clusters. 
Within participants, separate tests for valence and arousal ratings confirmed that affective features overlapped 
across clusters. Only two participants evidenced significant differences in valence between one or more clusters 
(4.35% of Kruskal–Wallis one-way analysis of variance H values were significant at α = 0.05), and only four 
participants evidenced between-cluster differences in arousal (8.70% of H values were significant at α = 0.05). 
These results were not corrected for multiple comparisons, and do not exceed, or barely exceed, the number of 
significant differences we would expect to find by chance alone.

The lack of consistency and specificity in affective features again can be seen in our example participants. For 
participant #1 (Fig. 3, left panel), experience sampling events from all clusters are densely overlapped (i.e., low 
specificity) and associated with both positive and negative valence ratings, as well as both high and low arousal 
ratings (i.e., low consistency). These same observations hold for participant #2 (Fig. 3, right panel).

For comparison, we also assessed between-cluster differences in contextual features capturing type of activity, 
time of day, and posture. Based on previous literature, we predicted that posture (e.g., the likelihood of being 
seated during an event) would be more strongly related to differences in peripheral physiology53. As expected, 
we observed a greater number of significant differences in posture across clusters, and found that average effect 
sizes for posture comparisons were significantly larger than for those for other comparisons, including affect. 
See page 18 of the supplementary information and supplementary Table S6 for details.

Common patterns of change in physiological activity across participants.  To directly compare 
patterns of physiological activity across participants, we derived within-person effect size estimates as the mean 
change relative to the standard deviation for each physiological feature. Following published recommendations54, 
we then classified these effect sizes as indicating ‘negligible change’, ‘decrease’, or ‘increase’ in each feature. Using 
these classifications, we observed 44 broad patterns of change in physiological activity that occurred at least 

Figure 2.   Bubble plot of unique words freely generated to label experience sampling events for example 
participants #1 (left panel) and #2 (right panel). Words are listed on the vertical axis in descending order of 
frequency. Clusters of change in physiological activity are shown on the horizontal axis, including unclustered 
(“UC”) events (dark gray bubbles) that belong to clusters associated with less than five percent of events. Bubbles 
are sized according to the weighted count of events in each cluster labeled by a given word. Specificity of word 
usage is illustrated when the same word does not appear across different clusters; consistency of word usage is 
illustrated when few words appear within a single cluster, and when these are different words than appear in 
other clusters. There is virtually no evidence of either specificity or consistency.
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twice across participants, accounting for 145 or 66.21% of the 219 total clusters (see supplementary Table S7; 
occurrences of these patterns are also identified in supplementary Table S5′s cluster-level results). These findings 
suggest that clusters were not completely idiosyncratic, as is expected given the influence of physical context 
(i.e., most experience sampling prompts occurred while participants were sitting) as well as the constraints of 
human physiology (e.g., measures of cardiovascular function are not completely independent55). A subset of 10 
patterns occurred at least five times across participants, accounting for 65 or 29.68% of the 219 total clusters, as 
listed in Table 3.

We also examined the emotion words used to describe events in the 65 clusters representing these common 
patterns. Comparing emotion labels across participants in this way allowed us to assess whether mental features 
might be more consistently and specifically associated with more commonly recurring patterns of change in 
physiological activity. We found that the same words were used to label clusters associated with different physi-
ological patterns (low specificity) and that a wide range of emotion words was used to label clusters associated 
with the same pattern (low consistency). Moreover, the words associated with a given pattern varied in terms of 
both normative valence (Fig. 4, left panel) and arousal (Fig. 4, right panel). The most frequent pattern (Pattern 
1), for example, is associated with “happy”, “calm”, “annoyed”, and “bored”. These findings replicate and extend the 

Figure 3.   Scatter plot of affect ratings reported during experience sampling events for each cluster for 
example participants #1 (left panel) and #2 (right panel). Each experience sampling event is plotted as a dot, 
according to its weighted valence (x-axis) and arousal (y-axis), which are centered on the scale midpoints of 
0. Dots are colored according to their highest probability cluster membership, with legends indicating color 
correspondences. Black dots (indicated in the legend with “UC”) represent unclustered events.

Table 3.   Common patterns of change in physiological activity. Change score effect sizes for each feature 
were calculated similarly to Cohen’s d for a one-sample t test56 and were interpreted according to published 
recommendations54. Change score effect sizes were classified as ‘negligible change’ (nc) if they fell between − .2 
and .2, ‘decrease’ (−) if they were equal to or less than −.2, and ‘increase’ ( +) if they were equal to or greater 
than .2.

IBI RSA PEP LVET SV CO Description Freq Rel. freq (%)

1  +   +  nc  +   +   +  PNS activation (uncoupled); slower heart rate, decreased contractility, increased blood flow 9 4.11

2  +   +  –  +   +   +  PNS and SNS activation (coactivation); slower heart rate, increased contractility, increased blood flow 8 3.65

3 – – nc – – – PNS withdrawal (uncoupled); faster heart rate, increased contractility, decreased blood flow 7 3.20

4  +  – –  +   +   +  PNS withdrawal, SNS activation (reciprocal); slower heart rate, increased contractility, increased blood 
flow 7 3.20

5  +  – – nc  +   +  PNS withdrawal, SNS activation (reciprocal); slower heart rate, increased contractility, increased blood 
flow 7 3.20

6  +  – nc nc  +   +  PNS withdrawal (uncoupled); slower heart rate, increased blood flow 7 3.20

7  +  – nc  +   +   +  PNS withdrawal (uncoupled); slower heart rate, decreased contractility, increased blood flow 5 2.28

8  +  – nc nc nc  +  PNS withdrawal (uncoupled); slower heart rate, increased blood flow 5 2.28

9  +  nc –  +   +   +  SNS activation (uncoupled); slower heart rate, increased contractility, increased blood flow 5 2.28

10  +  nc nc  +   +   +  Negligible change in PNS/SNS activity; slower heart rate, decreased contractility, increased blood flow 5 2.28
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within-participant analysis of emotion words, and illustrate the scale of variation in affective experience across 
participants, even when the patterns of change in physiological activity for those experiences are largely similar.

We assessed all identified clusters according to whether they represented changes in each branch of the ANS, 
using RSA change scores as an estimate of PNS function57, and PEP change scores as an inverse estimate of SNS 
function53,55,58 (though it should be noted that RSA is a chronotropic measure and PEP is an inotropic measure 
of cardiac activity). Changes in PNS function, whether withdrawal or increased activation, were present in about 
74% of clusters (withdrawal: 45.21%; activation: 29.38%), whereas changes in SNS function were present in about 
55% of clusters (withdrawal: 20.55%; activation: 34.25%). A chi-square test of independence confirmed that the 
proportion of changes was significantly different between the two branches, X2(2) = 33.54, p < 0.001, suggesting 
that changes in PNS activity may be a larger contributor to cardiovascular function in daily life. These findings 

Figure 4.   Unique words freely generated to label experience sampling events in 65 clusters corresponding to 
the top 10 common patterns of change in physiological activity, organized by normative valence (left panel) and 
arousal (right panel). Common patterns of change in physiological activity are shown on the horizontal axis; 
numeric identifiers correspond with common pattern descriptions in Table 3. The five most frequent words were 
documented for each common cluster, and then combined for all clusters matching a given pattern. Bubbles are 
sized according to the number of common clusters for which a given word was used. Words are listed on the 
vertical axis in descending order of valence and arousal ratings52. In the left panel, rows are shaded according to 
whether the word represents a normatively pleasant (pink) or unpleasant (blue) experience. In the right panel, 
rows are shaded according to whether the word represents a normatively high arousal (orange) or low arousal 
(green) experience. Both plots illustrate the many-to-many relationship between mental features and patterns of 
change in physiological activity.
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are consistent with prior research on the autonomic space model of cardiovascular function, which found that 
changes in PNS function alter heart rate over a much larger dynamic range than do changes in SNS function59. 
The larger proportion of PNS changes also might be explained by the fact that all events occurred in the absence 
of recent gross movement or posture change, and the majority of events in each cluster occurred when partici-
pants were sitting (73.88%) versus standing (12.47%) or reclining (8.27%). Postural changes strongly influence 
autonomic activity53, and SNS contributions to changes in heart rate are greater during physical activity60,61.

Figure 5 plots clusters according to changes in PNS and SNS activity, to illustrate the potential mode of auto-
nomic cardiac control represented by each59. Across all identified clusters, 50.23% represented an uncoupled 
control mode, such that there was a change in activity of only one branch of the ANS. ANS modes that were 
reciprocal (i.e., activity in one branch increased while activity in the other decreased) or coactivational (i.e., 
activity in both branches increased or decreased) occurred in 19.63% and 20.09% of the clusters, respectively. 
Negligible change in the activity of both branches accounted for 10.05% of clusters across participants (note 
that, because these classifications were determined using within-person effect size estimates, ‘negligible change’ 
merely indicates that changes in PNS or SNS activity were small relative to other changes for that participant). 
This distribution of clusters across different modes of ANS control is particularly interesting in light of the per-
vasive assumption that the PNS and SNS are inherently reciprocally organized and functionally antagonistic59. 
The occurrence of equivalent proportions of clusters associated with coactivational and reciprocal modes may 
be reflective of the high ecological validity of the present study and its ability to capture changes in everyday life.

Discussion
Many of the ongoing debates about emotion center on questions about the amount of variation in the physical 
and mental features of emotional events, as well as the nature of that variation. To date, studies have typically been 
designed to observe consistency and specificity in physiological activity across instances of an emotion category—
yet have still observed more variation than expected10,23,28–36. By using a novel biologically-triggered experience 
sampling method, the present study builds on a growing body of work to show that empirical approach matters: 
when studies are designed to observe variation, they find heterogeneity within emotion categories, in addition to 
similarity across emotion categories23,40,62. Here, participants reported affective experience while their peripheral 
physiological activity was recorded, specifically during instances of substantial change in cardiac activity in the 
absence of movement. This method enhanced the likelihood of sampling instances having greater psychologi-
cal salience, and thus enhanced the chances of observing heterogeneity in emotional experience. Unsupervised 
clustering analyses revealed variation in the number and nature of patterns of physiological activity that recurred 
within individuals over time, as well as heterogeneity in the affect ratings and emotion labels associated with 
each pattern. These findings suggest that physiological and mental features are non-redundant measures of 

Figure 5.   Modes of autonomic cardiac control for all 219 identified clusters. Clusters are plotted according to 
within-person effect size estimates for changes in PNS activity (x-axis) and SNS activity (y-axis). Quadrants 
are labeled following established standards59: a ‘reciprocal’ mode occurs when activity in the PNS and SNS 
are changing in opposite directions (i.e., one withdrawal, the other activation); a ‘coactivational’ mode occurs 
when PNS and SNS activity is changing in the same direction (i.e., both activation or both withdrawal, the latter 
also referred to as ‘coinhibition’). An ‘uncoupled’ mode occurs when activity in only one branch is changing 
substantially and is represented by the gray shading around the axes. ‘Negligible change’ occurs when neither 
branch shows a change in function, and is represented by the shaded square around the origin.
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emotional episodes, and may help explain the persistent difficulty in observing robust, stable correlations between 
self-reports and physiological measures63. Further, the degree of variation that we observed is inconsistent with 
classical and prototype views of emotion1,3,7. We did not find evidence to support a fingerprints hypothesis. No 
emotion-specific diagnostic patterns of physiology emerged. Rather, patterns of physiological activity varied in 
context-dependent ways. These findings support a populations hypothesis positing structure within variation, 
both within and across participants10,17.

Although a number of theoretical views on emotion are more or less consistent with a populations 
hypothesis14–20, it has been most explicitly developed within the theory of constructed emotion17,18. The theory of 
constructed emotion begins with the observation that the primary purpose of the brain is to predictively regulate 
physiological resources to most efficiently manage the brain’s and body’s energy needs—a process referred to as 
allostasis64,65. To do this, the brain uses prior experience to build and maintain an internal model of the world 
that includes its own body66–69. In a given instance, the brain is hypothesized to construct, ad hoc, a population 
of temporally dynamic representations that are similar to the current sensory array. Relying on similarity (as 
opposed to exact matching) is functional, because the representations can vary in their physical and mental fea-
tures across instances. For example, different patterns of physiological activity are required to support shouting 
and flailing ones arms versus silently brooding in anger, and only one of these is likely to be functional within 
a particular anger-relevant context (e.g., being reprimanded by a supervisor). These ad-hoc, in-the-moment 
representations function as prediction signals that begin as visceromotor66–69 and motor control signals70,71. 
Efferent copies of these signals give rise to the predicted sensations that will result from those movements as 
well as hypotheses about the causes of those sensations17,18. In turn, this entire cascade of sensory and (viscero)
motor detail is compressed into a low-dimensional, multi-modal abstraction, which the brain can use as needed 
to issue future situation-specific predictions. As this abstraction process operates over time, a wide range of 
highly variable affective and physical experiences become functionally associated with each other, forming a 
population of instances within the same emotion category (e.g., anger). Even within a single individual, these 
instances will vary considerably in their physiological features because they are coupled to the energetic needs 
of each specific situation. In this way, variation in patterns of physiological activity across emotion instances is 
inherently meaningful. Further, the theory of constructed emotion posits that a particular pattern of physiologi-
cal activity can be associated with mental features that vary substantially (e.g., valence and arousal, evaluations 
of novelty or controllability), such that these features are neither consistent with nor specific to any particular 
emotion category.

Critically, the variability predicted by the theory of constructed emotion is thought to be situated, not 
random15–18. This is because peripheral physiological changes are yoked to the energy needs of current or antici-
pated action64,72–74. For example, actions such as freezing and laughing in fear may each be supported by a distinct 
pattern of physiological activity (resulting in within-category and within-participant variation), whereas smiling 
in anger and happiness, for example, may share more physiological features (resulting in across-category and 
across-participant similarity). In the present study, we observed across many participants that a larger proportion 
of experience sampling events were associated with smaller physiological changes. We also observed some con-
sistency in patterns of change in physiological activity across individuals. These observations suggest that more 
consistent patterns can occur, but that revealing the sources of these consistencies will require future research to 
assess a number of situational features, including social and motivational context. Such factors have been shown 
to influence physiological activity, even for two experiences labeled with the same emotion word75,76. Likewise, 
future research should further explore how physical bodily contexts, such as activity and posture, play a role in 
constructing affective experience in everyday life77–79.

To more fully understand the situation-specific construction of affective experience, scientists must conduct 
research that extends beyond the narrow confines of the psychology laboratory to sample a broad range of human 
activities and experiences39,80. In the present study, we used physiologically-triggered experience sampling that 
allowed us to observe a much broader range of ecologically-valid affective experiences and their accompanying 
physiological activity. Using these data, we identified patterns of change in physiological activity that represented 
multiple modes of autonomic control (reciprocal, coactivation, coinhibition, and uncoupled modes58,59), illus-
trating the utility of this method for documenting patterns of physiological activity that may be less commonly 
observed in a controlled laboratory setting. This proof-of-concept study can be expanded in future research to 
include other measured features, such as more complex motion sensing, self-reported bodily sensations, geoloca-
tion data, or additional ambulatory physiological measures. In doing so, future research should also undertake 
time-dynamic analyses that can account for diurnal trends in physiological activity.

The present study also utilized innovative analytical methods for detecting patterns of change in physi-
ological activity and their association with mental features of affective experience. To date, most studies have 
used supervised machine learning (i.e., classification) algorithms to deductively assess the relationship between 
patterns of physiological activity and categories of emotional experience81–83. Those using these classification-
based approaches often interpret the patterns they identify for each emotion category as a fingerprint of that 
category81,84–86, rather than as the statistical summary that such patterns actually represent36. In contrast, we 
employed person-specific unsupervised machine learning (i.e., clustering) algorithms to discover the number 
and nature of patterns of change in physiological activity, and then inductively examined the relationships 
between these patterns and emotional experience. Our group has recently used similar approaches to understand 
the relationships between change in physiological activity and subjective experience in the more constrained 
context of a motivated performance laboratory task to assess physiological patterns of challenge or threat48,87. 
The current work demonstrates that this method not only can be used on data collected outside the laboratory, 
but affords an inductive, data-driven approach that enables the discovery of variability, rather than stipulating 
experimenter-labelled categories as ground truth.



10

Vol:.(1234567890)

Scientific Reports |        (2020) 10:12459  | https://doi.org/10.1038/s41598-020-69180-y

www.nature.com/scientificreports/

As with any study, there are limitations and constraints on generalization. One limitation is that we triggered 
experience sampling prompts solely on the basis of IBI change, which itself can be constrained, particularly 
during coactivation or coinhibition modes of ANS control59. As a result, we may have excluded from sampling 
some moments of significant psychological salience or of change in physiological features other than IBI. Not-
withstanding, the approach here provides a better chance of sampling experience at times salient to the individual 
than does traditional random sampling. Likewise, by sampling only in the absence of movement, we potentially 
reduced the number of evocative emotional events available for study. Although this decision was necessary to 
prevent triggering experience sampling prompts that could have been solely due to movement, future research 
should consider means of addressing this limitation. For example, future studies could utilize separate triggers 
for movement- and non-movement-related prompts and assess which, if any, movement-related prompts are 
also psychologically salient. The homogeneity of our sample and sampling conditions can also be considered 
a constraint on generalization: most of our participants were university students, whose physiology and self-
reports were recorded during weekdays, often while they were in class or working at a desk. At the same time, 
this limitation gives the advantage to a fingerprints hypothesis, as more constrained sampling should result, if 
anything, in greater consistency. Further, the relatively small sample size makes it difficult to perform robust 
between-participants analyses, which are needed to more fully assess the extent of similarities and differences 
across individuals and to assess the role of theoretically and practically meaningful individual differences (e.g., 
age, sex, emotional granularity, interoceptive sensitivity) in explaining variability across individuals.

Despite these limitations, however, the current approach opens the empirical door for innovations in emotion 
research. For over a hundred years, scientists have induced instances of emotion and measured the changes in 
physiological activity to those inductions88 in an attempt to identify the defining biological features of emotion 
categories. With the empirical approach adopted in the present study, we are finally heeding the advice of William 
James, who wrote “there is no limit to the number of possible different emotions which may exist, and why the 
emotions of different individuals may vary indefinitely, both as to their constitution and as to objects which call 
them forth” (p. 454)89. We now have the requisite methodological and analytical tools to better understand the 
individual- and situation-specific physiological and mental constituents of affective experience in everyday life.

Methods
All experimental protocols described below were approved by the Northeastern University Institutional Review 
Board. These methods were carried out in accordance with the relevant guidelines and regulations for research 
with human subjects.

Participants.  Sixty-seven participants ranging in age from 18–36 years (55% female; 38.8% White, 3.0% 
Black, 29.8% Asian, 28.4% other; Mage = 22.8 years, SDage = 4.4 years) were recruited from the greater Boston area 
through posted advertisements, as well as Northeastern University classrooms and online portals. Eligible par-
ticipants were non-smoking, fluent English-speakers, and excluded if they had a history of cardiovascular illness 
or stroke, chronic medical conditions, mental illness, asthma, skin allergies, or very sensitive skin. Eligible par-
ticipants also confirmed they were not taking any medications known to influence physiological arousal includ-
ing medications for ADHD, insomnia, anxiety, hypertension, rheumatoid arthritis, epilepsy/seizures, cold/flu, 
or fever/allergies. Informed consent was obtained from all participants before beginning the study. Participants 
received $490 as compensation for completing all parts of the study, plus up to an additional $55 in compliance 
and task incentives, as detailed on page 4 of the supplementary information.

Of the 67 recruited participants, six withdrew and an additional nine were dismissed due to poor compliance. 
A total of 52 participants completed the full protocol (56% female; 38.5% White, 1.9% Black, 38.5% Asian, 21.2% 
other; Mage = 22.5 years, SDage = 4.4 years). Six of these participants were excluded from the main analyses due to 
a lack of sufficient usable physiological data, bringing the final sample size to 46 (50% female; 43.5% White, 0% 
Black, 41.3% Asian, 15.2% other; Mage = 22.4 years, SDage = 4.4 years).

Procedure Overview.  Each participant completed approximately 14 days (M = 14.4, SD = 0.6) of context-
aware experience sampling distributed across a three- to four-week period (M = 24.9 days, SD = 5.5 days). On 
each day of experience sampling, participants came into the lab and were instrumented for peripheral physi-
ological recordings. Participants could not begin the experience sampling portion of the study without func-
tioning ambulatory equipment, and so did not complete the daily protocol if they did not attend the morning 
session to be instrumented for the recordings. In the event a participant was unable to make a scheduled session 
or the equipment was not functioning properly during instrumentation, they were rescheduled to complete the 
day of sampling on another day. Participants generally started each experience sampling day between 8 and 9 
am, although this varied between 7:30am and 2:30 pm according to participants’ schedules. Participants were 
provided an Android smartphone with a custom application, MESA (MindWare Technologies LTD, Westerville, 
OH), which was used to determine when a heart rate response of sufficient duration and amplitude occurred 
which then triggered an experience sampling prompt. Participants were instructed to continue physiological 
recordings for eight hours each day, after which they were able to remove and recharge all equipment. Upon 
completing experience sampling each day, participants automatically received an end-of-day survey via Sur-
veyMonkey (San Mateo, CA), which they used to provide additional details about the prompts they completed 
throughout the day. Before and after the two-week experience sampling protocol, participants also completed 
two in-lab sessions. In each session, participants completed tasks and questionnaires that are not reported here 
(see page 5 of supplementary information and supplementary Table S1 for an overview).
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Physiological measurement.  All ambulatory peripheral physiological measures were recorded at 500 Hz on a 
mobile impedance cardiograph from MindWare Technologies LTD (Model # 50-2,303-02, Westerville, OH), 
which participants wore clipped onto their clothing on the hip.

ECG and ICG were obtained using pre-gelled ConMed (Westborough, MA) Cleartrace Ag/AgCl sensors, 
connected via wires to the cardiograph. Sensor sites were cleaned with alcohol and abraded lightly with gauze. 
ECG was obtained using a modified lead II configuration, with recording electrodes placed on the distal right 
collarbone and an inferior left rib, respectively, and a reference electrode placed on an inferior right rib. The ECG 
signal was acquired using a low cutoff of 0.5 Hz and a high cutoff of 45 Hz.

ICG was obtained using a four-spot electrode configuration90. Two inner recording electrodes were placed 
on the front of the torso: one at the base of the neck at the top of the sternum, and a second at the bottom of the 
sternum over the xiphisternal junction. Two outer source electrodes were placed on the back along the midline 
approximately 4 cm above and below the inner recording electrodes, respectively. The source electrodes passed a 
4 mA, 100 kHz alternating current across the thorax. The distance between the inner recording electrodes (cm) 
was measured for each day of experience sampling. Basal impedance (Z0) was acquired using a low cutoff of 
10 Hz. The first derivative, dZ/dt, was acquired using a low cutoff of 0.5 Hz and a high cutoff of 45 Hz.

Electrodermal activity (EDA) was also recorded over an unobtrusive neck placement, but data were not used 
in the present analysis due to difficulties in detecting and removing artifacts, as well as generally low mean skin 
conductance levels across participants.

The mobile impedance cardiograph collected continuous three-axis accelerometry data used to assess move-
ment. Additionally, participants wore two inertial measurement units (IMUs) purchased from LP-Research 
(Minato-ky, Tokyo, Japan) to derive measures of posture and changes in posture. One IMU was placed medially 
on the sternum beneath the top inner impedance recording electrode and affixed to the skin using a double-sided 
adhesive patch. The other IMU was placed on the front of the thigh using either a cloth holder attached to the 
clothing, or a second adhesive patch affixed to the skin. Participants did not remove sensors until the end of each 
experience sampling day, unless instructed by the experimenters (e.g., due to synchronizing issues).

Context‑aware experience sampling.  Peripheral physiological data and accelerometric data were recorded 
continuously throughout the 8-h sampling period and communicated via Bluetooth to a Motorola Moto G4 
smartphone. The smartphone application, MESA, processed the continuous ECG and accelerometer data in 
real time, and initiated an experience sampling prompt anytime a substantial, sustained change in heart period 
was detected in the absence of movement or posture change, with an imposed minimum interval of five min-
utes between prompts. A substantial, sustained change in heart period was operationalized on the first day of 
sampling as occurring when the interbeat interval (IBI) changed by more than ± 167 ms over an eight-second 
period (at a typical resting heart rate of 60 bpm or IBI of 1,000 ms, this is equivalent to a decrease of about 9 bpm 
or an increase of about 12 bpm). On subsequent days, this IBI parameter was manually adjusted up or down 
to ensure each participant received approximately 20 prompts per day. The average adjustment was ± 26.17 ms 
(SD = 25.91 ms), with the final parameter setting ranging between ± 65 ms and ± 266 ms across participants. For 
background on threshold selection and more information on threshold adjustment, see page 4 of the supple-
mentary information.

Movement was determined from the continuous accelerometer data from the mobile impedance cardiograph. 
Minimal movement was operationalized as any time none of the three accelerometry channels (alone or in 
aggregate) exceeded a threshold of 10 cm/s2 within the preceding 30 s. Posture (standing, sitting, reclining) was 
determined by comparing the relative orientation of the two IMUs on participants’ torso and thigh using their 
continuous accelerometry data. Absence of posture change was operationalized as any time when the relative 
orientation of the two IMUs did not change within the preceding 30 s.

On average, participants received 21.70 (SD = 6.90) prompts per day. We observed that prompts were relatively 
evenly distributed throughout the day within experience sampling days. On average, participants completed 34% 
of prompts in the morning (before 12 pm), 52% of prompts in the afternoon (12–5 pm), and 14% of prompts in 
the evening (after 5 pm). This makes sense given the typical start times for participants in our sample. Participants 
also received on average two ‘random’ prompts per experience sampling day, which occurred in the absence of 
movement or posture change, but which were not contingent on a change in IBI. Random prompts were spread 
throughout the experience sampling day, such that they could only receive one in the first four hours and one 
in the second four hours of experience sampling. Participants were informed that some experience sampling 
prompts would be generated randomly while others would be generated based on changes in their cardiac 
activity. By conveying this information, we were able to instruct participants to avoid responding to prompts 
following specific physiological events (e.g., coughing, sneezing) and minimize the extent to which they paid 
special attention to their cardiac activity.

To remain in the study, participants were required to complete at least three prompts each day. In addition, as 
detailed on page 4 of the supplementary information, for the purposes of incentivizing participation and limit-
ing attrition, the experience sampling protocol was broken into three pay periods (days 1–5, 6–10, and 11–14). 
Participants were required to respond to an average of at least six prompts per day during each pay period to 
remain in the study, and received a bonus payment for each pay period where they completed an average of eight 
prompts per day. The average number of completed prompts was 8.80 per day (SD = 1.22), which is in line with 
previous experience sampling studies that have asked participants to complete 10 prompts per day91,92.

At each sampling event, participants were prompted to respond to a series of questions presented in the 
MESA application. Participants first provided a brief free-text description of what was happening at the time they 
received the prompt. Next, participants rated their current valence and arousal, each on a 100-point continu-
ous slider scale ranging from -50 (very unpleasant or very deactivated) to + 50 (very pleasant or very activated). 



12

Vol:.(1234567890)

Scientific Reports |        (2020) 10:12459  | https://doi.org/10.1038/s41598-020-69180-y

www.nature.com/scientificreports/

Participants then self-generated words to label their current affective experience. Specifically, participants were 
asked to “list any emotion(s) you were feeling when you received the prompt”. Participants were able to provide 
as many words as they felt necessary to describe their affective experience but were required to input at least one 
word. For each self-generated word, participants were asked to provide an intensity rating on a five-point scale: 
“not at all” (1), “a little” (2), “moderately” (3), “a lot” (4), “very much” (5). We asked participants to self-generate 
emotion words as this allowed us to capture naturally-occurring variation in how participants categorized their 
affective experience, as opposed to having them select words from an experimenter-stipulated list, which would 
necessarily constrain variation. Participants also responded to additional questions that are not included in the 
present report (see page 4 of the supplementary information for details).

At the end of each experience sampling day, participants received a modified day reconstruction survey93, in 
which they were presented with their self-generated brief description and social context from each prompt they 
completed during the day. For each prompt, participants were asked to provide additional details about the event, 
its social context, and accompanying affective features. Participants were requested to select three sampling events 
for which they provided a longer, more detailed description (> 200 words). Full details of the end-of-day survey 
are provided on pages 5–6 of the supplementary information. Data from these surveys are not reported here.

Physiological signal processing and feature extraction.  Peripheral physiological signals were processed using an 
in-house pipeline coded in Python to accommodate the volume of physiological data collected (400 + hours), as 
well as the variability in signal morphologies and artifacts produced during long-term ambulatory monitoring. 
Artifacts were identified using a series of quality checks, detailed for each signal below. Data affected by artifacts 
were excluded from analysis (i.e., artifacts were not corrected). This resulted in an average event-related data loss 
of 8.18% per day (SD = 3.35%) across ECG (5.79% average data loss; SD = 3.22%) and ICG (2.56% average daily 
data loss; SD = 2.03%) signals. The research team, including two trained psychophysiologists (J.B.W., K.S.Q.), 
met regularly throughout development of the processing pipeline to visually examine sample output and provide 
feedback on quality checks.

Electrocardiogram (ECG).  The ECG signal was processed following previous work94. First, the raw signal 
was passed through an elliptic bandpass filter to remove baseline and high frequency noise without affecting 
the waveform. Initial quality checks were then performed for each beat, checking for overall waveform shape, 
and acceptable minimum, maximum, and minimum-to-maximum values94. The default parameters, originally 
selected based on data collected in laboratory settings, were found to be too aggressive for this ambulatory data 
set, so we relaxed these thresholds based on manual review of the results by experts (J.B.W., K.S.Q.) for a random 
subset of the data. The parameters we implemented are reported in supplementary Table S2, along with the 
original recommendations94.

R-peak detection for ECG was performed using established methods95 and implemented using the BioSPPy 
package in Python96. Interbeat interval (IBI) was then derived as the average R-R interval. Additional quality 
checks (supplementary Table S2) were performed on each IBI series to ensure that values were within accept-
able ranges (300–2000 ms), and that expected beat-to-beat differences were consistent with normal beats and 
unlikely to be artifacts (following established benchmarks97). ECG data failing any quality check were excluded 
from analysis.

Respiratory sinus arrhythmia (RSA) was derived from the IBI series. RSA reflects high-frequency variability 
in IBI which occurs at the respiratory frequency and is often used as an estimate of parasympathetic influence 
on the heart57. RSA calculations were coded to mimic the processing steps of standard heart rate variability 
(HRV) analysis software (MindWare Technologies LTD, Westerville, Ohio), including: cubic interpolation of 
beat-to-beat IBI, detrending to minimize non-stationarity, tapering using a Hamming window, and lastly, fast 
Fourier transformation (FFT). RSA was calculated as the log of the area under the power spectrogram that lies 
between 0.12 and 0.4 Hz.

Impedance cardiogram (ICG).  ICG feature detection was performed using an in-house implementation based 
on methods described in previous work94,98, and adjusted for ambulatory data using thresholds determined by 
comparing performance of the original algorithms with hand-scored impedance cardiographic data on a subset 
of participants. The first derivative of the basal impedance (Z0) signal, dZ/dt, was used as the basis for all analy-
ses. The signal was segmented into time windows corresponding to 250 ms before the ECG R-peak to 500 ms 
after; eight such segments (i.e., 8 beats) were averaged together to form overlapping ensembles94. B points were 
detected in each ensemble by taking the first and second derivatives of the dZ/dt signal and comparing them with 
thresholds based on signal frequency (supplementary Table S2)98. Following standard procedures98, forward and 
reverse autoregressive modeling was then used to perform outlier detection and correction, such that all B points 
in a series were fit with the autoregressive model. X points were detected by examining the second derivative 
of the dZ/dt signal within each ensemble94. Segments of the ICG signal from which we could not detect B or X 
points and ICG data that corresponded to periods of unusable ECG data were excluded from analysis.

Two features we used were systolic time intervals, namely, pre-ejection period (PEP) and left ventricular 
ejection time (LVET). PEP represents the time interval in ms between the electrical event that signals the start 
of ventricular contraction to the opening of the aortic valve. PEP is often used as an inverse estimate of sympa-
thetic control of the heart53,55,58. Here, PEP was calculated as the time in ms between the ECG R peak and the 
ICG B point (also referred to as PEPR

99). LVET is the time interval in ms between the opening and closing of 
the aortic valve55, and was calculated as the time in ms between the ICG B point and X point. Quality checks 
(supplementary Table S2) were performed and we retained only values that occurred within an acceptable range 



13

Vol.:(0123456789)

Scientific Reports |        (2020) 10:12459  | https://doi.org/10.1038/s41598-020-69180-y

www.nature.com/scientificreports/

(30–200 ms for PEP, 100–500 ms for LVET), and that did not result in changes in the gradient greater than 30 ms 
from one ensemble to the next.

Two additional features we used were based on volumetric measures of cardiac function, namely, stroke vol-
ume (SV) and cardiac output (CO). SV represents the volume of blood ejected by the heart with each heartbeat 
(in mL), and here we calculated SV using Kubicek’s equation100. CO is the volume of blood circulated by the 
heart in L/min55.

Analysis.  Within‑person clustering analysis.  We submitted data from each individual to a separate cluster-
ing analysis using Dirichlet Process-Gaussian Mixture Modeling (DP-GMM)49, 50. DP-GMM is a specialized 
variant of Gaussian Mixture Modeling (GMM)49. Data points (i.e., six-dimensional vectors of change scores for 
IBI, RSA, PEP, LVET, SV, and CO) were standardized prior to clustering by subtracting the mean and dividing 
by the standard deviation of each feature. Specific parameter values are reported in supplementary Table S3.

The first step in implementing standard GMM is to initialize a set of parameters for a predefined number of 
clusters represented in the data. Parameters (i.e., values) include each cluster’s location (i.e., mean), shape (i.e., 
covariance), and relative size (i.e., the mixture proportion or the prior probability of a point belonging to that 
cluster relative to others). Initially, these cluster parameters are chosen at random, with means and covariances 
selected from a Gaussian distribution that is proportional to the data, and with prior probabilities of equal value. 
GMM uses these initialized values to calculate the posterior probabilities of each point belonging to each cluster. 
Under mixture models, each point is given a posterior probability of belonging to every cluster; however, if pat-
terns in the data are distinctive, posterior probabilities during later iterations will often be close to 1 for a single 
cluster and negligible for all others. Based on the posterior probabilities, the means and covariance matrices are 
updated iteratively using optimization techniques such as Expectation Maximization49 or Variational Inference49 
until reaching convergence (i.e., until the values stop changing).

In the present analyses, we sought to avoid tuning and selecting the number of clusters for each participant. 
DP-GMM allowed us to accomplish this goal as, in contrast to standard GMM, DP-GMM discovers the number 
of clusters from input data through the use of a Dirichlet Process Prior101. The Dirichlet Process Prior enables a 
dataset to include an unknown (i.e., infinite) number of clusters, where the mixture proportion of each cluster 
is randomly assigned a value from a continuous probability distribution such that the mixture proportions must 
sum to 1. This random assignment process is repeated ad infinitum to create a vector of mixing proportions 
which then serves as the prior probabilities of a standard GMM. To place reasonable bounds on this process, the 
number of clusters made discoverable through Variational Inference was limited to the number of data points in 
the sample. Because DP-GMM iteratively optimizes parameters (means, covariances, and mixture proportions), 
clusters which initially acquire more points become more likely to continue acquiring points in the future. Con-
sequently, as the model runs, some clusters grow while others shrink and are ultimately discarded.

As a fully Bayesian method, DP-GMM is more likely to avoid overfitting because it is self-regularized by the 
priors101. There are, however, model parameters that can constrain the number of clusters discovered. As detailed 
on page 28 of the supplementary information, we ran additional analyses to validate the values selected for these 
parameters. We also conducted parallel analyses on the example participants using a standard GMM approach, 
in which Bayesian information criterion (BIC) values were used to select the optimal number of clusters per 
participant. These analyses replicated our main findings with regard to the heterogeneity of clusters discovered 
and their relationship with mental features of affective experience (see pages 29–30 of the supplementary infor-
mation for details).

Effect size estimates.  We derived effect size estimates (similar to Cohen’s d56) for the mean change scores for IBI, 
RSA, PEP, LVET, SV, and CO for each cluster for each participant using the following formula:

where m is the weighted cluster mean for a given physiological feature, µ is the assumed population mean cor-
responding to no change (i.e., 0), and σ is the standard deviation for the given physiological feature for that 
participant across all events included in the analysis. According to published recommendations for interpreting 
effect sizes54, we interpreted the magnitude of the weighted mean change score for each feature for each cluster as: 
|d|< 0.2 (negligible change); 0.2 ≤|d|< 0.5 (small change); 0.5 ≤|d|< 0.8 (medium change); |d|≥ 0.8 (large change).

Common patterns of change in physiological activity.  We classified change score effect sizes as a negligible 
change (|d|< 0.2), decrease (d ≤ −0.2), or increase (d ≥ 0.2). Before classification, we rounded the effect size esti-
mates to the nearest tenth (i.e., one decimal place) to facilitate comparison with published recommendations. 
Logical syntax was used to identify duplicate (i.e., repeated) strings of effect size classifications.

We performed further classifications of RSA and PEP change scores to assess overall trends in the change in 
PNS and SNS function, respectively. Larger change score effect sizes for RSA (i.e., greater variability in interbeat 
interval within the respiratory frequency band) indicate increased PNS function, such that: |d|< 0.2 (negligible 
PNS change); d ≥ 0.2 (PNS activation); and d ≤ −0.2 (PNS withdrawal). For PEP, larger change score effect sizes 
(i.e., longer pre-ejection periods) indicate SNS withdrawal, such that: |d|< 0.2 (negligible SNS change); d ≥ 0.2 
(SNS withdrawal); and d ≤ −0.2 (SNS activation).

d =

m− µ

σ
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