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High diversity and variability
of pipolins among a wide range
of pathogenic Escherichia coli
strains

Saskia-Camille Flament-Simon’®, Maria de Toro**, Liubov Chuprikova*®, Miguel Blanco?,
Juan Moreno-Gonzalez?, Margarita Salas®®, Jorge Blanco® & Modesto Redrejo-Rodriguez®***
Self-synthesizing transposons are integrative mobile genetic elements (MGEs) that encode their own
B-family DNA polymerase (PolB). Discovered a few years ago, they are proposed as key players in

the evolution of several groups of DNA viruses and virus—host interaction machinery. Pipolins are the
most recent addition to the group, are integrated in the genomes of bacteria from diverse phyla and
also present as circular plasmids in mitochondria. Remarkably, pipolins-encoded PolBs are proficient
DNA polymerases endowed with DNA priming capacity, hence the name, primer-independent PolB
(piPolB). We have now surveyed the presence of pipolins in a collection of 2,238 human and animal
pathogenic Escherichia coli strains and found that, although detected in only 25 positive isolates
(1.1%), they are present in E. coli strains from a wide variety of pathotypes, serotypes, phylogenetic
groups and sequence types. Overall, the pangenome of strains carrying pipolins is highly diverse,
despite the fact that a considerable number of strains belong to only three clonal complexes (CC10,
CC23 and CC32). Comparative analysis with a set of 67 additional pipolin-harboring genomes from
GenBank database spanning strains from diverse origin, further confirmed these results. The genetic
structure of pipolins shows great flexibility and variability, with the piPolB gene and the attachment
sites being the only common features. Most pipolins contain one or more recombinases that would be
involved in excision/integration of the element in the same conserved tRNA gene. This mobilization
mechanism might explain the apparent incompatibility of pipolins with other integrative MGEs such as
integrons. In addition, analysis of cophylogeny between pipolins and pipolin-harboring strains showed
a lack of congruence between several pipolins and their host strains, in agreement with horizontal
transfer between hosts. Overall, these results indicate that pipolins can serve as a vehicle for genetic
transfer among circulating E. coli and possibly also among other pathogenic bacteria.

Mobile genetic elements (MGE), comprising bacteriophages, transposons, plasmids, and insertion sequences,
contribute to the great plasticity of the bacterial genome, resulting in an extremely large pangenomes that, in
the case of Escherichia coli, can amount to more than 16,000 genes'. Thus, MGEs dynamics is the main source
of horizontal gene transfer, which leads to the spread of antimicrobial resistance (AR) among both E. coli and
other commensals, thereby enlarging the spectrum of resistance (the resistome) among circulating strains®.
Pipolins constitute a recently reported new group of integrative MGEs widespread among diverse bacterial
phyla and also identified in mitochondria as circular plasmids®. The hallmark feature of the pipolins is a gene
encoding for a replicative family B DNA polymerases (PolB) with an intrinsic de novo primer synthesis capacity,
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Source Infection Strains | Pipolins (%)
Human Intestinal 608 8(1.3%)
Human Extraintestinal | 1,061 9 (0.8%)
Swine Intestinal 323 5(1.5%)
Avian Extraintestinal | 246 3(1.2%)
Total 2,238 25 (1.1%)

Table 1. Pipolin identification survey among E. coli strains from diverse origins and pathotypes.

called primer-independent PolBs (piPolBs), hence their name (piPolB-encoding elements). Preliminary phy-
logenetic analyses indicated that piPolBs would form a third major branch of PolB, besides the protein-primed
PolBs (pPolBs), found in a wide range of viruses and plasmids, and RNA-primed PolBs (rPolBs), which are the
principal replicative enzymes of archaea and eukaryotes, some archaea and many dsDNA viruses’.

Because of the fact that pipolins encode the major protein required for their replication (i.e., piPolB), they
are included in the proposed class of self-synthesizing (or self-replicating) MGEs, which also includes two other
superfamilies of elements integrated in various cellular genomes*. The first superfamily comprises eukaryotic
virus-like transposable elements, called Polintons (also known as Mavericks), which besides a putative pPolB,
encode retrovirus-like integrases and a set of proteins hypothesized to be involved in the formation of viral
particles®”. The second superfamily of PolB-encoding elements, denoted as casposons, is present in a wide range
of archaea and also in a few bacteria®. Similar to the aforementioned self-replicating MGEs, most pipolins are
integrated within bacterial chromosomes, although they are also occasionally detected as episomal plasmids.
However, unlike polintons and casposons, the integrated pipolins encode for one or more integrases of the
tyrosine recombinase superfamily, which could be responsible for pipolin excision and/or integration”.

The widespread and patchy distribution of pipolins among bacteria is in agreement with an ancient origin and
horizontal dispersal of this MGE group. However, pipolins from the same or related species seem closely related,
as was the case for pipolins from E. coli’. The great majority of pathogenic E. coli strains encode for virulence-
associated cassettes and antibiotic resistance genes, which are usually carried by MGEs, such as pathogenicity
islands (PAIs), plasmids, integrons, etc. °!!. However, the annotation of pipolins from E. coli as well as from
proteobacteria did not lead to the identification of any antibiotic resistance genes or virulence factors’.

Therefore, whereas reported evidence of mobility of polintons and casposons is limited and based on metagen-
omic data'?, pipolins provide the opportunity to analyze the occurrence, diversity, and dynamics of self-replicative
MGE:s in well-characterized commensal and pathogenic bacteria, not only in genomic or metagenomics data,
but also in circulating field isolates and pathogenic variants. In this work, we surveyed the presence of pipolins
in a wide collection of pathogenic strains from the Spanish E. coli reference laboratory (LREC). We found that
pipolins, although not very abundant, are widespread among a great variety of human and animal strains belong-
ing to different pathotypes, serotypes and sequence types (STs).

Whole-genome sequencing of the LREC pipolin-harboring E. coli strains allowed us to characterize in detail
the pipolins’” hosts and also the genetic structure and phylogeny of pipolins. Most pipolins contain att-like ter-
minal direct repeats and they are integrated in the same tRNA gene. Nevertheless, they encode a great diversity
of proteins, many of which are orphans with unpredictable function. The comparison of the new genome assem-
blies from LREC dataset with a number of detected E. coli pipolin-harboring strains from the NCBI GenBank
database further confirmed our results. Finally, pangenome and cophylogeny analyses among pipolins and host
strains, demonstrated that, except for strains from the same clonal complex, there is an overall lack of phylo-
genetic congruence between pipolins and host strains. Therefore, our results support that pipolins are a novel
group of active mobile elements that might serve as a platform for horizontal gene transference among diverse
pathogenic bacteria.

Results and discussion

Limited prevalence of pipolins among E. coli isolates from animal and human sources. The
first objective of this study was to investigate the occurrence of pipolins in E. coli strains causing intestinal and
extraintestinal infections in humans and animals.

We performed a survey of pipolin distribution among 2,238 strains from the LREC collection, using a 587 nt
fragment of the piPolB coding sequence as a marker. We detected 25 pipolin-harboring isolates, indicating that
pipolins are not particularly abundant (1.1%) among pathogenic E. coli causing intestinal (13/931; 1.4%) and
extraintestinal infections (12/1,307; 0.9%) (Table 1). Interestingly, however, pipolins are present in strains isolated
from humans, swine and avian, and belonging to a wide range of pathotypes (Table 2 and Table S1). Twenty-four
of the 25 LREC pipolin-harboring strains were isolated in Spain from 2005 to 2016.

In order to ascertain the representativity of the pipolin-harboring strains from LREC collection, we performed
a TBLASTN search against the E. coli nucleotide database at NCBI GeneBank using the 3-373-03_S1_C2 piPolB
amino acid sequence as a query. This search yielded 76 hits, corresponding to highly conserved piPolB-encoding
ORFs or fragments from 67 E. coli strains (identity above 85%), many of them many of them only reported as a
genome draft, without further characterization (Table S2). A combined phylogeny of piPolB coding sequences
from LREC and GeneBank datasets (Supplementary Fig. S1), shows that our collection of strains carrying pipo-
lins spans all the available diversity of E. coli pipolins. Therefore, the low frequency of pipolins detected in our
collection is in agreement with a low prevalence of this element among circulating E. coli strains. The source of
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Virulence genes Complete CRISPR/Cas
Name PhyG! |ST? CC Pathotype (PCR)* Virulence genes* | Plasmids® Prophages® Integrons® (Type)®
3-373-03_S1_C2 | A 5,293 206 - iutA, iucD, gad, iha i?/czFIéslrEg;/s?é) - - 9/3 (I-E)
astA, cif, eae,
ehxA, espA, espB,
LREC237 D* 524 32 aEPEC ;’:}’1‘2 ZZZP T espF, esp], etpD", g‘sggg?cﬁ’ 4P 1M, 1S,2U | CALIN® 9/1 (I-E)
? gad, katP, nleA, ?
nleB, tccB tir
espP", gad, iha,
iutA, iucD, fyud, | ireA, iss, IpfA, IncFIB/IncFIC, p
LREC239 C 88 23 - ampT,ﬁmH mchB, mchC, NT, Col(MG828) 1P 1S,3 M, 1U In0 12/1 (I-E)
mchF
iutA, iucD, hlyF, | gad, iroN, iss, IncFIB/IncFIC, P
LREC240 B1 156 156 APEC ol os fmEl | it mehE sk | NT 18 2 CALIN 5/1 (I-E)
LREC241 A 48 10 ETEC Jyud, fimb, Ued | gaq, et star | N COMED2: 1 5p 56 1,00 | - 9/4 (I-E)
IncFIB(K)/
astA”, fanAP, gad, IncFIA, IncFIB/
LREC242 A 746 10 ETEC fimH, fanA, stal tal ’ » §ad; IncFIC/IncFII, 1M, 2S - 9/7 (I-E)
sta NT, NT, NT, NT,
Col8282, NT, NT
P P
LREC243 A 3,011 10 ETEC fimH, fasA, stal Ji‘;stﬁ; Cgb: '] E;Z’Il,, E;XI\II/TI“CR’ 2P, 1U 3CALIN%.C* | 10/2
IncFIB/IncR,
LREC244 A 10 10 STEC fimH, stx2 fedE stx2A, stx2B | NT, IncXa, NT, | 1M 5B 3 M g 713
Col156, NT, NT >
IncFIB, NT,
LREC245 A 10888~ | NONE | - fimH gad e 1156 | 1M1 CALIN®, In0%, C? | 10/5 (I-E)
NT
N B vat, fyuA, ompT, | iha, iroN?, iss, ~ 3
LREC246 C 10889 23 iroN, hlyA, fimH | IpfA, tsh? IncFIB 1P,3 M, 28 6/1 (I-E)
astA, cif, eae,
ehxAb, espA,
" iutA, iucD, chuA, | espB, espE esp], | IncFIB,NT, NT, | 3P, 1M, 2S, 1S/P, .
LREC247 D 137 2 aEPEC ompT, fimH, eac | etpD?, iha, iss, | Col8282 U 8/2 (1-E)
katP?, nleA, nleB,
nleC, tccP, tir
X . cdtB, cnfl, espP?,
LREC248 A 10,850 |10 NTEC ]’5‘%‘;[’”5[” N | iha? ireA, iss kb, %‘%8282’ 1P,4M,55,1U |- 8/0
saa® >
astA, cif, eae,
ehxA, espA”,
" iutA, iucD, chuA, | espB, espl, espP, B R
LREC249 D 32 32 aEPEC ompT, fimH, eae | iha, iss, katP" IncFIB 3P 2 M, 3S,2U 7/2 (I-E, I-D)
nleA, nleB, nleC,
tecB tir, toxBP
astA, cif, eae,
ehx A", espA,
" iutA, iucD, chuA, | espB, espE esp], | IncFIB, NT, B =
LREC250 D 137 32 aEPEC omp'T fimH, oac. | einD" e 1er | Col(MG828) 3P,1S,1U 7/2 (I-E)
katP®, nleB, nleC,
tecB tir, toxB?
astA, cif, eae,
ehxA¥, espA”,
espB, esp], espP,
LREC251 D* 32 32 STEC g::fl fgg Eae gad, iha, iss, IncFIB 1P3M,25,1U |- 7/1 (I-E)
’ > nleB, nleC, stx2A,
stx2B, tccP, tir,
toxBP
LREC252 A 48 10 - fimH - - - 12/4 (I-E)
LREC253 A 347 NONE | - fimH astA - 4M, 1U - 6/3 (I-E)
iutA, iucD, hlyF, | iroN, iss’, IpfA, | IncFIB, NT,
LREC254 B1 359 101 APEC iroN, iss, fimH mchFP, tsh? IncX1, NT 2 S/P - 0
iutA, iucD, fyuA, . .
LREC255 C 88 23 APEC ompT, hiyE, iroN, ‘lg“f‘j{ ired, iss g‘? NLNT, 1 yp 45 - 10/2 (I-E, I-D)
iss, fimH 'P)
. . cba’, cma, gad,
LREC256 C 88 23 - Z:LA'T”‘;ZDA%’?I’{ iha, iss, katP”, IncFIB 1P, 4 M, 28 1 8/1 (I-E)
p L hiyA, IpfA, sepA
iuA, iucD,
papAH, papC, astA, ireA, iroN?, | IncFIB, NT, NT, B BT
LREC257 C 88 23 ExPEC/ APEC fyuA, omp'T, hlyE | iss”, IpfA, mchF® | Col(MG828) 4M,1U 9/4 (I-E, I-D)
iroN, iss, fimH
Continued
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Virulence genes Complete CRISPR/Cas
Name PhyG! |ST? CC Pathotype (PCR)* Virulence genes* | Plasmids® Prophages® Integrons® (Type)®
iutA, iucD, hlyE, | gad, iroN, iss, IncFIB, IncFIB,
LREC258 A 46 46 APEC iroN, iss, fimH ‘MchF NT,NT 25,1S/P, 1U 1 8/2 (I-E)
iutA, iucD, fyuA, | astA, gad, ireA,
LREC259 C 10890~ | 23 APEC ompT, hlyE, iroN, | iroN, iss, IpfA, IncFIB NT, NT 3M, 1U 1 9/2 (I-E)
iss, fimH mchF
IncY, NT, NT,
LREC260 A 10 10 - fimH iss Col44011, Col- 4M, 1S, 1 M/P = 7/0
RNAI
IncFIB, NT, NT,
LREC261 A 8,233 NONE | - fimH gad Cold4011 2M, 18 - 6/2 (I-E)
LREC262 Bl 1,049 | 155 - fyuA, fimH gad, IpfA NT,NT 1S - 3/1 (I-E)

Table 2. Features of the 25 pipolin-harboring E. coli genomes from LREC dataset. For reference, the strain
3-373-03_S1_C2 was included in the analysis. See Table S1 for more detailed analysis. 'PhyG: phylogenetic
groups, where ”*” indicates strains with discrepancies between the assignation obtained with the quadruplex
PCR of Clermont et al. (2014)* and the in silico assignation using ClermonTyping tool, showing phylogroup
E by PCR, but phylogroup D in silico. ?New sequence types (ST) are indicated with Y. *Virulence genes
determined by conventional PCR as detailed in Methods. *Virulence genes identified with VirFinder database
(* indicates plasmid location): astA, EAST-1 heat-stable toxin; cba, Colicin B; cdtB, Cytolethal distending
toxin B; cif, Type III secreted effector; cma, Colicin M; cnfl, Cytotoxic necrotizing factor; eae, Intimin; ehxA,
Enterohaemolysin; espA, Type III secretion system; espB, Secreted protein B; espF, Type III secretion system;
espl, Serine protease autotransporters of Enterobacteriaceae; esp], Prophage-encoded type III secretion system
effector; espP, Extracellular serine protease plasmid-encoded; etpD, Type II secretion protein; fanA, Involved
in biogenesis of K99/F5 fimbriae; fasA, Fimbrial 987P/F6 subunit; fedF, Fimbrial adhesin AC precursor; gad,
Glutamate decarboxylase; iha, Adherence protein; ireA, Siderophore receptor; iroN, Enterobactin siderophore
receptor protein; iss, Increased serum survival; katP, Plasmid-encoded catalase peroxidase; IpfA, Long polar
fimbriae; ltcA, Heat-labile enterotoxin A subunit; mchB, Microcin H47 part of colicin H; mchC, MchC
protein; mchF, ABC transporter protein MchF; nleA, Non-LEE encoded effector A; nleB, Non-LEE encoded
effector B; nleC, Non-LEE-encoded effector C; saa, STEC autoagglutinating adhesin; sepA, Serine protease
autotransporters of Enterobacteriaceae; stal, Heat-stable enterotoxin ST-Ia; stx2A, Shiga toxin 2 subunit A;
stx2B, Shiga toxin 2 subunit B; fccP, Tir cytoskeleton coupling protein; tir, Translocated intimin receptor
protein; toxB, Toxin B; tsh, Temperature-sensitive hemagglutinin. *Plasmids are enumerated according to their
compatibility group. NT, not typed. *Prophages (analyzed with Phigaro®® and Phaster®): P, Podoviridae; M,
Mpyoviridae; S, Siphoviridae; U, Unknown; a slash (/) indicate an ambiguous family assignment. “Integrons:
Integrons were analyzed with IntegronFinder® as indicated in Materials and Methods. C, complete, Int0,
integron lacking attC site, CALIN, integron lacking functional integrase gene. ¥ indicates plasmid location.
8Number of Crispr units and associated proteins (Cas), as well as the element type determined with
CRISPRCasFinder™ are indicated.

52 of the 67 GeneBank pipolin-harboring strains analyzed is known: 20 human, 7 swine, 7 environment, 6 wild
animals (5 mouse and 1 reptile), 4 bovine, 4 poultry, 2 food, 1 companion animal and 1 marine mammal. The
majority were isolated in Asia (27 strains) and North America (16 strains) from 2009 to 2018.

Diversity of pipolin-harboring E. coli strains. Although some of the strains in the LREC collection
have been described in detail throughout the last years'*~", the pipolin-positive strains remained uncharac-
terized. We performed now a detailed molecular characterization, both by conventional methods and whole-
genome sequence (WGS) analysis (Table 2 and Table S1). We found that pipolins were present in phylogroup A
(11 LREC strains and the reference isolate 3-373-03-S1-C2!®), but also in B1 (3 strains) and C (6 strains). Five
strains were typed as E by quadruplex PCR typing' but later on reassigned as D after whole genome sequencing
and in silico typing (see Methods for details). A similar distribution pattern was found within the GeneBank
dataset, with pipolins in phylogroups A (46 strains), B1 (9 strains), C (2 strains) and D (10 strains).

The common presence of E. coli strains from phylogroup A in the dataset was somewhat expected, as this phy-
logroup is common among human and animal isolates and thus very abundant in most collections?*?!. However,
we were surprised by the absence of pipolins among B2 strains, despite the fact that this phylogroup is also very
common in the LREC collection and, along with group D, it is responsible for most extraintestinal E. coli infec-
tions in human and animals'*'*®. The null prevalence of pipolins among B2 strains is opposite to the pattern of
occurrence of some virulence-related MGEs, such as colibactin encoding pks islands, which are highly prevalent
in B2 and D phylogroups but were not detected in strains carrying pipolins'®?2. It is thus tempting to speculate
whether there is an interference between pks islands and pipolins as they are also flanked by terminal direct
repeats and found integrated into a constant tRNA?. Thus, the distribution of pipolins limited to phylogroups
A, B1, C and D may be due to the restricted mobility beyond those groups. In line with this, these phylogenetic
groups have been proposed to belong to different ancient lineages?, downplaying a strict vertical transmission
of pipolins throughout the evolutionary diversification of E. coli phylogroups.

Regarding multilocus sequence typing (MLST), we have detected 18 different STs among 25 LREC pipolin-
harboring strains, according to the Achtman scheme?® (Table 2), some of them are quite common in Enterobase®,
like ST88, ST10, ST46, ST48 or ST746, but also very rare varieties (ST524, ST3011, ST8233 or ST10850) and
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three new type sequences (ST10888, ST10889 and ST10890). Interestingly, although some of them belong to
the same clonal complex (CC10), in general strains from phylogroups A and B1 span a vast diversity of STs. In
contrast, LREC pipolin-harboring strains from phylogenetic groups C and D seem more homogeneous and they
could be assigned to the same clonal complex (CC23 and CC32, respectively). Clear clonality among pipolin-
harboring strains is more evident when we analyzed the 67 strains of GenBank dataset (Table S2), as 61.2% of
the strains belong to the above-mentioned clonal complexes. Moreover, among the GenBank strains, a fourth
prevalent clonal complex was CC278, observed in 5 ST278 strains of serotype O178:H7 isolated from mice. The
STs of 63 of the 67 GeneBank pipolin-harboring strains analyzed is known, encompassing a total of 29 different
STs, 5 of them were especially prevalent: ST4 (7 strains), ST32 (6 strains), ST48 (11 strains), ST278 (5 strains)
and ST1312 (4 strains).

Clonotypes and serotypes diversity is also in agreement with the presence of divergent strains (Table S1),
particularly from phylogenetic groups A and B1, in which, for instance, present 14 different serotypes for 14
LREC strains. On the contrary, as in the case of STs and CCs, strains from phylogroups C and D showed overall
more similar clonotypes and serotypes. Thus, the six strains of phylogroup C showed the H19 flagellar antigen
and the five strains of phylogroup D showed the clonotype CH23-331 and the H28 flagellar antigen. A similar
pattern can be observed among strains from the GenBank dataset, including a total of 38 different O:H serotypes
and also a great diversity of clonotypes (Table S2).

Analysis of virulence genes among the 25 LREC pipolin-harboring strains also allowed us to identify diverse
E. coli pathotypes, namely, extraintestinal pathogenic (EXxPEC, 1 strain), avian pathogenic (APEC, 6 strains),
Shiga toxin-producing (STEC, 2 strains), enterotoxigenic (ETEC, 3 strains), atypical enteropathogenic (aEPEC,
4 strains) and necrotoxigenic (NTEC, 1 strain). However, some other common pathotypes were not detected in
the pipolin-carring LREC strains, like uropathogenic E. coli (UPEC), typical enteropathogenic E. coli (tEPEC),
enteroinvasive E. coli (EIEC) and enteroaggregative E. coli (EAEC) (Table 2).

Antimicrobial resistance and virulence genes in LREC strains harboring pipolins.  Antimicrobial
resistance tests showed that pipolins are present in both antibiotic susceptible (11 strains) and antimicrobial
resistant strains (14 strains) in the LREC collection (Table S1). Eleven strains exhibited a multidrug-resistant
(MDR) phenotype. Besides, there were four extended-spectrum f-lactamase (ESBL)-producing strains, three
cefoxitin-resistant strains and two colistin-resistant strains.

In line with these results, many antimicrobial resistance genes (ARGs) were found in the genome assemblies,
including acquired resistance genes, point mutations and efflux/transporter genes (Table S1). We described genes
conferring resistance to beta lactams (blacry a1 0= 15 blacrx 14 D=1 blacrx ., n1=2; blargy.,, n="7), colistin
(mcr-1.1, n=2), tetracycline (tet(A), n=6; tet(B), n=3; tet(M), n=3), aminoglycosides (aadAl, n=3; aadA2,
n=4; aadA5, n=1; aadA9, n=1; aadA13, n=1; ant(3")-Ia, n=2; aph(3')-Ia, n=2; aph(3”)-Ib, n=5; aph(4)-Ia,
n=2; aph(6)-1d, n=4; aac(3)-IV, n=2 and aac(3)-1la, n=1), phenicols (catAl, n=5 and cmlA1, n=3), trimetho-
prim (dfrAl,n=2 and dfrA12, n=3), lincosamides (Inu(F), n=2), macrolides (mph(A),n=1; mph(B),n=1 and
mef(B), n=1), quinolones (gnrS1, n=1 and gnrB19, n=1) and sulfonamides (sull, n=3; sul2, n=2 and sul3,
n=3). Furthermore, we found chromosomally encoded point mutations in the gyrA and parC genes conferring
resistance to quinolones in nine strains and also in the ampC promoter conferring resistance to beta lactams in
three cefoxitin-resistant strains.

In summary, LREC pipolins-carrying strains, harbor a repertoire of ARGs, as expected of pathogenic E. coli
strains, ruling out any correlation among ARGs and pipolins, in line with the diversity of phylogenetic groups,
STs and pathotypes they belong to.

Pangenome and mobilome of E. coli strains harboring pipolins. We assembled the pangenome
of the 25 LREC strains carrying pipolins plus the reference strain, 3-373-03_S1_C2 with Roary?, resulting in
10,178 different genes (Supplementary Fig. S2). Among those, 2,998 genes (29.45%) corresponded to the core-
genome and were present in all strains, 327 were soft-core genes present in 95-99% of genomes and 2,259 were
shell genes present in 15-95% genomes. As expected from such a diverse pangenome, almost half of the genes
(4,594, 45.13%) were cloud-genes, found in less than 15% of strains. This diversity is even more evident when the
pangenome of both (LREC and GenBank) datasets are analyzed together, with a total of 16,675 genes, only 934
genes comprise a core-genome and more than two-thirds of the genes in the cloud-genome (11,175, 67%). As
such, the number of both total and unique genes associated with the cloud gene set increased consistently with
the number of genomes (Supplementary Fig. S2, B-D). In conclusion, notwithstanding the clonality of several
strains, pangenome analysis indicates that pipolins are present in a wide variety of E. coli strains.

Pangenome analysis and core-genome based phylogeny reconstruction of the LREC strains (Fig. 1), clustered
pipolin-harboring strains in agreement with the assigned phylogenetic groups and clonal complexes, and this
congruence is maintained for the phylogeny inferred from the core genome of all analyzed strains carrying pipo-
lins (Supplementary Fig. $3). Similar results were obtained when the phylogeny of the strains was constructed by
single-nucleotide polymorphism in EnteroBase?, although some of the strains are not available in this database
(Supplementary Fig. S4).

Disregarding pipolins, when the mobilome of our strains was analyzed, we could identify the typical variety
of plasmids and other mobile elements. PLACNETw?® allowed us to identify and assemble several plasmids in
most of the strains (Table 2 and Table S1) and 79 elements could be extracted, which would correspond to at least
a total of 86 plasmids, as some of the elements contained markers from more than one incompatibility group.
All strains carried at least one plasmid moving in a range from 1 to 9, except for strains LREC252 and LREC253
(Table 2 and Table S1). Plasmids from IncF incompatibility group were the more prevalent including IncFIB
(n=20), IncFIA (n=1), IncFII (n=2) and IncFIC (n=3) replicons. Followed by Col-like plasmids including
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Strain Source Date Pathotype ST CC
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LREC249 Human 2013 aEPEC 32 32

LREC250 Human 2013 aEPEC 137 32

LREC247 Human 2013 aEPEC 137 32

LREC237 Human - aEPEC 524 32

Figure 1. Maximum-likelihood tree generated from the core-genome data of new pipolin-harboring strains.
Strain names are colored according to the phylogenetic groups as indicated. Previously described pipolin-
harboring isolate 3-373-03_S1_C2 was included as a reference. The best-fit model was GTR + F+R2 for all
considered criteria in ModelFinder®. Scale bar indicates substitution rate per site. The main features are
indicated on the right: source, isolation date, pathotype, sequence type (ST) and clonal complex (CC). New ST
combinations assigned at Enterobase are indicated with N.

Col8282 (n=4), Col(MGD2) (n=1), Col(BS512) (n=1), Col(MG828) (n=3), Col156(n=3), Col440II(n=2),
and ColRNAI (n=2). However, we also described the presence of other incompatibility groups like IncX1 (n=3),
IncY (n=2), IncR (n=2), IncX4 (n=1) and IncB/O/K/Z (n=1). Furthermore, 42 cryptic plasmids could not be
affiliated with any category as they lack any known replication origin. Nonetheless, none of those correspond
with an episomic pipolin and indeed piPolB-containing contig was detected as a single copy portion of the chro-
mosome, which suggests that pipolin excision is negligible under standard growth conditions or undetectable
by Illumina sequencing.

As expected, many of the reported antimicrobial and virulence factors were plasmid-borne genes, since
conjugative plasmids, along with other MGE:s, are the most successful genetic platforms allowing the horizontal
transfer of antimicrobial resistance and virulence determinants among pathogenic E. coli isolates'"***,

Most of the strains contained genes from one or more prophages and, as expected, sequence arrays and genes
from the CRISPR/Cas immunity system (Table 2). Strikingly, integrons seem quite uncommon, as we could detect
complete integrons in 5 out of 25 LREC genomes (20%) and only 5 hits were detected in the pipolin-harboring
genomes from Genbank (8.9%), whereas they are often reported to be usually highly prevalent and present in
more than half of pathogenic E. coli strains®' =4,

Mapping and extraction of new pipolins from LREC and GenBank datasets. Besides the pres-
ence of a piPolB gene, pipolins are characterized for the presence of att-like terminal direct repeats that might be
involved in recombination-mediated excision/insertion, often in a tRNA site®. We extracted pipolins from both,
LREC and GenBank pipolin-harboring strains, using a custom bioinformatics pipeline that entailed searching
for piPolB gene or its gene fragments and terminal direct repeats to determine the element bounds (see Methods
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Figure 2. Genetic structure of new pipolins from LREC collection. Predicted protein-coding genes are
represented by arrows, indicating the direction of transcription and colored following Prokka annotation as
indicated in the legend. The greyscale on the right reflects the percent of amino acid identity between pairs of
sequences. The image was generated by EasyFig software and re-annotated pipolins sorted according to the
hierarchical clustering of the gene presence/absence matrix. Names of pipolin carrying strains are colored
according to phylogroups as in Fig. 1.

for details). Except for the strain LREC243, two att-repeats could be detected in all genomes. In the cases when
att-repeats were located on the same contig or on a complete chromosome, the piPolB always sitting within
the repeats, which confirmed the basic structure of all E. coli pipolins (Fig. 2 and Supplementary Fig. S5). This
structure could be reconstructed also when piPolB and att-repeats were not on the same contig (see Methods).
Reparably, all E. coli pipolins are integrated in the same point, at the Leu-tRNA gene, except for the pipolin from
LREC252 strain that looks inconsistent with other pipolins. The att repeat that overlaps with the tRNA gene was
represented and denoted as right end (attR).

In some genomes, three att-repeats were detected, as those pipolins seem to share the integration site and
mechanism with some prophage, as previously detected for the enterotoxigenic Escherichia coli H10407 strain’.
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Figure 3. Maximum-likelihood tree of the new piPolB genes from the LREC dataset. As indicated, strain
names are colored based on the phylogenetic group of strains. Previously described pipolin-harboring isolate
3-373-03_S1_C2 was included as a reference. The best-fit model was GTR +F+R2 for all considered criteria by
ModelFinder®. Scale bar indicates the substitution rate per site.

Indeed, comparison of the genetic structure of all pipolins (Supplementary Fig. S5), confirmed that a similar
myovirus enterophage is present next to pipolins from eight strains, spanning phylogroups A (H10407, 2014EL-
1346-6 and 99-3165), C (LREC239 and LREC246) and D (112,648, 122,715, 2015C-3125 and FWSEC0002). In
addition, the presence of transposases and associated genes indicates that genetic islands and insertion sequences
can as well contribute to the variability of pipolins, particularly in the case of stains LREC248 and LREC252,
expanding also the pipolin gene repertoire (see below). The cohabitation of casposons with other MGEs is also
common'?, although in that case, the associated element seems to provide a vehicle for horizontal transfer. On
the contrary, as pipolins possess att-like direct repeats and one or more recombinases (see below), they can be
considered as self-transferable.

Altogether, mapping and extraction of the new E. coli pipolins, confirmed that, despite a great diversity, they
share basic genetic structure and they can likely be mobilized using the same mechanism.

Pipolins annotation and pangenome analysis. The 92 extracted pipolins were reannotated with a
custom pipeline using Prokka®® (see Methods), followed by Roary?’ for pangenome analysis of E. coli pipolins,
identifying a total of 272 genes. Remarkably, the core- and soft-core genomes are made up of a single gene clus-
ter, the piPolB, and a XerC-like tyrosine-recombinase, respectively. In line with this, the shell genome contains
only 38 genes, whereas 232 genes (85%) are cloud-genes, present in less than 15% of pipolins. Despite the great
variety of different genes, some groups of pipolins share a similar gene composition and, as about 75% of genes
are provided by about one-third of the pipolins (Supplementary Fig. S5). Although a certain level of synteny and
modular organization can be detected (Fig. 2, Supplementary Fig. S5), genetic rearrangements, including inver-
sions, duplications, and deletions, which often lead to gene exchange, are also frequent, as well as truncations
and disruptions. Even truncated forms of piPolBs or XerC-like recombinases can also be detected, which might
lead to impairment of replication or mobilization of pipolins. Overall, the genetic repertoire and structure of
analyzed pipolins suggests that they can exchange genetic information among E. coli strains.

A detailed functional analysis of shell core genes is shown in Table S3. As mentioned above, besides piPolB,
pipolins very often include one or more XerC and IntS (bacteriophage-type) tyrosine recombinases. When two
complete recombinase genes are present, one of them is always close to an excisionase-like protein. A type-4 Ura-
cil DNA glycosylase is also very frequent. Other proteins with DNA binding domains like mobilization proteins as
well as components of restriction-modification systems are also common. Very few antimicrobial resistance genes
or virulence genes are detected, mostly present in associated MGEs, like prophages, as in the case of LREC252
or LREC248 or insertion sequences, in the case of L53 or L37, among others (Fig. 2 and Supplementary Fig. S5).

In summary, a pipolin basic unit is composed of direct terminal repeats encompassing a piPolB gene and a
variety of genes, most of them related to the metabolism of nucleic acids.

Cophylogeny of pipolins and host strains suggest pipolins horizontal transfer. Since the pres-
ence of the piPolB gene is the hallmark of pipolins and it constitute the only core gene, we performed a phy-
logenetic analysis of the new piPolB sequences from the new pipolin-harboring E. coli strains. Although some
of the new annotated piPolB genes are partially truncated, particularly those from pipolins in phylogroup D
strains, they have a high degree of identity, above 98.8% in the aligned regions. Phylogeny of the LREC piPolBs
(Fig. 3) underlined again the similarity among pipolins in clonal strains that belong to phylogroups C and D, but
sequences from phylogroups B1 and A were mixed together. A somewhat similar pattern was obtained for the
phylogenies of XerC-like recombinases (Xer_C_2 group from Roary, see Table S3) and UDGs in the combined
collection of pipolins (Supplementary Fig. S6). In order to assess the significance of different phylogenetic trees,
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we calculated the cophenetic correlation coefficient (CCC?®,) among them as indicative of phylogenies cluster-
ing congruence. When comparing the piPolB and XerC phylogenies, the CCC was 0.29; for the comparison of
piPolB and UDGs phylogenies it was 0.38; and a value of 0.27 was obtained for UDGs vs XerC comparison,
indicating very low clustering similarity among different pipolins genes. Thus, increasing the number of genes
in pipolins phylogeny, would increase the noise, to the detriment accuracy. Therefore, we considered only the
phylogeny of piPolB coding sequence, as the only hallmark gene for all pipolins, for subsequent cophylogeny
analyses. This can be considered also as a functional criterion, since piPolB is probably essential for episomal
pipolin replication, being thus in agreement with conventional taxonomy of plasmids or other elements from
the prokaryotic mobilome®”3.

The tanglegram in Fig. 4 allows us to visualize the cophylogeny between piPolBs and E. coli strains carrying
pipolins. This plot reveals a complex association pattern, with numerous crisscrossing lines that suggest incon-
gruence between the two phylogenies and, in line with this, the CCC is quite low, 0.14. Furthermore, we tested
the cophylogeny between this group of pipolins and the host strains using PACo (Procrustean Approach to
Cophylogeny)*. This method considers both clustering and relative distances, by using a procrustean approach
in distance-based statistical shape analysis of phylogenetic trees that provide global-fit values (%) for the trees’
shape comparison. These analyses allow the detailed characterization of parasite-host and virus-host evolution-
ary interactions, under the null hypothesis that the topology of the host tree cannot predict the topology of the
parasite tree***2, The m%, are inversely proportional to the topological congruence between the two phylogenetic
trees®. In our case, the mf(y is 0.017, with a p-value of 0.46. Thus, in agreement with the very low CCC value,
we cannot reject the null hypothesis, indicating that a significant portion of the pipolins tree topology does not
depend on (i.e., cannot be predicted by) the host strains phylogeny. Moreover, when we analyzed the cophylogeny
of pipolins and strains from each phylogenetic groups, we found that the Procrustes residuals of the pipolins
and strains from phylogroup C and D, but not those from groups A or B1 (Supplementary Fig. S7A-D), were
significantly smaller than the remainder of the interactions in the cophylogeny network, indicating that these
interactions show significantly greater phylogenetic congruence than the rest. These lineages reflect the tree
topologies of their host strains, indicating either co-evolutionary association or restricted horizontal transfer
to highly related strains. Interestingly, some of the pipolins from strains from phylogroup D seem to have a
truncated form of XerC_2 gene that only contains the Arm DNA binding domain present (see Fig. 3 and Sup-
plementary Fig. S5, LREC247, LREC250 and LREC251), which could explain the cophylogeny of those pipolins
with their host strains (i.e. low horizontal transfer), as they seem to lack any recombinase/integrase activity.

Further, to identify the contribution of each E. coli strain to the overall cophylogeny structure, we evaluated
the Jack-knifed squared residual values (Supplementary Fig. S7E). This analysis showed that an important pro-
portion of pipolins from phylogroups C and D, but also for a few of the strains in phylogroup A, like L103-02,
F5005-C1, ATCC-43886 or LREC258, among others, present low squared residual values, indicating congruent
topologies between piPolBs and genomic trees. Interestingly, all the pipolins that present a tandem cohabita-
tion with a prophage are within this group, in line with the previously hypothesized inactivation of pipolins as
a consequence of the prophage insertion. On the other hand, pipolins with high squared residual values from
phylogroups A and C would not have been evolutionary linked to their host strains, in agreement with the
previous results.

Opverall, we can conclude that the pipolins diversity is poorly congruent with the strains phylogeny and their
distribution is rather indicative of a patchy distribution amongst a wide variety of pathogenic E. coli strains, as
expected from horizontally transferred MGEs. This pattern may reflect the wide distribution of pipolins beyond
E. coli, dispersed among major bacterial phyla, namely Actinobacteria, Firmicutes, and Proteobacteria, as well
as in mitochondria’.

Conclusion and perspectives. Self-replicating integrative MGEs are highly diverse members of the
prokaryotic and eukaryotic mobilome that seem to be involved in key evolutionary events, including the origin
of the CRISPR-Cas systems from casposons and the evolution of several groups of eukaryotic dsDNA viruses
from polintons. However, the information about their mobilization is limited and biased by the availability of
genomic and metagenomic data in databases.

Pipolins represent a unique group of recently discovered, self-replicating integrative elements, which display
broad distribution among bacteria. Their presence in mitochondria and phylogenetic analysis suggested ancient
origin®, though their evolutionary history remains unclear. Here we have undertaken the first characterization of
a predicted self-replicating MGE within a collection of circulating human and animal pathogenic strains of E. coli.

Despite the relatively low frequency of pipolins, our results confirmed that, rather than correlating with a
certain phylogenetic group or pathotype, or the presence of a particular antimicrobial resistance, pipolins show a
patchy distribution among a variety of circulating E. coli strains, both from a collection screening and a GenBank
survey. We could detect clonality of several groups of isolates carrying pipolins, mainly belonging to the C and
D phylogenetic groups. Moreover, their clonality reflects the phylogeny of their harbored pipolins, indicating
that their mobility cannot be detected. However, mobilization of some of those pipolins seems impaired by the
inactivation of XerC recombinase. On the contrary, the phylogeny of more diverse and numerous hosts from
phylogroups A and B1 shows a lack of congruence with their pipolins, ruling out a monophyletic origin or strict
vertical transmission of pipolins.

Analysis of the genetic structure and pangenome of pipolins from E. coli showed that they are more dynamic
and flexible mobile elements than might be foreseeable from previous work. Pipolins encode a great diversity
of genes, with an average of more than 7 different genes per element, with piPolB being the only shared gene in
all pipolins. However, virulence and antimicrobial resistance genes were not detected in pipolins in our dataset,
which may explain their low prevalence in pathogenic E. coli strains, but also raise questions about their biological
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Figure 4. Cophylogeny of pipolins and host strains. Tanglegram representation of maximum-likelihood
comparative phylogenies of piPolB and host strains core genome as hallmark of pipolins. Modelfinder Best-

fit models were K3Pu+F+R2 and GTR +F + R7, respectively. Compared phylogenies are also displayed in
Figures S1 and S3, respectively. Links between pipolins and E. coli strains are colored based on the phylogenetic
groups.
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role and evolution. Moreover, whereas diversity of plasmids is usual for pathogenic strains, our results suggest a
possible interference between pipolins and other integrative MGE:s, like pks islands or integrons, usually highly
prevalent among pathogenic strains of Gram-negative bacteria.

Altogether, our results provide evidence for horizontal transfer of pipolins and suggest that pipolins are an
active platform for horizontal gene transfer in E. coli, and they also pave the way for further analysis in other
clinically relevant bacteria with pipolins.

Methods

Pipolin screening among E. coli strains. A total of 2,238 E. coli strains causing intestinal and extraintes-
tinal infections in humans and animals from LREC collection were tested for the presence of pipolins by PCR
using primers piPolB_FW (5-GTTTTTTGACAAATTGCCCACTTG) and piPolB_RV (5'-CATATCAGAAAA
CACCGTCCG). Strains were cultured in a biosafety laboratory level 2 and handled in a microbiological safety
cabinet Class II-A.

Conventional typing of LREC pipolin-harboring strains. The 25 LREC pipolin-harboring strains
were first characterized by conventional typing. The determination of O and H antigens was carried out using
the method previously described by Guinée et al.** with all available O (O1 to O181) and H (H1 to H56) antisera.
Isolates that did not react with any antisera were classified as O non-typeable (ONT) or HNT and those non
motile were denoted as HNM. Assignment to the main phylogroups (A, B1, B2, C, D, E, F) was based on the
PCR protocol of Clermont et al.**. The sequence types (STs) were established following the multilocus sequence
typing (MLST) scheme of Achtman by gene amplification and sequencing of the seven housekeeping genes (adk,
fumC, gyrB, icd, mdh, purA, and recA) according to the protocol and primers specified at the E. coli MLST web
site (https://mlst.warwick.ac.uk/mlst/dbs/Ecoli)?. Clonotype identification was determined by fumC and fimH
(CH) sequencing®.

Virulence factor (VF)-encoding genes of E. coli causing intestinal and extraintestinal infections were screened
by PCR"*¢. The virulence gene score was the number of virulence-associated genes detected. The isolates were
designed presumptively as extraintestinal pathogenic E. coli (EXxPEC) if positive for >2 of 5 markers, including
papAH and/or papC, sfa/focDE, afa/draBC, kpsM 1I, and iutA*, as uropathogenic E. coli (UPEC) if positive for
>3 of 4 markers, including chuA, fyuA, vat, and yfcV*, as avian pathogenic E. coli (APEC)* if positive for >4 of
5 markers (hlyF, iutA, iroN, iss and ompT), and as necrotoxigenic E. coli (NTEC) if positive for cnfl, cnf2 or cnf3
genes®. In addition ten VF-encoding genes specific for pathotypes of diarrheagenic E. coli (DEC) were screened
by PCR and the strains were designed as: typical enteropathogenic E. coli tEPEC) (eae+, bfpA +, stx,—,stx,—),
atypical enteropathogenic E. coli (aEPEC) (eae +, bfpA—, stx,—,stx,—), Shiga toxin-producing E. coli (STEC)
(stx, +and/or stx, +), enterotoxigenic E. coli (ETEC) (eltA +and/or est +), enteroinvasive E. coli (EIEC) (ipaH +),
and enteroaggregative E. coli (EAEC) (aatA +, aaiC+and/or aggR +*.

Antimicrobial susceptibility screening of LREC pipolin-harboring strains. Antimicrobial suscep-
tibility was determined by minimal inhibitory concentrations (MICs). Resistance was interpreted based on the
recommended breakpoints of the CLSI*. Thirteen classes of antimicrobial agents were analyzed: penicillins
(ampicillin, AMP), penicillins and -lactamase inhibitors (amoxicillin-clavulanic acid, AMC; piperacillin-tazo-
bactam, PTZ), non-extended spectrum 1st and 2nd generation cephalosporins (cefalotin, KF; cefazolin, CFZ;
cefuroxime, CXM), extended-spectrum 3t and 4% generation cephalosporins (cefotaxime, CTX; ceftazidime,
CAZ; cefepime, FEP), cephalosporins and p-lactamase inhibitors (cefotaxime and clavulanic acid, CTXc¢; cef-
tazidime and clavulanic acid, CAZc), cephamycins (cefoxitin, FOX), carbapenems (imipenem, IMP; ertapenem,
ETP), aminoglycosides (gentamicin, GEN; tobramycin, TOB), nitrofurans (nitrofurantoin, F), quinolones (nali-
dixic acid, NAL; norfloxacin, NOR; ciprofloxacin, CIP), folate pathway inhibitors (trimethoprim-sulphameth-
oxazole, SXT), phosphonic acids (Fosfomycin, FOS) and polymyxins (colistin, CL). E. coli multidrug resistant
(MDR) was defined as resistance to one or more agents in three or more classes of tested drugs®>.

Whole Genome sequence (WGS) and in silico characterization of E. coli strains carrying pipo-
lins.  WGS was carried out in an Illumina HiSeq1500 (2x 100 or 2x 150 bp) following standard protocols.
Briefly, libraries for sequencing were prepared following the TruSeq Illumina PCR-Free protocol. Mechanical
DNA fragmentation was performed with Covaris E220, and the final quality of the libraries assessed with Frag-
ment Analyzer (Std. Sens. NGS Fragment Analysis kit 1-6,000 bp). The libraries were then sequenced, and reads
were trimmed (Trim Galore 0.5.0) and filtered according to quality criteria (FastQC 0.11.7). Obtained sequences
are available as a NCBI Bioproject PRINA610160 (see Table S1 for Biosamples Ids and Enterobase Uberstrain
codes for each strain). Strain 3-373-03_S2_C2'® was sequenced and analyzed in parallel as a reference, but it was
not included in the BioProject to avoid redundancy.

The reconstruction of the genomes and plasmids in the genomes was carried out using the methodology
PLAsmid Constellation NETwork (PLACNETw)?. The assembled contigs, with genomic size ranging between 4.5
and 5.51 Mbp (mean size 5.08 Mbp), were annotated by Prokka®. Predicted CDS were analyzed using ABRicate*®
for the presence of antibiotic resistance (ResFinder V2.1.), virulence genes (VirulenceFinder v1.5), plasmid rep-
licon types (PlasmidFinder 1.3./PMLST 1.4.), and identification of clonotypes (CHTyper 1.0), sequence types
(MLST 2.0) and serotypes (SerotypeFinder 2.0). PointFinder V3.2 was used in order to find antibiotic resistances
encoded by chromosomal mutations (90% min. ID and 60% min. length thresholds)*. Phylogroups were pre-
dicted using the ClermonTyping online tool®>. Moreover, to characterize the strains mobilome, prophages were
searched with Phigaro® and Phaster®’; CRISPRCasFinder® was used for the report of CRISPR/Cas cassettes and
a custom database of IntI1, Intl2, Intl3, qacEdeltal and sull genes was used for identification of integrons and
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subsequent integrity analysis with IntegronFinder®. For Pipolins-harboring strains from GenBank (see below),
the presence of integrons was also analyzed by the same method using the chromosome sequence and then in
Integrall database (°, updated on 1 April 2020), which allowed us the identification of one more integron, located
in a plasmid. All predictions were called applying a select threshold for identification and a minimum length of
95 and 80%, respectively.

Pangenome analysis was performed with Roary*, which generated a codon aware alignment using Prank®'.
This alignment was then used for best-fit maximum likelihood-phylogenetic construction of phylogenetic
tree IQTree Modelfinder®?. For reference, single Nucleotide Polymorphism (SNP) tree were performed with
EnteroBase?, which runs a number of pipeline jobs with The Calculation Engine (TCE) in the order refMasker,
refMapper, refMapper_matrix and matrix_phylogeny.

Pipolins extraction and re-annotation. Pipolin-harboring E. coli genomes were retrieved from NCBI
Genbank nucleotide collection using TBLASTN® (October 30, 2019) and the piPolB amino acid sequence from
E. coli 3-373-03_S1_C2 (Uniprot PODPS1) as a query. Highly similar piPolBs from related Enterobacteriaceae
(Citrobacter sp., Enterobacter sp., and Metakosakonia sp.) were also detected but we discarded them to facilitate
the analysis. In total, 92 E. coli genomes (25 from LREC collection and 67 from GenBank) were employed in the
subsequent analysis.

Pipolins from the obtained genomes were extracted for detailed characterization using a custom pipeline
detailed as follows. Pipolin boundaries can be defined by att-like terminal direct repeats®. Based on that, the
nucleotide BLAST was performed using one of the att-repeat sequences from the 3-373-03_S1_C2 isolate as a
query against each of 92 E. coli genomes. In some cases, att-repeats and piPolB were located on different contigs,
posing a challenge for us to understand the order and orientation of the contigs which parts of the contigs belong
to a pipolin. We assumed that att-repeats should be headed in the same direction as they are direct repeats and
that one of them could overlap with a tRNA gene on the opposite strand. For consistency, we referred to the latter
att-repeat as attR and expected it always to be the rightmost att. According to these assumptions, we scaffolded the
disrupted pipolin regions into a continuous sequence using a custom Python script. During scaffolding, different
parts of a pipolin region were connected up by introducing the “assembly_gap” feature key of unknown length
(DDBJ/ENA/GenBank Feature Table Definition, Version 10.9 November 2019). Comparative representation of
the genetic structure of pipolins was generated by Easyfig®.

The extracted and scaffolded pipolin sequences were re-annotated by the Prokka pipeline®. This pipeline
allows usage of different databases for protein annotation, among those we have been using Bacteria-specific
UniProt (updated 16.10.2019), HAMAP (updated 16.10.2019) and Pfam-A (updated 08.2018). After the first try,
~50% of pipolin ORFs left unannotated and were classified as “hypothetical proteins”

Since the pipolins annotation was quite incomplete, we attempted to improve the annotation of pipolin genes
using HHpred® for the most common pipolin ORFs, as defined by the Roary analysis. We considered the found
hits as homologous if 1) the probability was >90%, 2) E-value <0.01, 3) secondary structure similarity was along
the whole protein length, 4) there was a relationship among top hits, 5) only Bacteria, Archaea, and Viruses were
allowed as the sources of the found hits. Using HHpred, functions were assigned to 6 more proteins. A list of these
proteins was provided to Prokka as a trusted set of already annotated proteins. After the second re-annotation,
only ~25% of proteins left unclassified.

Finally, pangenome analysis of pipolins gene content was carried out as detailed above and shell-core genes
present in more than 15% of pipolins were analyzed by eggNog® and KEGG orthology database functions with
Blast Koala®.

Cophylogeny of pipolins and host strains. As mentioned above, the alignment of concatenated genes
from the core-genome was used for the phylogeny of host strains. Phylogeny of piPolB, XerC and UDG pipolin
genes was generated independently. When XerC recombinase gene appeared duplicated, so only the syntenic
sequence with the UDG at the right end was included in the phylogeny reconstruction.

Phylogenetic analysis of gene sequences was carried out with Modelfinder®” upon PRANK codon aware
alignment®. The obtained trees were then used for the comparative phylogenetic analyses with RStudio (Inte-
grated Development for R. RStudio, Inc., Boston, MA https://www.rstudio.com/). Briefly, phylogenetic trees were
handled and pruned when required with APE®® and tanglegrams for visual tree comparison were generated with
Phytools®. We used the Dendextend package® to calculate and represent the cophenetic distances of branches
within a tree and the CCC (cophenetic correlation coeflicient) between trees. Finally, we used PACo (Procrustean
Approach to Cophylogeny)* to investigate the phylogenetic congruence between trees.
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