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Abstract

The nervous system learns new associations while maintaining memories over long periods, 

exhibiting a balance between flexibility and stability. Recent experiments reveal that neuronal 

representations of learned sensorimotor tasks continually change over days and weeks, even after 

animals have achieved expert behavioral performance. How is learned information stored to allow 

consistent behavior despite ongoing changes in neuronal activity? What functions could ongoing 

reconfiguration serve? We highlight recent experimental evidence for such representational drift in 

sensorimotor systems, and discuss how this fits into a framework of distributed population codes. 

We identify recent theoretical work that suggests computational roles for drift and argue that the 

recurrent and distributed nature of sensorimotor representations permits drift while limiting 

disruptive effects. We propose that representational drift may create error signals between 

interconnected brain regions that can be used to keep neural codes consistent in the presence of 

continual change. These concepts suggest experimental and theoretical approaches to studying 

both learning and maintenance of distributed and adaptive population codes.

Introduction

Heraclitus of Ephesus is quoted as saying that one cannot step into the same river twice1. 

Accordingly, our brains continually renew their molecular and cellular components, and the 

neuronal substrates of our experiences and memories are subject to continual turnover 

[1,2,3]. Such turnover could occur without changing the relationship between neuronal 

activation and the external world. However, recent experiments reveal continual 

reorganization of neuronal responses in circuits essential for specific tasks, even when tasks 

are fully learned [4,5,6,7,8].

This apparent instability challenges the view that synaptic connectivity and individual 

neuronal responses correlate directly with memory. Can we reconcile stable behavior with 

apparent instability in behavior-related neuronal activity? Experimental examples of stability 

and instability in neuronal representations have been extensively reviewed previously 

[9,10,11]. In this review, we focus on recent and established theoretical models that address 

this problem, including potential functional roles of continual circuit reconfiguration. We 

suggest experimental and theoretical strategies to study how and why brain circuits 

continually evolve during stable behavior.
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Experiments find consistent population patterns in the presence of single-

neuron drift

Recent experiments have found that neuronal representations of familiar environments and 

learned tasks reconfigure or ‘drift’ over time [4,6,7,8]. Here we take ‘representations’ to 

mean neural activity that is correlated with task-related stimuli, actions, and cognitive 

variables. Representations could include, for example, single-cell receptive fields in sensory 

areas, or population activity vectors that guide behavior. We use the term ‘representational 

drift’ to describe ongoing changes in these representations that occur without obvious 

changes in behavior.

We will highlight one recent example to illustrate representational drift. Driscoll and 

colleagues [4] designed a sensorimotor task in a virtual reality environment, in which a 

mouse was trained to navigate a T-maze (Figure 1a). For each trial, the mouse was presented 

with a visual cue, which instructed it whether to turn left or right at the end of the maze to 

receive a reward. Mice performed this task at greater than 90% accuracy for weeks. Using 

chronic two-photon calcium imaging, the authors monitored the activity of large groups of 

individual neurons in the posterior parietal cortex (PPC), which is known to be required for 

solving the task [4,12]. Neurons tended to be transiently active during task trials, with 

different neurons active at different parts of the trial. This forms a sequence of neuronal 

activity across the population that tiles the task (Figure 1b, diagonal panels). We refer to this 

activity sequence as a representation of the task.

Crucially, Driscoll and colleagues found that the PPC representation was not stable over 

multiple days and weeks. As shown in each row of Figure 1b, the same neurons exhibited 

markedly different activation patterns on different days. The most common change was that 

neurons had altered levels of activity and thus exited or entered the population 

representation. Less frequently, cells exhibited changes in selectivity. Over weeks, the task-

related activity in PPC had nearly entirely reconfigured, but on any given day a subset of the 

population could be identified that tiled the task (Fig. 1b, diagonals). Each animals’ task 

performance remained consistently high and behavior was not measurably altered by 

representational drift.

Similar types of drift have been reported in a number of brain areas, including the 

hippocampus and sensory and motor parts of neocortex [6,7,8,13]. In addition, there is 

widespread evidence for surprising degrees of structural plasticity in dendritic spines [7,8,2]. 

For example, in the hippocampus, all dendritic spines are expected to turn over in the period 

of several weeks [7]. Such dramatic synapse turnover suggests that circuits are continually 

rewiring even though animals can maintain stable task performance and memories. We 

emphasize that drift is not observed in all brain areas and for all tasks [14,15]. Nevertheless, 

the finding of representational drift raises profound questions about how behavior is learned 

and controlled in neural circuits, and what constitutes a memory of such learned behavior.
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Distributed population codes can accommodate representational drift

Representational drift might appear problematic for long-term encoding of memories and 

associations. However, redundant representations may allow some level of drift without 

disrupting behavior. Even in simple nervous systems, the existence of circuit configurations 

with different anatomical connectivity or physiological profiles but similar overall function 

is well documented [16]. Redundancy is often considered to be a biological necessity 

because brains must be robust to failure in individual neurons and to environmental 

perturbations. The brain may therefore achieve robustness via degeneracy, where high-

dimensional representations preserve behavior while allowing for a vast number of 

equivalent circuit configurations to be realized [17].

There is considerable evidence that the brain employs high-dimensional representations of 

inherently low dimensional tasks [18,19,20,21]. A low dimensional task can be represented 

in higher dimensional population activity in a variety of configurations. To illustrate, we can 

explore the neuronal population representation of the task from Driscoll et al. by applying 

dimensionality reduction to PPC population activity. In this example an unsupervised 

dimensionality-reduction algorithm [22,23] is used to find 2D projections of population 

activity that preserve nearest-neighbor structure in population activity. Without knowing the 

details of the task or observed location, this algorithm identifies a ‘T-shaped’ cloud of 

population activity states (Figure 2a). Each point in the cloud corresponds to the population 

activity at a single time bin in the trial, and collectively the cloud of points maps out the 

animal’s navigational trajectories during the task. Although internally consistent neuronal 

representations can be identified (Figure 2b), the way that single neurons encode such 

representations changes over time.

The low-dimensional structure extracted in Figure 2a sits in a much higher dimensional 

space of population activity. There are potentially many degrees of freedom for this structure 

to move around in population activity space while retaining the topology and local structure 

of the T shape. Such movement could accommodate different contributions from different 

neurons across time, or changes in single-cell tuning.

Interestingly, such high dimensional representations have other, less obvious benefits. A 

recent study by Raman and colleagues [24] showed that networks with excess connectivity 

can learn more rapidly and to a higher asymptotic performance on tasks of fixed complexity. 

A high-dimensional representation can therefore be advantageous for learning.

A notable idea that emerges from the high-dimensional encoding of low-dimensional tasks is 

that of a ‘null space’. The null space is a subspace of population activity that is orthogonal to 

a low-dimensional task representation [25,26]. This is illustrated in Figure 2c, which depicts 

how population activity in two sub-populations, y1 and y2, might co-vary in a population 

that encodes a specific feature, x. If we suppose that the feature is encoded in the sum of the 

activity, y1 + y2, then tight tuning with respect to x can coexist with a large variation in a 

null direction (the y1 − y2 direction).Sub-populations may appear variable, even if the global 

representation is well constrained. For example, recent work has suggested that the 
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population code in V1 is structured, with distributed representations having lower variance 

than individual neurons [27].

The null-space concept has been used to explain how a single neuronal population can 

represent multiple behavioral contexts, for example motor planning and execution 

[28,26,29]. To illustrate this, Figure 2d depicts samples of activity from a single population 

during two different behavioral contexts. Behavioral variables, x1 and x2, have different 

relationships to each other in each context (left panel). A high-dimensional representation in 

neuronal activity, zi allows these contexts to occupy different parts of population activity 

space (middle panel). By examining subspaces of the population activity, one could observe 

correlates of task variables in one context, but not the other (right panel). This implies that 

neuronal activity could drift in directions unrelated to encoding or task performance [25,30]. 

If the dimensionality of population activity is much higher than the dimensionality of the 

task, even random drift will lie mostly within this ‘null space’. Thus, high-dimensional 

population representations can tolerate drift and allow multiple circuit configurations to lead 

to similar outputs.

Further evidence of distributed and redundant population representations has emerged from 

recent work highlighting the distributed nature of sensorimotor information [31]. In 

particular, recent studies have shown that motor outputs influence sensory encoding [32,33]. 

Moreover, recent reports show that stimulus, action, and cognitive variables are distributed 

throughout sensory and motor areas, often in overlapping representations. Reports of this 

type are too numerous to list here (but see for example [31,34,35,36]).

The presence of widely-distributed representations thus necessitates understanding drift at a 

wider neuronal population level, even across brain areas, than is typically examined in 

experiments. This wider examination will be essential to understand the scale of drift in the 

representations relative to the global population representation, including to correctly 

identify coding dimensions of distributed activity.

Representational drift may be inevitable in distributed, adaptive circuits

Representational drift is sometimes considered as a passive, noise-driven process. However, 

it could also reflect other ongoing processes such as learning. In typical lab experiments, a 

specific task of interest and its associated representations are studied, but the same 

population of neurons is likely used for other aspects of the subject’s life. Thus, over the 

course of an experiment, animals likely learn many new associations and have new 

experiences, which must be incorporated into the neuronal populations being studied 

[37,38]. To prevent new associations from disrupting previously learned associations, the 

brain may need to re-encode them.

In the work of Driscoll et al., these ideas were explored by training mice to learn new 

sensorimotor associations after they had already learned earlier associations. Interestingly, 

they found that the same neurons appeared to be used for the representations of previously 

learned associations and for the development of new associations during learning. This 

finding demonstrates that representational drift could indeed reflect new learning and 
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suggests that a neuronal population can simultaneously be utilized for learning and memory. 

This idea of drift as ongoing learning is consistent with recent theoretical work that predicts 

a highly plastic subset of neurons attuned to population activity [39].

Even in the absence of explicit learning, neuronal representations continually adapt to 

encode information efficiently [40]. As sensory representations adjust, downstream areas 

must also adjust either their connectivity or internal representations to remain consistent. 

Efficient coding is not limited to sensory functions: even sensory areas learn to anticipate 

motor output [41], and one might expect networks to track shifts in environmental statistics, 

including evolving cognitive and memory effects. These factors contribute to the neural 

‘environment’ being in perpetual flux. Drift may therefore be an expected consequence of 

ongoing refinement and consolidation.

Predictive coding and internal error signals could detect and correct drift

Regardless of the sources of drift, neuronal representations must remain within the subspace 

of equivalent representations in order to preserve behaviors and learned associations 

(depicted in Figure 3a as a surface). Over time, changes in neuronal representations are 

expected to accumulate, eventually leading to disruptive effects that cannot be 

accommodated by redundancy. Therefore, some continual corrective action is needed 

constrain neuronal representations on long timescales. In many situations, external stimuli 

could provide this corrective feedback. For example, in the work from Driscoll et al., the 

mouse was rewarded after each correct trial, which could serve as an external signal to 

update the subspace of adequate neuronal representations for behavior. In addition, other 

mechanisms for maintaining coherent representations could also be used, including off-line 

rehearsal [42] and reactivation of cell assemblies [43].

In the absence of external learning cues, we propose that internal error signals exchanged 

between recurrently-connected brain regions could maintain consistency in distributed 

representations. For example, spatial navigation requires consistent representations 

throughout sensory, association, and motor regions. A change in representation in any one 

area could disrupt consistency in representations with other regions. Plasticity in the other 

regions could then be used to compensate for this change such that representations 

distributed across brain regions would drift in a consistent manner (Figure 3b).

This concept fits within the framework of predictive coding, in which neural circuits learn to 

predict the activity patterns in one another with the goal of minimizing internal prediction 

errors [44,45]. In this framework, one brain region might generate an error signal if the input 

it receives from another region is different than expected, such as due to drift in the input 

area. Such an error signal could guide plasticity to maintain consistency between 

representations across areas. Much work has highlighted the concept of predictive coding 

and error signals in the context of comparisons between internal predictions and incoming 

sensory signals [33,46]. However, to our knowledge, this concept has not been explored in 

the context of extensive internal predictions between brain regions. This will be an 

interesting area for future research, in particular to identify if such error signals exist and to 

test how these signals could be used to maintain coherent representations across areas.
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Possible computational uses of representational drift

Drift and instability in neuronal representations could serve important computational 

functions. Some insights into these potential functions come from comparisons to strategies 

used in machine learning. For example, a common experimental finding is that some 

neurons go from being highly active in a task- or behavior-relevant manner to being silent on 

subsequent days. The transient silencing of single neurons (e.g. [47]) could be a neural 

correlate of the “drop-out” training strategy used to regularize deep neural networks [48].

Recent work proposed that drift allows for ‘time-stamping’ of events, following the 

observation that different sets of hippocampal place cells are active in an environment on 

different days [5]. The set of active place cells conveys information about not only the 

environment but also time. Time-stamping could support episodic memory, disambiguating 

similar environmental contexts separated in time. Accordingly, mutually-exclusive 

population representations of distinct memories is also observed on fast timescales [49], and 

temporal context appears to be involved in episodic memory at fast timescales [50]. This 

connects, at an abstract level, to the recently proposed machine-learning strategy ‘context-

dependent gating’ [51], which silences subsets of neurons in a context-dependent manner in 

order to attenuate interference. If time itself is an important contextual variable, then distinct 

contextual representations could emerge naturally from drifting representations.

Recent theoretical work has suggested that drift may allow the brain to sample from a large 

space of possible solutions [52]. In this case, learning and drift work together to move 

toward optimal solutions while sampling enough possibilities to avoid globally-suboptimal 

local solutions. In this case, drift could be a deliberate strategy to sample the configuration 

landscape or a byproduct of noisy and error-prone learning. Some theories indicate that 

fluctuations are an expected feature of optimization in noisy systems [25] and that drift may 

therefore support stochastic reinforcement learning Kappel et al. [53].

Outlook

The brain is an adaptive system, and its structure therefore changes. While this has been 

appreciated in the context of learning, recent experimental findings suggest something 

stronger: some parts of the brain cannot remain fixed, even in experimental paradigms 

designed to study stable behavior. A neuron that is several synaptic connections away from a 

sensory input or motor output is only weakly tethered to the external world. Neurons that 

participate in abstract representations and high-level behavioral plans are therefore free to 

reconfigure within limits set by the degeneracy of the neural code at the circuit level.

This realization suggests approaches for capturing invariant structures in population activity 

that underlie stable sensorimotor behavior. It also implies that internal feedback signals 

between brain areas are pervasive. This provides a framework for theoretical models of 

neural circuits and may help understand the logic of connectivity in many brain areas. 

Integrating theories of collective neural dynamics, learning, and predictive coding in 

distributed representations is therefore essential to understand how sensorimotor 

representations evolve.
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We propose experimental and theoretical shifts in how we consider learning and memory. 

Rather than viewing learning and memory as sequential, and potentially discrete, events in 

separate circuits, we propose that it is important to study them together to understand their 

interaction. The brain is an interconnected network, and changes in one area likely influence 

distant neuronal populations. Globally coordinated plasticity may be needed to preserve 

existing associations. In other words, “to stay the same, everything must change”2. 

Experiments that track the interactions between brain regions will therefore be essential to 

examine long-term neuronal population dynamics during learning and memory as well as 

during stable behavior. Such experiments will test emerging theories of population codes and 

memory in the presence of constant change, revealing how the brain achieves one of its most 

essential functions—reorganizing with experience to guide future actions.
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Highlights

• Experimental advances allow us to see long-term drift in neural 

representations

• Drift challenges classical notions of receptive fields and engrams

• Drift is consistent with distributed population codes

• Distributed error signals across brain areas could help maintain such codes
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Figure 1: Coding of spatial navigation in Posterior Parietal Cortex (PPC) drifts over days
(adapted from Driscoll et al. [4]). (A) Driscoll et al. [4] placed mice in a virtual reality 

environment, and required that subject remember visual cues to navigate to a target. 

Population activity was recorded with single-neuron resolution over days using calcium 

fluorescence imaging. (B) Raster plots showing average calcium signals from several 

hundred PPC neurons imaged over multiple days, with task location on the horizontal axis. 

Each row corresponds to a neuron, and mean activity is represented by color. Location-

dependent activation drifted slowly over days: single neurons gained and lost location 

sensitivity or changed their tuning. Sorting cells by activation on any given day reveals 

population coding of maze location.
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Figure 2: Internal representations have unconstrained degrees of freedom that allow drift.
(A) Nonlinear dimensionality reduction of population activity recovers the low-dimensional 

structure of the T-maze in [4] (Figure 1a). Each point represents a single time-point of 

population activity, and is colored according to location in the maze. (B) Point clouds 

illustrate low-dimensional projections of neural activity as in (a). Although unsupervised 

dimensionality-reduction methods can recover the task structure on each day, the way in 

which this structure is encoded in the population can change over days to weeks. (C) Left: 
Neural populations can encode information in relative firing rates and correlations, 

illustrated here as a sensory variable encoded in the sum of two neural signals (y1+y2). 

Points represent neural activity during a repeated presentation of the same stimulus. 

Variability orthogonal to this coding axis does not disrupt coding, but could appear as drift in 

experiments if it occurred on slow timescales. Right: Such distributed codes may be hard to 

read-out from recorded sub-populations (e.g. y1 or y2 alone; black), especially if they entail 

correlations between brain areas. (D) Left: External covariates may exhibit context-

dependent relationships. Each point here reflects a neural population state at a given time-

point. The relationship between directions x1 and x2 changes depending on context (cyan vs. 

red). Middle: Internally, this can be represented a mixture model, in which different 

subspaces are allocated to encode each context, and the representations are linearly-

separable (gray plane). Right: The expanded representation contains two orthogonal 

subspaces that each encode a separate, context-dependent relationship. This dimensionality 

expansions increases the degrees of freedom in internal representations, thereby increasing 

opportunities for drift.
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Figure 3: Local changes in recurrent networks have global effects, and global processes can 
compensate.
(A) The curved surfaces represent network configurations suitable for a given sensorimotor 

task, i.e. neural connections and tunings that generate a consistent behavior. Each axis 

represents different circuit parameters. Ongoing processes that disrupt performance must be 

corrected via error feedback to maintain overall sensorimotor accuracy (B) Colored dots 

represent projections of neural population activity onto task-relevant dimensions at various 

time-points. Activity is illustrated in three hypothetical areas, depicting a feed-forward 

transformation of a stimulus input into a motor output. (top) If the representation in one area 

changes (e.g. rotation of an internal sensory representation, ∆s, curved black arrow), 

downstream areas must also compensate to avoid errors (e.g. motor errors, ∆m, curved gray 

arrows). (bottom) Although the original perturbation was localized, compensation can be 

distributed over many areas. Each downstream area can adjust how it interprets its input. 

This is illustrated here as curved arrows, which denote a compensatory rotation that partially 

corrects the original perturbation. The distributed adjustment in neural tuning may appear as 

drift to experiments that examine only a local sub-population.
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