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Is immune checkpoint inhibitor-associated diabetes the 
same as fulminant type 1 diabetes mellitus?
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Pembrolizumab is an anti-cancer drug that targets 
programmed cell death protein-1 (PD-1) receptors on 
lymphocytes resulting in their activation against tumour 
cells. PD-1 receptors are also interspersed in endocrine organs 
and pembrolizumab use has long been associated with 
hypophysitis and thyroiditis. Since the introduction of immune 
checkpoint inhibitors (ICI), several cases of fulminant type 1 
diabetes mellitus (FT1DM) have been reported. However, it 
is unclear if FT1DM and ICI-induced diabetes are the same 
pathology. We review the existing literature of ICI-induced 
diabetes to investigate its nature and to what extent it 
represents type 1A diabetes and/or FT1DM (type 1B diabetes) 
using an example case. Our review showed that ICI-induced 
diabetes may be a different entity to FT1DM. Furthermore, 
there is limited evidence for the management of ICI-induced 
T1DM. Further research into its pathophysiology will 
improve management and possibly prevent this burdensome 
complication.
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Introduction

Immune checkpoint inhibitors (ICI) have transformed cancer 
therapy by disinhibition of the immune system, with a resultant 
anti-neoplastic effect. However, such activation of the immune 
system results in complications such as hypophysitis, thyroid 
dysfunction, colitis and hepatitis. Type 1 diabetes mellitus (T1DM) 
has only recently been acknowledged as a potential side effect 
of these medications, and guidelines are still lagging behind this 
uncommon but potentially life-threatening complication.
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There are two main immune checkpoint systems in human, 
immune cells: cytotoxic T lymphocytes antigen-4 (CTLA-4) and 
programmed cell death protein-1 (PD-1). While CTLA-4 binds to B7 
and blocks the activation of immune system at the primer stage 
within the lymph nodes, PD-1 binds to programmed cell death 
protein ligand-1 (PD-L1) to regulate the immune response at the 
site of action of immune system to keep the immunity in check 
(Fig 1). Human pancreatic islets lack CTLA-4 but instead express 
PD-L1 to protect them against immune cells.1 Pembrolizumab is a 
monoclonal antibody which binds to PD-1 and blocks this pathway. 
As a consequence, in the presence of pembrolizumab, pancreatic 
beta cells are susceptible to immune destruction resulting in 
diabetes.

Fulminant type 1 diabetes mellitus (FT1DM) is a spontaneous 
phenomenon characterised by markedly increased hyperglycaemia, 
near-normal glycated haemoglobin (HbA1c) not in line with the 
marked hyperglycaemia, ketoacidosis, negative autoantibodies, 
severe insulin deficiency and elevated levels of pancreatic 
enzymes.2 Since the introduction of immune checkpoint inhibitors, 
several cases of FT1DM have been reported. However, it is unclear 
if FT1DM and ICI-induced diabetes are the same pathology. In 
this article we review the existing literature of ICI-induced T1DM to 
investigate the nature of ICI-induced diabetes and to what extent 
it represents type 1A diabetes and/or FT1DM using an example 
case.

Case presentation

A 68-year-old woman of South-East Asian origin presented 
with vomiting, dysphagia and had severe dehydration. There 
was no history of chest pain, palpitations, fever, cough or 
urinary symptoms. There was no history of similar symptoms 
in the past. She was diagnosed with hypertension and atrial 
fibrillation in the past for which she was taking losartan and 
metoprolol, respectively. She was also diagnosed with lung cancer 
(poorly differentiated non-mucinous variant) in 2016. This was 
initially treated with five cycles of cisplatin and pemetrexed 
from November 2016 until January 2017. As there was no 
response to the treatment, she was commenced on three weekly 
pembrolizumab infusions in March 2017.

In April 2017, thyrotoxicosis (free thyroxine (T4) 34 pmol/L 
(9–19.05 pmol/L) and thyroid stimulating hormone (TSH) 0.031 
mIU/L (0.35–4.94 mIU/L)) was noted on routine laboratory testing. 
Thyroid ultrasound revealed diffuse heterogeneity and incidental 
sub-centimetre thyroid nodules, overall increased parenchymal 
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vascularity and associated reactive lymph nodes. TSH receptor 
antibodies were negative (0.75 IU/L (<1.5 IU/L)). She was clinically 
well and the only symptoms she offered on direct questioning 
were nervousness and tremor. Following evaluation, she was 
diagnosed with probable pembrolizumab-induced thyroiditis 
and managed conservatively. Her free T4 peaked at 54.3 pmol/L 
with free triiodothyronine (T3) 9.43 pmol/L (3.5–6.2 pmol/L) and 
TSH remained suppressed at 0.03 mIU/L before spontaneous 
improvement. However, she progressed to hypothyroidism in June 
2017 (free T4 9.17 pmol/L; TSH 29.4 mIU/L). Her thyroid function 
has since been well controlled on levothyroxine 75 μg/day.

The remainder of her pituitary function were normal except 
relatively low baseline morning cortisol with values between 
100–150 nmol/L on different occasions with coupled 
adrenocorticotropic hormone (ACTH) at 6–14 pg/mL (5–35 pg/mL). 
Subsequent short synacthen tests did not reveal any adrenocortical 
insufficiency (cortisol 551.8, 874.6 and 1,109 nmol/L at baseline, 
30 and 60 minutes post-ACTH injection, respectively). Her 
serum glucose was normal on multiple occasions between 
4.4–5.5 mmol/L. Until the time of index presentation, she had 
received 18 months of immune checkpoint inhibitor therapy.

On examination, she was afebrile, tachycardic and hypotensive. 
She did not have any clinical signs of infection or systemic illness. 
Bedside investigations showed metabolic acidosis (pH 7.062), 
hyperglycaemia (serum glucose 49 mmol/L) and ketonuria 
(urine ketones ++++). Laboratory investigations revealed 

acute kidney injury (urea 58.9 mmol/L (6.07–15.35 mmol/L), 
creatinine 231.61 μmol/L (45.08–83.98 μmol/L), low sodium 
(127 mmol/L (134–144 mmol/L) and high potassium (5.7 mmol/L 
(3.5–5 mmol/L). A septic screen, which included urine, blood 
cultures and chest X-ray, did not reveal any evidence of infection. 
Serum amylase and lipase were within normal limits as well 
(84 U/L (28–100 U/L) and 63 U/L (21–67 U/L), respectively). 
Following evaluation, she was diagnosed with diabetes-related  
ketoacidosis (DKA) and treated accordingly. She gradually 
improved and was discharged from hospital after 7 days on 
regular insulin and education regarding diabetes including 
dietary input.

Subsequent tests revealed supressed C-peptide at <33.1 pmol/L 
(330–1,400 pmol/L) on two different occasions, indicative of a 
severe insulin secretion deficiency from pancreatic beta-cells. 
Autoantibody screen for diabetes was negative (IA-2 antibodies 
4.5% (<6.5%), glutamic acid decarboxylase (GAD) 65 antibodies 
0.01 IU/mL (<1 IU/mL), zinc transporter 8 antibodies 2.1 RU/mL 
(<15 RU/mL)). Her HbA1c was 53 mmol/mol (7%). These results, 
alongside those from her initial presentation suggest a diagnosis 
of pembrolizumab-associated diabetes mellitus.

To date, she remains well on multiple daily insulin (8 units of 
insulin glulisine with meals and 18 units insulin glargine at night) 
albeit with an overall suboptimal glycaemic control. Her recent 
capillary blood glucose ranges were 4.0–16.7 mmol/L (72–300 
mg/dL), with significant glucose fluctuations reminiscent of 
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Fig 1. Schematic representa-
tion of immune check-
points and mechanism of 
action of pembrolizumab. 
a) Dendritic cells present 
antigen via histocompatibility 
complex (MHC) molecules 
which interact with T-cell 
receptors (TCR). Simultaneous 
interaction between B7 and 
CD28 results in activation 
of T cells. b) In the absence 
of a programmed cell death 
protein-1 (PD-1) checkpoint 
receptor blocker, there is an 
interaction between PD-1 
and programmed cell death 
protein ligand 1 (PD-L1) which 
prevents T cell action on the 
cell. c) Pembrolizumab, a PD-1 
receptor blocker, prevents 
the cancer cell-expressed 
PD-L1 from binding to the 
PD-1 receptor. This enables 
T cells to act on the antigen 
presented through MHC and 
destroy the cell. Unfortunately, 
the beta cells in the pancreas 
undergo the same process 
of destruction as an adverse 
effect.
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long-standing T1DM, and her HbA1c was 61.7 mmol/mol (7.8%). 
Pembrolizumab was recommenced following her hospital 
discharge but it was eventually discontinued in October 2018 due 
to presumed lack of efficacy (disease progression on computed 
cosmography (CT)) coupled with the development of drug-induced 
arthritis with intense joint aches limiting her mobility. She has since 
been on docetaxel. She received 26 cycles of pembrolizumab in 
total before discontinuation.

Methods

We undertook a focused, qualitative review with literature searches 
in PubMed, Medline and Google Scholar using a broad range of 
combinations of the medical subject headings (MeSH) terms: 
‘immune-complex inhibitor*’, ‘nivolumab’, ‘pembrolizumab’, 
‘ipilimumab’, ‘programmed death*’, ‘programmed cell death*’, 
‘diabetes*’, ‘type 1 diabetes*’ and ‘fulminant diabetes*’. Inclusion 
criteria were ‘human’ and ‘abstract available’ and articles 
retrieved from 2004 to November 2019. References of articles 
included were scrutinised to identify any further articles that were 
missed from the above database searches and personal archived 
references were also sought. Exclusion criterion was duplication 
of data. There were no other limitations regarding treatment 
modality, study design or study setting.

We identified all ICI-associated diabetes cases and compared 
them based on their diabetes-related antibody (DR-AB) status, 
demographics, laboratory and clinical parameters to the 
diagnostic criteria for FT1DM by the Japan Diabetes Society. 
In this diagnostic criterion, the following needed to be met to 
be diagnosed with FT1DM: occurrence of diabetes ketosis or 
ketoacidosis (approximately 7 days) after onset of hyperglycaemic 
symptoms; plasma glucose level ≥16.0 mmol/L (≥288 mg/dL) and 
HbA1c <8.7% at first visit; urinary C-peptide excretion <10 μg/day 
or fasting serum C-peptide level <0.3 ng/mL (<0.10 nmol/L) and 
<0.5 ng/mL (<0.17 nmol/L) after intravenous glucagon (or after 
meal) load at onset.3

Due to the relatively low prevalence of ICI-induced diabetes, 
there was heterogeneity in work-up leading to the diagnoses. 
Poor documentation and missing tests meant that most cases of 
FT1DM in the literature were labelled as non-FT1DM. Therefore, 
we modified the Japanese FT1DM diagnostic criteria to be more 
applicable to these reported cases. In our modified criteria, we 
removed ‘the 7 days after onset of hyperglycaemic symptoms’ 
in the first criterion. In addition, we removed the need for post-
glucagon stimulation C-peptide <0.5 ng/mL as most reports did 
not document this information.

Descriptive statistics are provided as a median or range for 
continuous variables and n (%) for nominal variables. χ2 or 
Fisher’s exact tests were performed as appropriate for comparison 
between nominal variables and Mann–Whitney U test for 
comparison between nominal and continuous variables. All 
analyses were performed on SPSS v20 (IBM, New York, USA).

Cases identified and descriptive statistics

We identified 75 cases of ICI-induced diabetes.4–56 Three were 
excluded from analysis: one duplicate and two others due to 
insufficient information.57–59 Seventy-two cases of ICI-induced 
diabetes were included in our analysis. The median age of the 
patients was 63 years. There were more male participants 
(male:female 1.1:1). Most of the cases did not define ethnicity 

of the patients (77.8%; 56/72), six patients were Japanese 
(8.3%), two were non-Japanese East Asian (2.8%), two were 
black American (2.8%) and six were white (8.3%). Most (91.7%; 
66/72) did not have a history of diabetes. More than half of the 
patients (54.2%; 39/72) were started on ICI for melanoma, 29.2% 
(21/72) for lung cancer, 5.6% (4/72) for renal cell carcinoma, 
4.2% (3/72) for lymphoma and 6.9% (5/72) for other cancers. 
Nivolumab was the most commonly used ICI (52.8%; 38/72), 
followed by pembrolizumab (25%; 18/72), ipilimumab (4.2%; 
3/72) and durvalumab (1.4%; 1/72). Seven patients (9.7%) were 
treated with a combination of ipilimumab plus either nivolumab 
or pembrolizumab, one patient (1.4%) was in a blinded clinical trial 
setting (nivolumab or ipilimumab) and the ICI was not defined in 
one case (1.4%).

Of the 72 cases, 43.1% (31/72) fulfilled all three diagnostic 
criteria for FT1DM as per the modified Japanese criteria. The 
breakdown of cases that fulfilled individual criteria and their 
combination is detailed in Table 1.

Elevated levels of pancreatic enzymes were associated with 
F1TDM-positive status (χ2 p=0.032). High levels of pancreatic 
enzymes were observed in 71.4% of patients diagnosed with 
FT1DM. There were no associations between FT1DM status and 
age, gender, ethnicity, personal history of diabetes, underlying 
malignancy, types of ICI used, number of cycles of ICI, timing of 
DKA/ketosis, continuation of insulin or T1D antibody status. As 
expected, there were positive associations between the FT1DM 
status and glucose (p=0.004), HbA1c (p=0.015) and C-peptide 
levels (p<0.0001).

Patients with negative diabetes-related autoantibodies (DR-
Abs) were more likely to have high pancreatic enzymes (63.2%; 
12/19) compared to those with positive DR-Abs (28.6%; 2/7). 
They were also more likely to fulfil the modified Japanese criteria 
for FT1DM (51.3%; 20/39) compared with those with positive 
DR-Abs (34.4%; 11/32); however, these associations were not 
significant (Fisher’s p=0.19 and p=0.229, respectively). There 
were positive associations between DR-Ab status and number of 
cycles of ICI (p=0.007) and DKA (p=0.016). No associations were 
found between DR-Ab status and age, gender, ethnicity, personal 
history of diabetes, underlying malignancy, types of ICI used, 

Table 1. Proportion of cases that met individual and 
combination criteria for modified Japanese criteria 
for FT1DM.

Modified Japanese criteria for 
FT1DM

Cases that fulfil the 
criteria, n (%)

Occurrence of diabetes ketosis or 
ketoacidosis

56 (77.8)

Plasma glucose level ≥16.0 mmol/L 
(≥288 mg/dL) and HbA1c <8.7% at 
first presentation

49 (68.1)

Urinary C-peptide excretion <10 μg/day 
or fasting serum C-peptide level <0.3 
ng/mL (<0.10 nmol/L)

45 (62.5)

All the above 31 (43.1)

FT1DM = fulminant type 1 diabetes mellitus.
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continuation of insulin, glucose levels, HbA1c and C-peptide (pre- 
and post-glucagon stimulation test).

Discussion

Immunotherapy with checkpoint inhibitors has revolutionised 
cancer treatment, with six ICIs approved to treat advanced solid 
tumour and haematological malignancies since 2011.60 However, 
ICI therapy frequently induces immune-related adverse events 
(IRAEs) affecting multiple organ systems, most commonly 
endocrine.18,60,61 A study reported new-onset insulin-dependent 
diabetes developed after a median of four cycles or 4–5 months 
since ICI initiation. Unlike other IRAEs, endocrine disruption tends 
to be irreversible, requiring lifelong hormone replacement and 
leading to hospitalisation and mortality if undetected.60

FT1DM is characterised by the absence of insulitis and 
diabetes-related autoantibodies including islet-cell, GAD or 
insulin antibodies, and elevated serum pancreatic enzyme 
concentrations.2,62 A meta-analysis of ICI cancer clinical trials 
concluded a 0.2% frequency of FT1DM, while another study 
reported a frequency of 1%.61,63 It should be noted that most 
studies determined frequency based on patients referred for 
concern of ICI-induced diabetes. Hence, its frequency has not 
been well addressed in practice. A nationwide survey reported that 
FT1DM accounts for 20% of T1DM cases in Japan; however, few 
cases have been described in Western countries.64,65

FT1DM has similarities and differences compared with 
spontaneous T1DM. Similarities include the frequent occurrence 
of DKA soon after hyperglycaemic symptoms, suggesting a faster 
rate of β-cell failure, and low or undetectable C-peptide levels which 
implies a lack of endogenous insulin production.2,33,62,63 FT1DM has 
a remarkably abrupt onset compared with autoimmune T1DM.63 
FT1DM presents at an older age, with few patients presenting 
before 20 years old, suggesting that it is an adult-onset disease. 
One study reported a median age of 61 years, with adult onset 
observed in >90% patients. The body mass index of patients 
with FT1DM is higher than the lean body habitus of patients with 
autoimmune T1DM and a lower weight loss is observed.2,63 Possible 
risk factors include specific alleles of human leukocyte antigen and 
combined use of checkpoint inhibitors.7,62 A study found that, in 
those with FT1DM, 17% and 33% had a personal or family history 
of autoimmunity, respectively, suggesting that ICI therapy may 
trigger FT1DM in patients with relevant genetic backgrounds. 
Another study concluded that there is no link to diabetes in first-
degree relatives, but autoimmune diseases were more frequently 
observed in autoimmune diabetes than in fulminant diabetes.64

In our study, most patients who developed FT1DM were being 
treated for melanoma. This is consistent with the most recent 
systematic review of ICI-induced T1DM which reported up to 
53.5% of all cancers being treated by ICI.66 With the proven 
efficacy of ICI in the treatment of melanoma and other cancers 
(both as single ICI or combination), the incidence of ICI-
induced FT1DM is expected to increase significantly.67 From our 
review, the antibody pattern coupled with pancreatic enzyme 
pattern observed in such patients suggests the diabetes ‘type’ 
lies closer to FT1DM (type 1B) rather than the classic type1A. 
At the same time, we have shown that the majority of such 
patients do not fulfil the classic criteria or even our modified, 
less confining Japanese criteria for FT1DM. Therefore, we 
may be dealing with a different diabetes entity altogether or, 

alternatively, a spectrum of diabetes encompassing both type 
1A and 1B, that may be better named as ICI-induced diabetes 
or insulin-dependent diabetes secondary to ICI. T1DM is usually 
associated with at least one positive DR-Ab by the time of 
diabetes presentation.62 This misclassification may have led to a 
heterogeneity in the work-up leading to diagnosis and therefore 
classifying this condition could be the first step in improving our 
understanding of the pathophysiology of this condition. A better 
understanding of the pathophysiology which, in turn, could 
aid in better screening and monitoring for the development 
and treatment of ICI-induced diabetes and perhaps even the 
prevention or stratification of patients regarding their risk 
this complication before commencing treatment with ICI. A 
retrospective study by Kotwal et al looking at 1,444 patients 
treated with ICI identified several potential predictive factors 
that could influence the occurrence and severity of ICI-induced 
diabetes. Personal and family history of autoimmunity were 
associated with this adverse event with 17% and 33% of the 
ICI-induced diabetes cases having a positive personal and 
family history of autoimmune conditions, respectively. Almost 
two-thirds of the 1,444 patients had another IRAE suggesting 
that presence of one IRAE may predict the development of 
another.63 Patients on a combination of immunotherapies and/
or pre-treatment with other immunotherapies before starting 
ICI also appeared to be at an increased risk of ICI-induced 
diabetes.61,68 Pre-existing type 2 diabetes did not appear to 
predict occurrence.52 It is however important to note that 
these studies are mostly cross-sectional and retrospective in 
nature. Prospective studies are needed before any conclusions 
can be drawn regarding the risk factors of developing ICI-
induced diabetes. Noguira et al suggested strategies in the 
assessment, management and monitoring of immunotherapy-
induced endocrinopathies. Due to the rapid onset of ICI-
induced diabetes, all acutely unwell patients on ICI should 
have their blood glucose checked and/or a full work-up for 
DKA, if necessary. Patients should be treated with insulin and 
hospitals should ensure that there must be a system in place 
to ensure safe administration of insulin. They should also 
be referred to the diabetes team for further education and 
management.60 Furthermore, there is limited evidence for the 
management of ICI-induced T1DM and most of the cases 
have been managed acutely when presenting with DKA as per 
standard DKA protocol and with T1DM in the intermediate- and 
long-term. To the best of our knowledge, there are no studies 
comparing the dose requirements of insulin in this cohort. 
However, from our experience and review of literature, the 
major difference between ICI diabetes and classic T1DM is the 
lack of a ‘honeymoon period’, a brief phase sometimes seen 
in classic T1DM during which they get better with a minimal 
need for insulin therapy.69 There is also no strong evidence 
whether to stop or change the ICI with the American Society of 
Clinical Oncology guideline suggesting to restart the ICI after 
the resolution of hyperglycaemia.70 However, this has been 
challenged by some reports that withdrawal of the ICI would 
preserve pancreatic insulin capacity.71 With the lack of evidence, 
more observational studies and/or clinical trials are needed to 
improve the overall approach to this condition.

We further compared our findings with two large case series in 
this field (Table 2).43,62 In all series, the median age at diagnosis 
was much higher than classic T1DM presentation with no apparent 
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gender preponderance. There was a much higher frequency of 
DKA or ketosis at diagnosis than standard T1DM cases. A majority 
of the patients were diabetes-related Ab negative, unlike T1DM. 
The median HbA1C was low suggesting abrupt onset of diabetes. 
Remarkably, C-peptide levels were undetectable in a majority 
of cases in the Clotman and Stamatouli series. However, once 
we applied stricter criteria for FT1DM, less than two-thirds had 
significantly reduced C-peptide. In the case series by Stamatouli 
et al, frequency of HLA-DR3 was higher than the general 
population for spontaneous T1DM. HLA-DR3 and HLA-DQ8 
(DQB1*0302) was also higher than general population but similar 
to T1DM prevalence. In the Clotman et al series, 67% (14/21) had 
HLA haplotype which is high risk for T1DM. However, the recording 
of these haplotypes was not consistent between studies. It is 
unclear what proportion of patients needed discontinuation of ICI 
therapy after being diagnosed with diabetes as an adverse effect. 
Further well-designed studies are needed to clarify this. Although 
it was not clearly documented what proportion of patients needed 
long term insulin, our series suggest there was no ‘honeymoon 
period’ in ICI-associated diabetes cases, which differentiated 
them from classic T1DM cases.

Our review and other studies, have consistently observed that 
the rate of pancreatitis in those with DKA (depicted by a raised 
pancreatic enzymes) is higher than the general population of 
ICI-treated patients; however, this was not the case with our 
patient.72,73 This leads to the speculation that blockade of cellular 
response to inflammatory mediators, possibly due to pancreatitis 
and/or other inflammatory processes, may be a potential driver 
in the disease development. Stamatouli et al also showed in their 
review that HLA-DR4 seems to be over-represented in patients 
with ICI-induced diabetes. Other high-risk alleles for spontaneous 
T1DM, including HLA-DR3, DQ2 and DQ8, were not over-
represented.62 Furthermore, 70% of the cases reviewed had other 
IRAEs and 44% had endocrine-related IRAEs prior or concurrent 

to the development of ICI-induced diabetes (especially primary 
thyroid dysfunction) which was also true of our patient. These 
observations may point towards potential pre-treatment screening 
that might be needed to identify those who are at a higher risk 
of developing ICI-induced diabetes following treatment with ICI. 
However, more studies are needed to prove these hypotheses.

Conclusion

Our review shows that ICI-induced diabetes is a different entity to 
FT1DM, at least for the majority of patients with this condition. 
We have also demonstrated that the patient subgroup with 
DR-Ab negativity behaves differently with a significant, albeit 
modest, increase in the risk of DKA and a presentation with 
ICI-induced diabetes after more cycles of ICI. Further research 
into the pathophysiology of this condition will aid in the better 
management and possibly the prevention of this burdensome 
complication. n
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