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Abstract
Throughout the past six months, no number has dominated the public media more persistently than the reproduction number
of COVID-19. This powerful but simple concept is widely used by the public media, scientists, and political decision makers
to explain and justify political strategies to control the COVID-19 pandemic. Here we explore the effectiveness of political
interventions using the reproduction number of COVID-19 across Europe. We propose a dynamic SEIR epidemiology model
with a time-varying reproduction number, which we identify using machine learning. During the early outbreak, the basic
reproduction number was 4.22 ± 1.69, with maximum values of 6.33 and 5.88 in Germany and the Netherlands. By May
10, 2020, it dropped to 0.67 ± 0.18, with minimum values of 0.37 and 0.28 in Hungary and Slovakia. We found a strong
correlation between passenger air travel, driving, walking, and transit mobility and the effective reproduction number with a
time delay of 17.24 ± 2.00 days. Our new dynamic SEIR model provides the flexibility to simulate various outbreak control
and exit strategies to inform political decision making and identify safe solutions in the benefit of global health.
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1 Motivation

Since the beginning of the new coronavirus pandemic in
December 2020, no other number has been discussed more
controversially than the reproduction number of COVID-19
[36]. Epidemiologists use the basic reproduction number R0

to quantify how many new infections a single infectious
individual creates in an otherwise completely susceptible
population [13]. The public media, scientists, and political
decision makers across the globe have started to adopted the
basic reproduction number as an illustrativemetric to explain
and justify the need for community mitigation strategies and
political interventions [21]: An outbreak will continue for
R0 > 1 and come to an end for R0 < 1 [25]. While
the concept of R0 seems fairly simple, the reported basic
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reproduction number forCOVID-19varies hugely depending
on country, culture, calculation, stage of the outbreak [36].
Knowing the precise number of R0 is important, but chal-
lenging, because of limited data and incomplete reporting
[12]. It is difficult–if not impossible–to measure R0 directly
[50]. The earliest COVID-19 study that followed the first
425 cases of the Wuhan outbreak via direct contact tracing
reported a basic reproduction number of 2.2 [33]. However,
especially during the early stages of the outbreak, informa-
tion was limited because of insufficient testing, changes in
case definitions, and overwhelmed healthcare systems [47].
Most basic reproduction numbers of COVID-19we see in the
publicmedia today are estimates ofmathematicalmodels that
depend critically on the choice of the model, the initial con-
ditions, and numerous other modeling assumptions [12]. To
no surprise, the mathematically predicted basic reproduction
numbers cover a wide range, from 2.2–3.6 for exponential
growth models to 4.1–6.5 for more sophisticated compart-
ment models [36].

Compartment models are a popular approach to simulate
the epidemiology of an infectious disease [29]. A prominent
compartment model is the SEIR model that represents the
timeline of a disease through the interplay of four compart-
ments that contain the susceptible, exposed, infectious, and
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recovered populations [6]. The SEIRmodel has three charac-
teristic parameters, the transition rates β from the susceptible
to the exposed state, α from the exposed to the infectious
state, and γ from the infectious to the recovered state [25].
The latter two are disease specific parameters associatedwith
the inverses of the latent period A = 1/α during which an
individual is exposed but not yet infectious, and the infec-
tious period C = 1/γ during which an individual can infect
others [32]. For COVID-19, depending on the way of report-
ing, these two times can vary anywhere between A = 2 to
6 days and C = 3 to 18 days [40,42,44]. The most criti-
cal feature of any epidemiology model is the transition from
the susceptible to the exposed state. This transition typically
scales with the size of the susceptible and infectious popu-
lations S and I , and with the contact rate β, the inverse of
the contact period B = 1/β between two individuals of these
populations [25]. The product of the infectious period and the
contact rate defines the reproduction number R = C β [12].
Community mitigation strategies and political interventions
seek to reduce the contact rate β, and with it the reproduction
number R, to control the outbreak of a pandemic [44].

Thefirst official case ofCOVID-19 inEuropewas reported
on January 24, 2020. Within only 45 days, the pandemic
spread across all 27 countries of the EuropeanUnion [15]. On
March 17, for the first time in its history, the European Union
closed all its external borders to prevent a further spreading
of the disease [16]. Within the following two weeks, many
local governments supplemented the European regulations
with lockdowns and national travel restrictions. In response,
passenger air travel within the European Union dropped by
up to 95% [18]. These drastic measures have stimulated a
wave of criticism, especially because initially, it was entirely
unclear to which extent they would succeed in reducing the
number of new infections [38].

In this study, as Europe begins to relax these constraints,
we correlate the effect of Europe-wide travel restrictions
to the outbreak dynamics of COVID-19. We introduce a
dynamic SEIR model with a time-varying contact rate β(t)
that transitions smoothly from the initial contact rate β0 at
the beginning of the outbreak to the effective contact rate
βt under global travel restrictions and local lockdown. We
express the time-varying contact rate β(t) = R(t)/C as a
function of the effective reproduction number R(t) and use
Bayesian inference to learn the evolution of the reproduc-
tion number for each country of the European Union from
its individual outbreak history [15]. Our model allows us
to precisely quantify the initial basic reproduction number
R0, the effective reproduction number Rt , and the adapta-
tion time t∗ to achieve this reduction, which are important
quantitative metrics of the effectiveness of national public
health intervention. Our model also specifies the exact time
delay�t between the implementation of political actions and
their effects on the outbreak dynamics of COVID-19. This

time delay is particularly important to plan exit strategies and
estimate risks associated with gradually or radically relaxing
current local lockdowns and global travel restrictions.

2 Methods

Epidemiology modeling. We model the epidemiology
of the COVID-19 outbreak using an SEIR model with
four compartments, the susceptible, exposed, infectious, and
recovered populations, governed by a set of ordinary differ-
ential equations [34], see Appendix,

Ṡ = −β S I /N
Ė = +β S I /N − α E
İ = + α E − γ I
Ṙ = + γ I .

The transition rates between the four compartments, β, α,
and γ , are inverses of the contact period B = 1/β, the latent
period A = 1/α, and the infectious period C = 1/γ , and
N = S + E + I + R is the total population. We interpret the
latency rate α and the infectious rate γ as disease-specific for
COVID-19, and assume that they are constant across all 27
countries of theEuropeanUnion.We interpret the contact rate
β = β(t) as behavior specific, and assume that it is different
for each country and can vary in time to reflect the effect of
societal and political actions. For easier interpretation, we
express the contact rate β(t) = R(t)/C in terms of the time-
varying effective reproduction number R(t). For the effective
reproduction number, we postulate a hyperbolic tangent type
ansatz,

R(t) = R0 − 1
2 [ 1 + tanh

([ t − t∗ ]/T ) ][ R0 − Rt ] .

This ansatz ensures a smooth transition from the basic repro-
duction number R0 at the beginning of the outbreak to the
current reproduction number Rt under travel restrictions and
lockdown, where t∗ is the adaptation time and T is the tran-
sition time, see Appendix.

COVID-19 outbreak and mobility data. We draw the
COVID-19 outbreak data for all 27 countries of the Euro-
pean Union [15]. From these data, we extract the newly
confirmed cases as the difference between today’s and yester-
day’s reported cases. We sample all European air traffic data
from the Eurocontrol dashboard, a pan-European Organiza-
tion dedicated to support European aviation [19]. In addition,
we approximate car, walking, and transit mobility using a
database generated from cell phone data [4]. These data
represent the relative volume of location requests per city,
subregion, region, and country, scaled by the baseline volume
on January 13, 2020. We smoothen the weekday-weekend
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fluctuations in outbreak andmobility data by applying amov-
ing averaging window of seven days.

Machine learning. To analyze the evolution of the effective
reproduction number for each country, and predict possible
exit scenarios, we identify the initial exposed and infectious
populations E0 and I0 and the effective reproduction number
R(t) using the reported COVID-19 cases in all 27 countries
of the European Union [15]. For each country, our simu-
lation window begins on the day at which the number of
reported cases surpasses 100 individuals and ends on May
10, 2020 for the initial simulation and on June 20, 2020
for the prediction. We fix the latency and infectious peri-
ods to A = 2.5 days and C = 6.5 days [31,33,47]. To
account for uncertainties in the initial exposed and infec-
tious populations E0 and I0 and in the effective reproduction
number R(t), we use Bayesian inferencewithMarkov-Chain
Monte-Carlo to estimate the following set of model param-
eters ϑ = { E0, I0, σ, R0, Rt, t∗, T }. Here, σ represents
the width of the likelihood p(D̂(t) | ϑ) between the time-
varying reported new cases D̂(t) and the simulated affected
population D(t,ϑ). We adopt a Student’s t-distribution for
the likelihood between the data and the model predictions
[11,30] with a confirmed case number-dependent width,

p(D̂(t) |ϑ) ∼ StudentTν=4( mean = D(t,ϑ),

width = σ
√
D(t,ϑ)).

We apply Bayes’ rule to obtain the posterior distribution of
the parameters [41,45] using the prior distributions in Table 1
and the reported case numbers [15],

p(ϑ | D̂(t)) =
p

(
D̂(t) | D(t,ϑ)

)
p(ϑ)

p
(
D̂(t)

) .

We solve this distribution numerically using the NO-U-Turn
sampler [26] implementation of the python package PyMC3
[46]. We use two chains: The first 1000 samples are used
to tune the sampler, and are later discarded; the subsequent
1000 samples are used to estimate the set of parameters ϑ .
Chain convergence requires a geometric ergodicity between
the Markov transition and the target distribution. In PyMC3
this is detected by split R̂ statistics, which identifies conver-
gence by comparing the variance between the chains. From
the converged posterior distributions, we sample multiple
combinations of parameters that describe the time evolution
of reported cases. These posterior samples allow us to quan-
tify the uncertainty on each parameter.

To probe the effect of different exit strategies, we explore
three possible projections of the effective reproduction num-
ber R(t) for each posterior parameter sample set and predict
the outbreak dynamics for a 40-day period after our initial

Table 1 Prior distributions for the initial exposed and infectious popu-
lations E0 and I0,width of likelihoodσ , basic and effective reproduction
numbers R0 and Rt , adaptation time t∗, and transition time T

manuscript submission, from May 10 until June 20, 2020.
The first scenario assumes a constant effective reproduc-
tion number R(t) = Rt , the second and third scenarios
simulate the effect of a linear return from Rt to the country-
specific basic reproduction number R0, either rapidly within
one month, or more gradually within three months. In the
revision of our manuscript, we added the reported daily new
cases fromMay 10 until June 20, 2020 to compare our model
predictions against the real case data.

3 Results

Figure 1 illustrates the outbreak dynamics of COVID-19 for
all 27 countries of the European Union. The dots represent
daily new cases. The brown and red curves illustrate the fit
of the SEIR model and the effective reproduction number
for the time period until May 10, 2020. The gray shaded
area highlights the model predictions for the 40-day period
of gradual reopening, from May 10 until June 20, 2020. The
dashed brown, orange, and red curves illustrate the projec-
tions for three possible exit strategies: a constant continuation
at the effective reproduction number Rt from May 10, 2020,
a gradual return to the basic reproduction number R0 within
three months, and a rapid to R0 within one months.

Table 2 and Figs. 2 and 3 summarize the basic reproduc-
tion number R0 at the beginning of the COVID-19 outbreak
and the effective reproduction number Rt as ofMay 10, 2020.
The basic reproduction number R0 has maximum values in
Germany, the Netherlands, and Spain, with 6.33, 5.88, and
5.19 andminimumvalues in Bulgaria, Croatia, and Lithuania
with 1.29, 0.93, and 0.91. The population weighted mean of
the basic reproduction number across the European Union is
R0 = 4.22 ± 1.69. The effective reproduction number Rt is
significantly lower than the initial basic reproduction num-
ber R0. In most countries, it is well below the critical value
of Rt = 1.0. It has maximum values in Sweden, Bulgaria,
and Poland all with 1.01, 0.99, and 0.96 and minimum val-
ues in Lithuania, Hungary, and Slovakia with 0.41, 0.37, and
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Fig. 1 Outbreak dynamics of COVID-19 across Europe and pre-
diction of different exit strategies. The dots represent daily new
cases. The brown and red curves illustrate the fit of the SEIR model
and the effective reproduction number for the time period until May
10, 2020. The gray shaded area highlights the model predictions from

May 10 until June 20, 2020. The dashed brown, orange, and red curves
illustrate the projections for three possible exit strategies: a constant con-
tinuation at the effective reproduction number Rt fromMay 10, 2020, a
gradual return to the basic reproduction number R0 within threemonths,
and a rapid to R0 within one months
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Table 2 Parameters of the COVID-19 outbreak across Europe

Basic reproduction number R0, effective reproduction number Rt , adaptation time t∗, adaptation speed T , and time delay �t for fixed latency
period A = 2.5 days and infectious period C = 6.5 days

0.28. The population weighted mean of the basic reproduc-
tion number across the European Union is Rt = 0.67±0.18.

Figure 4 provides a direct correlation between the reduc-
tion in mobility and the effective reproduction number of
the COVID-19 outbreak across Europe. The purple, blue,
grey, and black dots represent the reduction in air traffic,
driving, walking, and transit mobility, the red curves show
effective reproduction number with 95% confidence inter-
val. The mean time delay �t highlights the temporal delay
between reduction in mobility and effective reproduction
number. Spearman’s rank correlation ρ, a measure of the
statistical dependency between both variables, reveals the
strongest correlation in the Netherlands, Germany, Ireland,
Spain, and Sweden with 0.99 and 0.98. Only in Slovakia,
Slovenia and Lithuania, where the number of cases has not
yet plateaued and the effective reproduction number does not
show a clear smoothly decaying trend, there is no significant
correlation between mobility and the effective reproduction
number.

Figure 5 summarizes the learned basic reproduction num-
ber R0, the effective reproduction number Rt , the adaptation

time t∗, and the time delay �t for all 27 countries of the
European Union. The adaptation time t∗ characterizes the
time between the beginning of the outbreak at 100 confirmed
cases and the reduction in the effective reproduction number
and is a quantitative measure for the reaction time in the
population. The time delay �t characterizes the mean time
between the reduction in air travel, driving, walking, and
transit mobility and the reduction in the effective reproduc-
tion number and is a quantitative measure for the effect of
mobility.

Table 2 and Figs. 6 and 7 summarize the adaptation time t∗
and the time delay �t . The adaptation time t∗ has maximum
values in Bulgaria and Slovakia with 37.04 and 31.80 days
and minimum values in Luxembourg and Slovenia with 5.77
and 5.64 days. Themean adaptation time across theEuropean
Union is t∗ = 18.61±6.43 days. The time delay�t hasmax-
imum values in Bulgaria and Slovakia with 43.00 and 40.25
days and minimum values in Germany and the Netherlands
both with 3.25 and 0.75 days. The mean time delay across
the European Union is �t = 17.24 ± 2.00 days.
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Fig. 2 Basic reproduction number R0 of the COVID-19 outbreak
across Europe.The basic reproduction number characterizes the initial
number of new infectious created by one infectious individual. It has
maximum values in Germany, the Netherlands, and Spain, with 6.33,
5.88, and 5.19 and minimum values in Bulgaria, Croatia, and Lithuania
with 1.29, 0.93, and 0.91

Fig. 3 Effective reproduction number Rt of the COVID-19
outbreak across Europe. The effective reproduction number charac-
terizes the current number of new infectious created by one infectious
individual. It has maximum values in Sweden, Bulgaria, and Poland all
with 1.01, 0.99, and 0.96 and minimum values in Lithuania, Hungary,
and Slovakia with 0.41, 0.37, and 0.28 as of May 10, 2020

4 Discussion

Mathematical models can inform political interven-
tions.Asmany countries begin to explore safe exit strategies
from total lockdown, shelter in place, and national travel
restrictions to manage the COVID-19 pandemic, political
decision makers are turning to mathematical models for
advise [10]. A powerful quantitative concept to characterize
the contagiousness and transmissibility of the new coro-
navirus is the basic reproduction number R0 [50]. This
number explains–in simple terms–how many new infections
are caused by a single one infectious individual in an oth-
erwise completely susceptible population [13]. However,
against many false claims, the basic reproduction number
does not measure the effects of public health interventions
[12]. Here, we quantify these effects, for every point in time,
for every country, using the effective reproduction number
R(t), a time-dependent metric that changes dynamically in
response to community mitigation strategies and political
actions. We learn the effective reproduction number from
case data of the COVID-19 outbreak across Europe using
Bayesian inference and systematically correlate it to politi-
cal interventions.

The classical SEIR model can predict a natural equilib-
rium and herd immunity. The SEIR model has advanced
to the model of choice for the outbreak dynamics of COVID-
19 [36]. It belongs to a class of infectious disease models
that epidemiologists characterize as compartment models
[14]. Compartment models represent the population via a
sequence of compartments through which the population
passes as the disease progresses. Out of the many differ-
ent compartment models, the SEIR model seems best suited
to mimic the epidemiology of COVID-19 via four compart-
ments: the susceptible, exposed, infectious, and recovered
populations. For more than three decades [6], epidemiolo-
gists have successfully applied the SEIRmodel to understand
the outbreak dynamics of the measles, chickenpox, mumps,
polio, rubella, pertussis, and smallpox [25]. For this class of
diseases, the outbreak ends as the number of daily new cases,
β S I , decreases. As such, the classical SEIR model is self-
regulating: It naturally converges to an endemic equilibrium,
at which either the susceptible group S, or the infectious
group I , or both have become small enough to prevent new
infections [32]. In epidemiology, this equilibrium is known
as herd immunity [22]. In a homogeneous, well-mixed pop-
ulation, herd immunity occurs once a fraction of (1− 1/R0)

of the population has become immune, either through the
disease itself or through vaccination, see Appendix. For the
basic reproduction number of R0 = 4.22±1.69 we found in
this study, the herd immunity threshold would be 78%. This
value is lower than 94% for the measles, 89% for chickenpox
with, 86% for mumps and rubella, and 80% for polio [3], but
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Fig. 4 Correlation between reduction in mobility and effective
reproduction number of the COVID-19 outbreak across Europe.
Purple, blue, grey, and black dots represent reduction in air traffic,
driving, walking, and transit mobility; red curves show effective repro-
duction number R(t) with 95% confidence interval. The mean time

delay �t highlights the temporal delay between reduction in mobil-
ity and effective reproduction number. Spearman’s rank correlation ρ,
measures of the statistical dependency between mobility and reproduc-
tion, and reveals the strongest correlation in the Netherlands, Germany,
Ireland, Spain, and Sweden with 0.99 and 0.98
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Fig. 5 Parameters of the COVID-19 outbreak across Europe.
Basic reproduction number R0, effective reproduction number Rt , adap-
tation time t∗ and time delay �t . The adaptation time t∗ characterizes
the time between the beginning of the outbreak and the reduction in
the effective reproduction number; the time delay �t characterizes the
mean time between the reduction in air travel, driving, walking, and
transit mobility and the reduction in the effective reproduction number

significantly higher than the values of 16% to 27% for the
seasonal flu [7]. The countries with the highest prevalence,
Luxembourg with 0.72%, Sweden with 0.71%, and Spain
with 0.64% [15], do currently not even come close to these
values, not even when including asymptomatic cases that are
believed to increase the prevalence by an order of magnitude
[43], resulting in 7.2%, 7.1%, and 6.4%. Knowing the pre-
cise basic reproduction number of COVID-19 will be critical
to estimate the conditions for herd immunity and predict the
success of vaccination strategies.

The dynamic SEIR model can predict the effects of
public health interventions. The classical SEIR model
is a valuable tool to understand the interplay of the sus-
ceptible, exposed, infectious, and recovered populations
under unconstrained conditions. However, for the current
COVID-19 pandemic, similar to SARS,MERS, or Ebola, the
dynamics of these four populations are tightly regulated by
public health interventions [10] including isolation, quaran-
tine, physical distancing, and community containment [9,53].
This implies that model parameters like the contact rate β,
the rate at which an infectious individual comes into contact

Fig. 6 Adaptation time t∗ between beginning of the outbreak
and reduction of the effective reproduction number across
Europe. The adaptation time characterizes the time between the begin-
ning of the outbreak at 100 confirmed cases and the reduction in the
effective reproduction number. It has maximum values in Bulgaria and
Slovakia with 37.04 and 31.80 days and minimum values in Luxem-
bourg and Slovenia with 5.77 and 5.64 days

Fig. 7 Time delay�t between reduction of air travel and reduc-
tion of the effective reproduction number across Europe. The
time delay characterizes the mean time between the reduction in air
travel, driving, walking, and transit mobility and the reduction in the
effective reproduction number. It has maximum values in Bulgaria and
Slovakia with 43.00 and 40.25 days and minimum values in Germany
and the Netherlands both with 3.25 and 0.75 days
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and infects others, are not constant, but modulated by social
behavior and political action [5]. Here we explicitly account
for a dynamic contact rate β(t) and express it as a func-
tion of the time-varying effective reproduction number R(t)
[55]. This allows us to “bend the curve” and predict tempo-
rary equilibrium states, far away from the equilibrium state
of herd immunity, but stable under current conditions [32].
Yet, these states can quickly become unstable again once the
current regulations change [53]. Our dynamic SEIR model
allows us to study precisely these scenarios.

The time-varying effective reproduction number
reflects the strength of public health interventions.
To model temporal changes in the reproduction number,
we propose a hyperbolic tangent type ansatz for the effec-
tive reproduction number R(t). This functional form can
naturally capture the basic reproduction number R0, the con-
verged reproduction number under the current constraints
Rt , the adaptation time t∗, and the transition time T , see
Appendix. Figure 11 illustrates how our hyperbolic tangent
type model compares against a constant and a random walk
type reproduction number. The constant reproduction num-
ber in Fig. 11, left, nicely captures the exponential increase
during the early stages of the outbreak, but fails to “bend
the curve” before herd immunity occurs. Nonetheless, sev-
eral recent studies have successfully used an SEIR model
with a constant reproduction number to model the outbreak
dynamics of COVID-19 in China [42] and in Europe [34]
by explicitly reducing the total population N to an affected
population N∗ = η N . The scaling coefficient η = N∗/N
is essentially a fitting parameter that indirectly quantifies
the level of confinement [5]. For example, when averaged
over 30 Chinese provinces, themean affected population was
η = 5.19 · 10−5 ± 2.23± 10−4, suggesting that the effect of
COVID-19 was confined to only a very small fraction of the
total population [42]. The Gaussian random walk in Fig. 11,
left, naturally captures the effects of public health interven-
tions, however, in a daily varying, rather unpredictable way.
It is a valuable method to analyze case data retrospectively,
but since it does not allow for a closed functional form, it
is not very useful to make informed predictions. We con-
clude that the hyperbolic tangent based ansatz in Fig. 11,
middle, with four physically meaningful parameters, is the
most useful approach to represent the time-varying effective
reproduction number R(t) for our current purposes.

Bayesian inference identifiesbasic andeffective repro-
duction numbers from reported cases. Unfortunately,
we can neither measure the basic nor the effective repro-
duction number directly. However, throughout the past six
months, the COVID-19 pandemic has probably generated
more quantitative data than any infectious disease in history.
Parametric Bayesian methods offers incredible opportuni-

ties to evaluate these data and learn correlations and trends
[39]. Here we learn the effective reproduction number R(t)
directly from the reported COVID-19 cases in all 27 coun-
tries of the European Union, starting from the day of the
first reported case on January 24, until May 10, 2020.
This not only allows us to identify the model parameters
and confidence intervals, but also to quantify correlations
between travel restrictions and reduced effective reproduc-
tion numbers. Table 2 and Figs. 2 and 3 summarize our basic
reproduction numbers R0 and effective reproduction num-
bers Rt for all 27 countries. Our mean basic reproduction
number of R0 = 4.22±1.69 exceeds the first estimates of 1.4
to 2.5 from theWorld Health Organization based on a tracing
study that reported a value of 2.2 during the early outbreak in
Wuhan [33]. However, our results agree well with the more
recent values of 5.7 for the Wuhan outbreak [47] and with a
recent review that suggested values from 4.1 to 6.5 calculated
with SEIR models [36]. Our basic reproduction number of
4.22 is lower than the numbers of 18 for measles, 9 for chick-
enpox, 7 for mumps, 7 for rubella, and 5 for poliomyelitis
[3]. Compared to the SARS coronavirus with a range from
2 to 5 [36], our values of SARS-CoV-2 in Table 2 are rather
on the high end, suggesting that the new coronavirus would
spread more rapidly than SARS [54]. Knowing the precise
basic reproduction number is critical to estimate the number
of contacts to trace, if we want to successfully control the
dynamics of COVID-19 through contact trancing [24].

Political mitigation strategies reduce the effective
reproduction number with a time delay of two weeks.
Freedom of movement is the fundamental principle of the
European Union. On March 13, 2020, the World Health
Organization declaredEurope the epicenter of theCOVID-19
pandemic with more reported cases and deaths than the rest
of the world combined [51]. To prevent a further spreading
of the pandemic, four days later, for the first time in history,
the European Union closed all its external borders [16]. In
the following two weeks, the local governments augmented
the European regulations with local lockdowns and national
travel restrictions. Figure 4 shows that these measures had
an enormous effect on the mobility within the European
Union: By March 22, 2020, the average passenger air travel
in Europe was cut in half, and as of May 10, it is reduced by
86% in Germany, 92% in France, 93% in Italy, and 95% in
Spain [18]. These drastic actions have triggered an ongoing
debate about the effectiveness of different outbreak strate-
gies and the appropriate level of constraints [38]. Table 2
and Figs. 4, 5, 6 and 7 summarize our time-varying effective
reproduction number R(t) and highlight the time delay of
its reduction with respect to the European travel restrictions.
An important socio-economical metric is mean time delay of
�t = 17.24± 2.00 days between the reduction of air traffic,
driving, walking, and transit mobility and the inflection point
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of the reproduction number curve. Figures 5 and 7 show that
this time delay varies hugely across Europe with the fastest
response of 0.75 days in the Netherlands, followed by Ger-
many with 3.25 days, Belgiumwith 4.00 days, and Italy with
5.00 days. These fast response times naturally also reflect
decisions on the national level. France had the first reported
COVID-19 case in Europe on January 24, 2020 and acted
rigorously and promptly by introducing the first national
measures on March 16 [52]. Similarly, Italy, Spain, and Ger-
many had introduced their national measures on March 9,
March 9, and March 13, 2020 [48]. Figures 5 and 7 clearly
highlight the special role of Sweden, where the government
focusses efforts on encouraging the right behavior and creat-
ing social norms rather thanmandatory restrictions: The time
delay of 23.75 days is above the European Union average of
17.24 days, and Sweden is one of the few countries where the
effective reproduction number has not yet decreased below
one.Taken together, these results confirm that, especially dur-
ing the early stages of an outbreak, controlling mobility can
play a critical role in spreading a disease [8]. However, these
drastic political measures have stimulated an active ongoing
debatewhen and how itwould be safe to lift these restrictions.

Exit strategies will have different effects in individual
countries. Political decision makers around the globe are
currently trying to identify safe exit strategies from global
travel restrictions and local lockdown. Mathematical mod-
els can provide guidelines and answer what-if scenarios. Our
predictions in Fig. 1 show projections of the number of total
cases, for three possible exit strategies from lockdown: a con-
tinuation at a constant effective reproduction number Rt , a
gradual return to the basic reproduction number R0 within
three months, and a rapid to R0 within one months. Nat-
urally, the case numbers increase in all three cases, with
the steepest increase for the most rapid return. Interestingly,
our method provides significantly different confidence inter-
vals for different countries suggesting that a controlled return
will be more predictable in some countries like Austria and
less in others. Our projections suggest that in Sweden, were
policymakers had encouraged each individual to take respon-
sibility for their own health rather than enforcing political
constraints, the projected case numbers will follow the cur-
rent curve, without major deviations. Strikingly, in most
countries, the newly reported case numbers upon gradual
reopening, fromMay 10 to June 20, 2020, follow the dashed
brown curves of the prediction with a constant effective
reproduction number. This suggests that most countries have
learnt how to successfully control the pandemic and manage
new outbreaks.

Limitations. Just like any infectious disease model, our
model inherently faces limitations associated with data
uncertainties from differences in testing, inconsistent diag-

nostics, incomplete counting, and delayed reporting. For our
specific study of COVID-19, we encounter a few additional
limitations: First, although a massive amount of data are
freely available through numerous well-documented public
databases, the selection of themodel naturally limits what we
can predict and it remains challenging to map the available
information into the format of the SEIR model. Second, the
initial conditions for our exposed and infectious populations
will always remain unknown and many new first cases have
been reported throughout the past couple of weeks. To reduce
the influence of unknown initial conditions, our parametric
Bayesian inference algorithm learns these populations along-
side the effective reproduction number. Third, in its current
state, our model does not distinguish between community
mitigation strategies, local public health recommendations,
and global political actions [9]. We are currently integrating
the current approach into a global network model that will
provide more granularity to include other community miti-
gation strategies in addition to mobility. Fourth, our current
model is not directly informed by mobility data. We have
recently proposed a new method that uses a stochastic pro-
cess to directly incorporate mobility as a latent variable into
the present SEIR model framework [35]. Fifth, and prob-
ably most importantly, our current knowledge limits our
ability to make firm predictions about the recovered group,
which will be critical to estimate the return to normal. Recent
studies have shown that the unreported asymptomatic pop-
ulation is huge, up to an order of magnitude larger than the
reported symptomatic population traced in our study [43]. A
related challenge is that the number of reported cases strongly
depends on the testing strategy of each country. A possibility
to eliminate testing bias could be to use death counts rather
than case counts [23]; however, this would also require a
consistent Europe-wide definition of death with versus death
caused by COVID-19. In general, more targeted tests will be
needed to identify the size of the asymptomatic population
and explore whether it behaves differently in terms of contact
rate and infectious period,whichwould both radically change
the overall reproduction number. Asmore data become avail-
able, we are confident that we will learn from uncertainty
quantification, become more confident in our model predic-
tions, and learn how to quickly extract important trends.

5 Conclusion

Wequantified the effectiveness of public health interventions
using the effective reproduction number R, the time-varying
reproduction number of the COVID-19 pandemic, across all
27 countries of the European Union. We adopted an SEIR
epidemiology model with a dynamic effective reproduction
number, which we learned for each country from its individ-
ual reported cases using Bayesian inference . We found that,
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during the early stages of the COVID-19 outbreak, the basic
reproduction number across Europe was R0 = 4.22 ± 1.69.
Massive public health interventions as well as social learning
have successfully reduced the effective reproduction number
to Rt = 0.67±0.18 by May 10, 2020. Strikingly, this reduc-
tion displays a strong correlation with mobility in the form
of air travel, driving, walking and transit mobility with a
mean time delay of 17.24 ± 2.00 days. This time delay is an
important metric as we seek to identify safe exit strategies
from current lockdown and travel restrictions. To highlight
the predictive potential of our model, we simulated different
exit strategies from lockdown that either maintain the current
status quo, gradually return to normal, or rapidly return to
the early exponential growth. Upon gradual reopening, from
May 10 to June 20, 2020, the newly reported case numbers
in most countries followed the prediction that maintained the
current effective reproduction number suggesting that most
countrieswere able to successfullymanage the pandemic and
control new outbreaks. Our dynamic epidemiology model
provides the flexibility to simulate the effects and timelines
of various outbreak control and exit strategies to informpolit-
ical decisionmaking and identify solutions that minimize the
impact of COVID-19 on global health.
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Appendix

The SEIRmodel. The SEIR model is a popular model in the
epidemiology of infectious diseases [25]. It represents the
timeline of a disease through four compartments that charac-
terize the dynamics of the susceptible, exposed, infectious,
and recovered populations [6]. The transition between these
populations is governed by a set of ordinary differential equa-
tions [29],

Ṡ = −β S I /N − μ S + μ N
Ė = +β S I /N − α E − μ E
İ = + α E − γ I − μ I
Ṙ = + γ I − μ R .

(1)

The transition rates between the four populations, the con-
tact rate β, the latency rate α, and the infectious rate γ , are
inverses of the contact period B = 1/β, the latent period
A = 1/α, and the infectious period C = 1/γ . The set of
equations (1) includes vital dynamics at an equivalent birth
and death rateμ, such that the sum of all four equations, (1.1)
to (1.4), is equal to zero,

Ṡ + Ė + İ + Ṙ = 0 . (2)

This implies that the sum of the four populations is constant
and equal to the total population N ,

S + E + I + R = const. = N . (3)

For the SEIR model with vital dynamics (1), the basic repro-
duction number R0, the number of new infections caused by
one infectious individual in a completely susceptible popu-
lation [13], is

R0 = α

α + μ

β

γ + μ
. (4)

The magnitude of R0 plays a critical role in the outbreak
dynamics of an infectious disease [36].Herewe are interested
in studying the outbreak dynamics of COVID-19, for which
the time period is short, andwe can neglect the effects of vital
dynamics. This implies that the set of equations (1) reduces
to the following system,

Ṡ = −β S I /N
Ė = +β S I /N − α E
İ = + α E − γ I
Ṙ = + γ I ,

(5)

and the basic reproduction number (4) simplifies to the fol-
lowing expression,

R0 = β/γ = C β = C/B . (6)

Many infections diseases, including COVID-19, display a
significant latent period during which individuals have been
infected but are not yet infectious themselves. These indi-
viduals are represented through the exposed population E .
A special case of the SEIR model is the SIR model, which
follows from the set of equations (5) with α → ∞ as

Ṡ = −β S I /N
İ = +β S I /N − γ I
Ṙ = + γ I .

(7)

While the SIR model is conceptually simpler and lends
itself to closed form solutions, for the outbreak dynamics
of the COVID-19 pandemic, the invisible exposed, but not
yet infectious population plays a critical role. Throughout
this study, we therefore focus on the SEIR model. We repa-
rameterize the absolute SEIR model (5) and scale it by the
total population N , to obtain the fractions of the susceptible,
exposed, infectious, and recovered populations,

s = S/N e = E/N i = I/N r = R/N . (8)
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This introduces the relative SEIR model,

ṡ = −β s i
ė = +β s i − α e
i̇ = + α e − γ i
ṙ = + γ i ,

(9)

parameterized in the fractional populations, s, e, i , and r ,
which sum up to one,

s + e + i + r = 1 . (10)

Endemic equilibrium. The hallmark of a typical epidemic
outbreak is that it begins with a small infectious population
I0. The infectious population I (t) increases, reaches a peak,
and then decays to zero [25]. Throughout the outbreak, the
susceptible population S(t) decreases, but the final suscep-
tible population S∞ always remains larger than zero. This
final state is called the endemic equilibrium. To estimate the
endemic equilibrium of the COVID-19 pandemic, we divide
equation (5.1) by equation (5.4),

Ṡ

Ṙ
= − β S I

γ N I
(11)

Separation of the variables and using the definition of the
basic reproduction number R0 = β/γ yields the following
equation,

Ṡ

S
= − R0

N
Ṙ , (12)

which we integrate in time,

∫
1

S

dS

dt
dt = −

∫
R0

N

dR

dt
dt , (13)

to obtain the following expression,

ln(S(t)) − ln(S(0)) = −R0[ R(t) − R(0) ]/N . (14)

Here S(0) and R(0) are the initial susceptible and recovered
populations and S(t) and R(t) are these populations at time t .
Using ln(S(t))− ln(S(0)) = ln(S(t)/S(0)) and applying the
exponential function on both sides of the equation introduces
the following explicit representation for the susceptible pop-
ulation at time t ,

S(t) = S(0) exp(−R0[ R(t) − R(0) ]/N ) . (15)

According to equation (8), we scale the populations with
the total population N as s0 = S(0)/N and r0 = R(0)/N ,
and evaluate equation (15) at the limit t → ∞ with s∞ =
S(∞)/N , e∞ = 0, i∞ = 0, and r∞ = R(∞)/N = 1 −

s∞, to obtain the following expression for the susceptible
population at endemic equilibrium,

s∞ = s0 exp(−R0[ r∞ − r0 ]) = 1 − r∞ . (16)

This transcendental equation has an explicit solution in terms
of the Lambert function W ,

s∞ = −W (−s0 R0 exp(−R0[ 1 − r0 ]))/R0

e∞ = 0
i∞ = 0
r∞ = 1 +W (−s0 R0 exp(−R0[ 1 − r0 ]))/R0 .

(17)

The endemic equilibrium condition (17) confirms that, unless
S(0) = 0, the final susceptible population will always be
larger than zero, S∞ > 0 [32].

Public health interventions.The classical SEIRmodel (1)
assumes that the disease develops freely and that the con-
tact rate β, latency rate α, and infectious rate γ are constant
throughout the course of the outbreak. It is obvious that the
contact rate β will change in response to community mitiga-
tion strategies and political actions, e.g., local lockdown and
global travel restrictions [20]. Here, to account for the effects
of public health interventions, we introduce a time-varying
contact rate β(t) and rewrite the system of equations (5),

Ṡ = −β(t) S I /N
Ė = +β(t) S I /N − α E
İ = + α E − γ I
Ṙ = + γ I .

(18)

Wemake a hyperbolic tangent type ansatz for the contact rate
β(t),

β(t) = β0 − 1
2 [ 1 + tanh

([ t − t∗ ]/T ) ][ β0 − βt ] , (19)

where β0 is the initial contact rate at the onset of the pan-
demic, βt is the contact rate in response to public health
interventions, t∗ is the adaptation time, and T is the tran-
sition time. For easier interpretation, we reparameterize the
system (18) in term of the time-dependent effective repro-
duction number R(t) = β(t)/γ ,

Ṡ = − R(t) γ S I /N
Ė = + R(t) γ S I /N − α E
İ = + α E − γ I
Ṙ = + γ I .

(20)

With equation (19), the effective reproduction number takes
the following hyperbolic tangent type form,

R(t) = R0 − 1
2 [ 1 + tanh

([ t − t∗ ]/T ) ][ R0 − Rt ] . (21)
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Fig. 8 SEIR model with time-varying effective reproduction
number. Increasing the basic reproduction number R0 increases the
initial growth, and with it the number of cases. The temporary equi-
librium for the smaller basic reproduction number of R0 = 2.5 is
s∗∞ = 0.948 and r∗∞ = 0.052 and for the larger basic reproduction
number of R0 = 5.0 is s∗∞ = 0.544 and r∗∞ = 0.456. Latent period
A = 2.5 days, infectious periodC = 6.5 days, basic reproduction num-
ber R0 = [5.0, 4.5, 4.0, 3.5, 3.0, 2.5], effective reproduction number
Rt = 0.75, adaptation time t∗ = 20 days, and transition time T = 15
days

This ansatz ensures a smooth transition from the initial basic
reproduction number R0 = β0/γ at the beginning of the
outbreak to the effective reproduction number Rt = βt/γ

in response to public health interventions, where t∗ and T
are the adaptation and transition times. From equation (16),
we can estimate the constrained equilibrium in response to
public health interventions,

s∗∞ = −W (−st Rt exp(−Rt[ 1 − rt ]))/Rt

e∗∞ = 0
i∗∞ = 0
r∗∞ = 1 +W (−st R0 exp(−Rt[ 1 − rt ]))/Rt ,

(22)

where st = st∗+T /2 and rt = rt∗+T /2 are the fractions of
the susceptible and recovered populations at time t = t∗ +
T /2, the time at which the effective reproduction number
has fully adopted the new value R(t) = Rt . Importantly,
this constrained equilibrium is not equivalent to the natural
endemic equilibrium, s∞ ≤ s∗∞ and r∗∞ ≤ r∞, since Rt ≤
R0.

Time-varying effective reproduction number. Fig-
ures 8, 9 and 10 illustrate the outbreak dynamics of our
SEIRmodel with a time-varying effective reproduction num-
ber. The gray curves highlight the hyperbolic tangent type
nature of the effective reproduction number R(t), the dark
red, red, orange, and blue curves illustrate the dynamics of
the susceptible S, exposed E , infectious I , and recovered R
populations. Unless stated otherwise, we use a latent period

Fig. 9 SEIR model with time-varying effective reproduction
number. Increasing the reproduction number Rt decreases the effect of
interventions and increases the number of cases. The temporary equi-
librium for the smaller effective reproduction number of Rt = 0.4
is s∗∞ = 0.764 and r∗∞ = 0.236 and for the larger effective repro-
duction number of R0 = 0.9 is s∗∞ = 0.594 and r∗∞ = 0.406.
Latent period A = 2.5 days, infectious period C = 6.5 days, basic
reproduction number R0 = 4.5, effective reproduction number Rt =
[0.4, 0.5, 0.6, 0.7, 0.8, 0.9], adaptation time t∗ = 20 days, and transi-
tion time T = 15 days

Fig. 10 SEIR model with time-varying effective reproduction
number. Increasing the adaptation time t∗ to interventions increases
the time spent at a high reproduction number, and with it the num-
ber of cases. The temporary equilibrium for the faster adaptation of
t∗ = 10 days is s∗∞ = 0.956 and r∗∞ = 0.044 and for the slower adap-
tation of t∗ = 22 days is s∗∞ = 0.550 and r∗∞ = 0.450. Latent period
A = 2.5 days, infectious period C = 6.5 days, basic reproduction
number R0 = 4.5, effective reproduction number Rt = R0/6 = 0.75,
adaptation time t∗ = [10, 12, 14, 16, 18, 20, 22] days, and transition
time T = 15 days

of A = 2.5 days, an infectious period of C = 6.5 days,
a basic reproduction number of R0 = 4.5, a reproduction
number under public health interventions of Rt = 0.75, and
adaptation and transition times of t∗ = 20 days and T = 15
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Table 3 Prior distributions for time-varying effective reproduction
number R(t) of constant, hyperbolic tangent, andGaussian randomwalk
type

days. In all simulations, the effective reproduction number
R(t) transitions gradually from the initial basic reproduction
number R0 at the beginning of the outbreak to the effective
reproduction number Rt associated with the public health
interventions. The adaptation time t∗ marks the midpoint of
the transition and the transition time T is its duration. The
outbreak is more pronounced for larger basic reproduction
numbers R0 as we see in Fig. 8, for larger intervention related
reproduction numbers Rt as we see in Fig. 9, and for larger
adaptation times t∗ as we see in Fig. 10.

Constant, hyperbolic tangent, and random walk type
effective reproduction numbers. To illustrate the effect

of different time-varying effective reproduction numbers, we
compare three different methods: a constant effective repro-
duction number, a smoothly decaying effective reproduction
number of hyperbolic tangent type, and a daily varying effec-
tive reproduction number that follows a Gaussian random
walk. The constant reproduction number has one parameter
Rt = R0. The hyperbolic tangent type reproduction number,
Rt = R0 − 1

2 [ 1 + tanh ([ t − t∗ ]/T ) ][ R0 − Rt ], has four
parameters, the basic and effective reproduction numbers R0

and Rt , the adaptation time t∗, and the time delay �t . The
Gaussian random walk has three parameters, the drift μ, the
daily stepwidth τ = τ1/[ 1.0−s ], and the smoothing param-
eter s. Table 3 summarizes the prior distributions for all three
methods.

Figure 11 compares the constant, hyperbolic tangent, and
random walk type effective reproduction numbers for the
example of Austria. The three graphs illustrate the number
of reported cases as dots, the model fit as orange curves with
95%confidence interval, and the effective reproduction num-
bers as red curves with 95% confidence interval. Of all three
methods, the constant ansatz can fit the early exponential
increase of the COVID-19 outbreak, but not the later satu-
ration. The random walk type ansatz can fit both the early
exponential increase and the later saturation, but not with
a closed form expression. Only the hyperbolic tangent type
ansatz provides both a goodfit and a closed functional form to
compare the time lines of the outbreak in different countries
and make informed predictions.

Herd immunity. An important consequence of the basic
reproduction number R0 is the condition for herd immunity
[12]. Herd immunity occurs once the immune population,
in our case the recovered population R, is large enough to

Fig. 11 Time-varying effective reproduction number R(t). Com-
parison of constant, hyperbolic tangent, and random walk type ansatz.
The constant effective reproduction number predicts an exponential
increase in the number of cases that fits the initial but not for the later
stages of the COVID-19 outbreak, left. The hyperbolic tangent type
reproduction number predicts a smooth early increase and later satura-

tion of the number of cases, middle. The randomwalk type reproduction
number predicts a daily varying, non-smooth early increase and later
saturation of the number of cases, right. Dots represent reported cases;
orange curves illustrate fit with 95% confidence interval; red curves
shows effective reproduction number with 95% confidence interval;
here illustrated for the case of Austria
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protect susceptible individuals from infection [22]. We can
express herd immunity in terms of the recovered fraction r ,
or in terms of the absolute recovered population R,

r > 1 − 1/R0 or R > [ 1 − 1/R0 ] N . (23)

Importantly, upon relaxing public health interventions, the
condition for herd immunity is not R > 1 − 1/Rt . Herd
immunity is not a function of the reproduction number under
public health interventions Rt–which is usuallymuch smaller
than the basic reproduction number R0–but will depend
on the natural basic reproduction number R0 under uncon-
strained conditions.
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