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Abstract

Introduction: Pneumonia is the most common cause of mortality from infectious diseases, the second leading
cause of nosocomial infection, and the leading cause of mortality among hospitalized adults. To improve clinical
management, metabolomics has been increasingly applied to find specific metabolic biopatterns (profiling) for the
diagnosis and prognosis of various infectious diseases, including pneumonia.

Methods: One hundred fifty bacterial community-acquired pneumonia (CAP) patients whose plasma samples were
drawn within the first 24 h of hospital admission were enrolled in this study and separated into two age- and sex-
matched cohorts: non-survivors (died ≤ 90 days) and survivors (survived > 90 days). Three analytical tools, 1H-NMR
spectroscopy, GC-MS, and targeted DI-MS/MS, were used to prognosticate non-survivors from survivors by means
of metabolic profiles.

Results: We show that quantitative lipid profiling using DI-MS/MS can predict the 90-day mortality and in-hospital
mortality among patients with bacterial CAP compared to 1H-NMR- and GC-MS-based metabolomics. This study
showed that the decreased lysophosphatidylcholines and increased acylcarnitines are significantly associated with
increased mortality in bacterial CAP. Additionally, we found that decreased lysophosphatidylcholines and
phosphatidylcholines (> 36 carbons) and increased acylcarnitines may be used to predict the prognosis of in-
hospital mortality for bacterial CAP as well as the need for ICU admission and severity of bacterial CAP.

Discussion: This study demonstrates that lipid-based plasma metabolites can be used for the prognosis of 90-day
mortality among patients with bacterial CAP. Moreover, lipid profiling can be utilized to identify patients with
bacterial CAP who are at the highest risk of dying in hospital and who need ICU admission as well as the severity
assessment of CAP.
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Introduction
Community-acquired pneumonia (CAP) is of global
importance to medicine with less than 5% mortality
in outpatients and 5–10% and 25–30% mortality in
hospitalized patients and intensive care unit (ICU) pa-
tients, respectively. Mortality can reach 50% among
those who are in septic shock and require vasopres-
sors [1, 2]. CAP was reported as the seventh most
common cause of mortality in the USA with 50,000
deaths in 1.5 million hospitalized patients each year
[3–5]. The morbidity of CAP is between 0.3 and 0.5%
worldwide in adults [6]. Management of CAP patients
is often complicated due to poor quality evidence of
clinical data such as radiographic findings, difficulty
with accurate diagnosis, poor prognostic signs, and
non-specific therapeutic strategies that make the pre-
diction of patient outcomes uncertain [7]. There is a
global interest in predicting short-term (< 90 days)
and long-term (1 year) CAP mortality [2]. Current se-
verity and mortality assessment methods such as scor-
ing systems and biomarkers are not sensitive or
specific enough to predict mortality accurately. APAC
HE II/III, SAPS, SOFA, and PSI are commonly used
scoring systems for the prognosis and severity assess-
ment of CAP that can enhance the prediction of
prognosis in association with other current bio-
markers such as procalcitonin (PCT) and C-reactive
protein (CRP) [1]. Several scoring systems, such as
PSI, APACHE II, CURB-65, and SAPS [8], have been
used to categorize severity and predict short-term and
long-term mortality of CAP in association with two
putative biomarkers: PCT and CRP [9]. Metabolomics,
both non-targeted and targeted approaches, provide a
powerful tool to identify and quantify low molecular
weight compounds (metabolites) in biofluid samples
that contribute to normal and pathological pathways
as primary, intermediate, and/or end products of me-
tabolism [10, 11]. Metabolites, and their biopatterns,
are being used as biomarkers for the diagnosis, prog-
nosis, and prediction of mortality in critically ill
patients [12, 13]. In this retrospective observational
matched cohort study, we aimed to examine the
prediction or prognosis of 90-day mortality among
patients with bacterial CAP and identify those who
are at the highest risk of dying in hospital (in-hospital
mortality) using a multi-platform metabolomic
approach. We applied non-targeted proton nuclear
magnetic resonance (1H-NMR) spectroscopy, gas
chromatography mass spectrometry (GC-MS), and
targeted direct infusion tandem mass spectrometry
(DI-MS/MS) to analyze metabolomic biopatterns of
plasma samples for CAP patients collected within 24
h of admission to hospital for prognostication of
mortality.
Materials and methods
Study subjects
One thousand eight hundred ninety-five patients were
enrolled in the community-acquired Genetic and Inflam-
matory Markers of Sepsis (GenIMS) study, a retrospect-
ive and multicenter study (28 sites) in southwestern
Pennsylvania, Connecticut, southern Michigan, and
western Tennessee (the cohort was originally published
by Kellum et al. in 2007) [14]. In total, 150 CAP patients
from the original cohort were enrolled in this study
based on positive bacterial cultures and/or plasma con-
centration of PCT > 0.25 ηg/ml (strongly suggestive of
bacterial infection) during the first 24 h of admission to
hospital and radiographic evidence of pneumonia. Of
these, 75 were non-survivors who died ≤ 90 days after
admission and 75 were age-, sex-, and PCT level-
matched (as per GenIMS) individuals who survived CAP
infection > 90 days. More information about the enrolled
subjects and patient’s characteristics is available in
Table 1. Non-survivors that included 26 patients who
died before hospital discharge were defined as in-
hospital deaths. Table 1 also displays clinical features
and patients’ characteristics of the in-hospital death co-
hort compared to survivors. Also, 31 ICU-ventilated
controls without CAP were enrolled for comparison in
the diagnostic part of the study. These were individuals
admitted to the ICU that did not have pneumonia. They
were predominantly post-op cardiovascular surgery or
neurosurgery patients admitted for routine ventilation
post-op prior to extubation.

Study design
This retrospective, case-control study was designed
using two cohorts enrolled at the Universities of Calgary
and Pittsburgh. The plasma-based metabolomics of non-
survivor’s (≤ 90 days) and survivor’s (> 90 days) cohorts
were compared to each other to examine whether meta-
bolomics is associated with the prognosis of mortality of
bacterial CAP. To identify the patients who are at the
highest risk of dying inside the hospital using metabolo-
mics, 26 patients who died in-hospital were compared to
75 patients who survived (> 90 days) with bacterial CAP.
To determine whether metabolomics can be used for
diagnosis of bacterial CAP, 40 CAP patients admitted to
the ICU were compared to 30 no CAP ICU controls.

Metabolomic profiling
Three analytical platforms, 1H-NMR, GC-MS, and DI-
MS/MS, were applied to identify metabolites for 150
bacterial CAP patient plasma samples. Since a single
analytical technique is less able to identify and quantify a
broad range of metabolites from different chemical clas-
ses, we used three common analytical techniques to
cover a larger number of metabolites. Non-targeted one-



Table 1 Clinical characteristics of 150 bacterial CAP patients (non-survivors n = 75 vs. survivors n = 75) and in-hospital death cohort
(n = 26)

Variables Survivors (n = 75) Non-survivors (n = 75) In-hospital death (n = 26)

Age years (mean ± SD) 78.6 ± 8.8 78 ± 8.7 76.7 ± 10.5

Male/female 31/44 31/44 7/19

Weight (mean ± SD) 158 ± 36.8 147.5 ± 42.3 145.63 ± 50.4

Hospital LOS 7.17 ± 4.1 9.85 ± 7.4 11.1 ± 11.4Ŧ

ICU LOS 0.76 ± 2.3 1.97 ± 3.3 3.9 ± 4Ŧ

APACHE III 60.4 ± 15.2 73.7 ± 20.6* 82.9 ± 24.4Ŧ

PSI (day 0) 77.2 ± 5.7 97.8 ± 51.7* 121 ± 46.9

PSI (day 1) 112.4 ± 31.4 134.5 ± 38.7* 157.8 ± 41.7Ŧ

PSI (day 1 no age) 38.2 ± 26.9 60 ± 38* 84.0 ± 41.0Ŧ

Mechanical ventilationa 4 (5.3) 20 (26.6)* 15 (57.6)Ŧ

Noninvasive ventilationa 5 (6.6) 12 (16)* 3 (11.5)

Comorbiditiesa

Other respiratory diseases 25 (35) 33 (44) 9 (34)

Neoplastic diseases 4 (5) 7 (9) 3 (11)

Neurological diseases 10 (7) 17 (22)* 2 (8)

Aids 0 (0) 1 (1.3) 1 (4)

Sepsis 19 (32) 30 (47) 14 (53)Ŧ

Liver disease 0 (0) 1 (1.6) 1 (4)

CHF 19 (33) 15 (24) 6 (25)

Cerebrovascular disease 10 (5) 10 (6)* 1 (4)

Renal disease 3 (5.7) 7 (11) 3 (12)Ŧ

Altered mental status 6 (10.5) 11 (18)* 8 (33)Ŧ

Smoker 50 (66) 51 (68) 19 (73)

Alcoholism 22 (29) 16 (21) 5 (19)

Pregnancy 21 (16) 10 (13) 1 (4)

Clinical manifestationa

Lowest temperature (°C) 36.43 ± 0.58 36.46 ± 2.1 36.39 ± 2.5

Highest temperature (°C) 37.20 ± 0.68 37.27 ± 0.88 37.15 ± 0.81

Pulse ≥ 125/min 6 (8) 12 (16) 6 (23)

BUN ≥ 30mg/dl 12 (16) 27 (36)* 15 (57)Ŧ

Respiratory rate/min 9 (15) 17 (27) 9 (34)Ŧ

PO2 < 60mm/Hg 21 (36) 24 (44) 13 (50)

pH < 7.35 3 (4) 4 (6)* 4 (15)

Lowest systolic BP (mm/Hg) 118 ± 19 116 ± 24 115 ± 21

Highest systolic BP (mm/Hg) 146 ± 22 148 ± 25 149 ± 23

Highest creatinine (mg/dl) 1.27 ± 0.79 1.92 ± 1.59 1.95 ± 1.52

SD standard deviation, LOS length of stay, APACHE III Acute Physiology and Chronic Health Evaluation used as an ICU scoring system, PSI Pneumonia Severity
Index, CHF Congestive Heart Failure. aData is no. (%) of subjects, unless otherwise indicated; *significant difference between non-survivors and survivors;
Ŧsignificant difference between in-hospital death cases and survivors
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dimensional 1H-NMR spectroscopy was performed using
a 600-MHz Bruker Ultrashield Plus NMR spectrometer
(Bruker BioSpin Ltd., Canada) as previously described
[13]. Fifty-five metabolites including sugars, sugar alco-
hols, amino acids, and organic acids were quantified
using 1H-NMR spectroscopy. The 1H-NMR spectra were
profiled using ChenomX NMR Suite 7.1 software
(ChenomX Inc., Edmonton, Alberta, Canada) [15]. We
used an Agilent chromatograph 7890A (Agilent Tech-
nologies, USA) coupled with a Waters GCT mass
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spectrometer to acquire GC-TOF-MS spectra. GC-MS
was performed as previously described [13]. Com-
pound detection was performed using metabolite de-
tector software [16]. One hundred eighty-five features
were detected by the GC-MS platform which included
85 structurally known and 100 unknown compounds
including sugar alcohols, alpha-keto acids, and organic
acids. Quantitative DI-MS/MS was performed using
an ABI 4000 Q-Trap tandem mass spectrometry
instrument (Applied Biosystems/MDS Analytical
Technologies, Foster City, CA) equipped with a solv-
ent delivery system. The Absolute IDQTM p150 kit
(BIOCRATES Life Sciences AG, Innsbruck, Austria)
was used for the targeted quantification consisting of
150 known metabolites, including 88 glycerol-
phospholipids [phosphatidylcholines (PCs), aa=diacyl,
ae=acyl-alkyl, lysophosphatidylcholines (lysoPCs)], 33
acylcarnitines [AC, (Cx: y)], 15 sphingolipids (SM x:
y), 14 amino acids, and one sugar. The MetIQ™ soft-
ware package (BIOCRATES Life Sciences AG, Inns-
bruck, Austria) was applied to quantify metabolites as
described by the manufacturer.

Data analysis
Principal component analysis (PCA) was performed to
observe intrinsic differences between samples and poten-
tial cohort aggregation, trends, similarities, and outliers
among the two cohorts. Supervised orthogonal partial
least squares discriminant analysis (OPLS-DA) was ap-
plied to predict mortality by discrimination of two co-
horts based on the most differentiating metabolites. The
OPLS-DA models were verified by three performance
parameters R2Y, Q2Y, and p value which are obtained by
cross-validation (CV) method. These indicators are used
for assessing reliability and measuring the significance
level of a model. CV is based on the leave-one-out
cross-validation (LOOCV) that is used to validate the
models. It is also known as internal cross-validation or
internal validation. R2Y and Q2Y indicate goodness of fit
and goodness of prediction, respectively. Although the
Q2 > 0 is considered to have predictive relevance for the
prediction model [17], a value of ≥ 0.3 was defined as
having prediction value for the models based on the hu-
man samples [18]. A permutation test was applied for
the validation and prevention of overfitting of the OPLS-
DA models based on 200 random permutations. For the
OPLS-DA models, variable important in projection
(VIP) analysis was performed to select the most differen-
tiating metabolites/features for the separation of the two
groups in a weighted fashion. Coefficient plots were also
created to observe metabolites/features and their relative
correlations between the two cohorts with metabolites
exhibiting increased or decreased concentration in each
group. Partial least square regression (PLSR) was applied
as a linear multivariate approach to finding the relation-
ship of the most differentiating metabolites and pre-
diction of mortality. Scoring systems such as APAC
HE III and PSI were also used for prediction of mor-
tality [19]. As part of the LOOCV internal validation,
a misclassification analysis on the predicting group
(randomly selected ¼ of samples) was carried out to
measure sensitivity, specificity, and AUROC using
SIMCA-P v15.0.2.
Univariate statistical analyses were applied as a

complementary statistical analysis to enhance the
amount of information and maximize the extraction
of relevant information from the metabolomic study
datasets. Univariate strategies provide a direct meas-
ure of significance, the p value and false discovery
rate (FDR), and non-parametric tests that are useful
in metabolomics [20]. The T test and Wilkinson-
Whitney test were used to assess the significance of
the separation between non-survivors and survivors
based on variables with or without normal distribu-
tion, respectively.
Results
Patient characteristics
Table 1 shows the demographics, clinical information,
and comorbidities of the two CAP groups (75 non-
survivors vs. 75 survivors). The mean (± SD) age was
78.6 (± 8.8) and 78.6 (± 8.8) for the non-survivor and
survivor groups, respectively. Thirty-one males and 44
females were included in both the survivor and non-
survivor cohorts (Table 1). As expected, there were dif-
ferences in hospital and ICU lengths of stay (LOS),
APACHE III, and PSI scores in day 0 (day of admission)
and day 1 between non-survivors and survivors. Table 1
also shows the demographic and clinical characteristics
of the in-hospital death patients vs. survivors. There are
statistically significant differences between the in-
hospital deaths and survivors for hospital LOS and ICU
LOS, APACHE III score, and PSI scores for day 1 and
mechanical ventilation. Moreover, we observed statisti-
cally significant differences between the two groups in
the presence of the following comorbidities: sepsis, renal
diseases, and altered mental status. Using samples on
the first day, 40 patients had a positive culture with
known bacterial causes, equally distributed among non-
survivors (n = 20) and survivors (n = 20). The bacterial
causes consisted of 13 different species Streptococcus
pneumonia, Staphylococcus aureus, Escherichia coli,
Pseudomonas aeruginosa, Acinetobacter baunmannii,
Klebsiella pneumonia, Moraxella catarrhalis, Serratia
marcescens, Haemophilus influenzae, unspecified Hae-
mophilus, Enterobacter cloacae, Enterobacter aerogenes,
and Listeria monocytogenes.
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Analysis of metabolite patterns showed that lipid
profiling can predict mortality among patients with
bacterial CAP better than other metabolites
Statistical analysis showed metabolite profiles obtained
by quantitative DI-MS/MS were more informative for
the prognosis of mortality among patients with bacterial
CAP when compared to the 1H-NMR and GC-MS meta-
bolomic platforms (data not shown). The DI-MS/MS
metabolite dataset was substantially more predictive, sig-
nificant, sensitive, and specific.
Table S10 summarizes several prediction model pa-

rameters of the three analytical platforms used in this
study, showing the advantage of DI-MS/MS and the sig-
nificance of lipid metabolites. Moreover, a good agree-
ment was found between univariate and multivariate
data analysis on the DI-MS/MS dataset by extracting a
more specific and consistent pattern for lipid alterations
to separate non-survivors from survivors that are dis-
cussed here.
Based on the DI-MS/MS data compared to the 1H-

NMR and the GC-MS data, the role of lipid profiling ob-
tained by DI-MS/MS on prognosis of bacterial CAP will
be primarily presented in this manuscript.

Can we prognosticate 90-day mortality of bacterial CAP
using lipid profiling?
PCA analysis showed a clustering between non-survivors
(≤ 90 days) and survivors (> 90 days) with an R2X = 0.554
based on the lipid profiling (Fig. 1). The differences
amounted to 95% of the total variation in the dataset,
Fig. 1 PCA analysis of DI-MS/MS day 1 plasma metabolites
comparing non-survivors (n = 75) to survivors (n = 75) of bacterial
CAP patients. The cumulative R2X = 0.554 showed a high variability
between two cohorts
indicating that the metabolomic characteristics of the
two groups were different.
The mortality among bacterial CAP patients was pre-

dicted by separation of non-survivors (n = 75) from sur-
vivors (n = 75) using the most differentiating metabolites
(VIP > 1.0) in an OPLS-DA analysis (Fig. 2). The Q2Y =
0.299 value for lipid dataset shows a predictive capability
of metabolites to separate 90-day non-survivors from
survivors. This shows a mortality prognostic value of
metabolomics based on plasma samples drawn on the
1st day of admission to the hospital. In total, 20 metabo-
lites contributed to the prognosis of 90-day mortality in
bacterial CAP (Table 2). This statistical model to separ-
ate two cohorts had 82% sensitivity, 91% specificity, and
AUROC of 0.91. The relative concentration of metabo-
lites and their changes between survivors and non-
survivors have been illustrated by the coefficient plot
(Fig. S1). It has been observed that AC, lysoPC, and PC
compounds are strongly correlated to each other and
contribute in the separation of the two cohorts (Fig. 3).
Similar to MVA, a UVA approach using an unpaired

t test on the most differentiating metabolites demon-
strated 32 metabolites that were significantly (FDR
q < 0.05) different between non-survivors and survivors
(Fig. 4 and Table S1).
Although the Q2 to predict mortality using an MVA

approach was not too high (0.299), the prediction model
possessed a highly significance p value and was validated
with the use of permutation test (200 times) (Fig. S2),
strongly suggesting the data are not overfit. Moreover,
these findings become more predictive when unpaired
t test analysis is performed, a completely different ana-
lytic approach than MVA, showing similar trends in the
changes of the most important metabolites; this is dis-
cussed in the following section. PLS-regression also
showed a very strong relation (R2 = 0.95) between the
most differentiating metabolites (n = 20) obtained by the
prediction model and separation of non-survivors from
survivors (Fig. S3). This strong relation can prove the
value of lipid profiling to predict mortality using plasma
samples of the 1st day of admission.

Do lysophosphatidylcholines (lysoPCs) and acylcarnitines
(ACs) act as biomarkers for prognosis of 90-day mortality
of CAP pneumonia?
Metabolic profile using multi- and univariate analyses,
two different approaches, showed a decrease of all mea-
sured lysoPCs in non-survivors. Using multivariate ana-
lysis, we observed a decrease in 3 lysoPCs, C18:0, C18:1,
and C16:1, out of the 20 most differentiating metabolites
in the prediction model (Table 2). The T test analysis
(Table S1) also shows 8 lysoPCs including lysoPC C16:0,
C16:1, C17:0, C18:0, C18:1, C18:2, C20:3, and C20:4
which were significantly (FDR < 0.05) reduced in non-



Fig. 2 OPLS-DA analysis of DI-MS/MS day 1 plasma metabolites comparing non-survivors (n = 75) to survivors (n = 75) of bacterial CAP patients.
This shows a predictable model with a high statistical significance using VIP > 1.0 including 20 metabolites (R2Y = 0.331,
Q2Y = 0.299, p = 1.15 × 10−8)

Table 2 DI-MS/MS based on 20 important metabolites (VIP
> 1.0) that contributed to separate 90-day non-survivors from
survivors

Quantified metabolites by DI-MS/MS

Increased in non-survivors Decreased in non-
survivors

1 C5-DC (C6-OH) (glutaryl-L-carnitine) Tryptophan

2 C3-DC (C4-OH) (malonyl carnitine) LysoPC a C18:0

3 C5-M-DC (methylglutaryl-L-carnitine) LysoPC a C18:1

4 C5:1 (tigyl-L-carnitine) PC aa C38:5

5 Glycine PC aa C38:4

6 C9 (lysophophatidylethanolamine,
nonayl-L-carnitine)

LysoPC a C16:1

7 PC ae C40:2 (glycerol 3-phosphocholine)

8 PC aa C42:1 (lecithin, PC)

9 PC aa C40:3

10 PC ae C36:1

11 PC ae C38:1 (lecithin,
phosphatidylcholine)

12 PC aa C40:1 (lecithin, PC)

13 PC aa C42:2 (lecithin, PC)

14 PC aa C40:2

This shows the increased and decreased metabolites in non-survivors vs.
survivors. The order of metabolites reflects the relative amount of change
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survivors. Moreover, all AC compounds involved in the
discrimination were significantly increased in non-
survivors compared to survivors. We observed an in-
creased level of the most differentiating AC compounds
(n = 5) including C5-DC, C3-DC, C5-M-DC, C5:1, and
C9, observed by multivariate analysis and by univariate
analysis with a significant increase (FDR < 0.05) in ACs
(including C3-DC (C4-OH), C5-DC (C6-OH), C5-M-
DC, C5:1, C10:2, C8, C2, C7-DC, C4, and C8:1). Multi-
variate loading plot and heatmap analysis (Fig. 3) show
that AC and PC compounds are inter-correlated.
These findings are validated by the fact that the most

differentiating metabolites obtained by multi- and uni-
variate analysis, two different approaches, change in the
same direction between non-survivors and survivors ex-
cept for PC ae C40:0 that changed in the opposite direc-
tion between the survivor and non-survivor cohorts.

Can we predict in-hospital mortality among patients with
bacterial CAP using lipid profiling?
We further investigated the use of metabolomics in
patients with bacterial CAP to determine who are at the
highest risk of dying in the hospital. Plasma-based lipid
profiling of patients who died before hospital dis-
charge (in-hospital mortality) was compared to survi-
vors (> 90 days).



Fig. 3 Loading plot shows that increased acylcarnitine and decreased lysophosphatidylcholine compounds in non-survivors (≤ 90-day mortality)
compare to survivors (> 90-day mortality)
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Table 1 shows the information on 26 patients who
died before hospital discharge (in-hospital mortality) as
a subgroup of non-survivors. The metabolomic results
showed that in-hospital mortality can be predicted using
metabolite alterations of patients who died in-hospital
(n = 26) compared to survivors (> 90 days, n = 75). The
in-hospital death cohort was differentiated from the sur-
vivor cohort with “relatively good predictability” (Q2Y =
0.433) based on the lipid profiles obtained by the DI-
MS/MS platform (Fig. 5). Twenty-one lipids and 1
amino acid (phenylalanine) contributed to the separation
of two cohorts. This discrimination model was highly
sensitive (96%) and specific (90%) with a high AUROC
of 0.96. The coefficient plot provided the relative con-
centration of selected metabolites in the discrimination
of both cohorts (Fig. S4). The unpaired t test analysis re-
vealed that both cohorts are significantly different in
metabolic profile with 65 metabolites having an FDR <
0.05 comparing in-hospital deaths and survivors (Table
S2). A heatmap clearly illustrated the difference between
the two cohorts based on the most differentiating lipids
and fatty acids (Fig. 6). A very strong correlation (R2 =
0.94) was found between the most differentiating metab-
olites and separation of in-hospital deaths from survivors
using PLS-regression analysis (Fig. S6).

Can lysophosphatidylcholines, phosphatidylcholines, and
acylcarnitines be used as biomarkers for predicting in-
hospital mortality of bacterial CAP?
Both MVA and UVA analyses demonstrated a consistent
pattern of a significant decrease of lysoPCs in patients
who died in-hospital (in-hospital mortality) when com-
pared to survivors (Fig. 7). Coefficient plot (Fig. S4) and
t test analysis (Table S2) all show lysoPCs are differenti-
ating compounds including lysoPC C16:0, C16:1, C17:0,
C18:0, 18:1, C18:2, C20:3, and C20:4 that all decrease in
the in-hospital mortality cohort compared to survivors.
The comparison also revealed increased short-chain AC
compounds (C3, C3-DC, C4, C5, C5:1, C5:1-DC, C5-M,
and C9) as well as decreased medium- and long-chain
ACs (C14:1, C14:2, C16 C18, and C18:1) in the in-
hospital death cohort vs. survivors.
The univariate t test analysis showed that the most dif-

ferentiating PC compounds were markedly decreased in



Fig. 4 Metabolite concentration plot comparing non-survivor vs. survivor of bacterial CAP. The unpaired t test shows 31 metabolites with
significant changes (FDR < 0.05) between 90-day non-survivors and survivors using DI-MS/MS. Table S2 shows all metabolites with significant p
value (< 0.05)
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the in-hospital death cohort versus survivor (Table S2).
Nonetheless, a multivariate approach revealed PC com-
pounds with more than 36 carbons were significantly
decreased in the in-hospital mortality cohort vs. survivor
cohort. PCaaC38:0, PCaeC38:6, PCaa40:6, PCaa38:6,
PCae40:0, PCae38:0, PCaaC38:4, PCaeC38:4, and
PCaaC38 were decreased in the in-hospital death cohort.
Figure 7 also shows the correlation and integration of

metabolites belonging to each fatty acid class in the pre-
diction of in-hospital mortality. Although in-hospital
deaths showed higher APACHE III score, hospital LOS,
ICU LOS, and PSI scores compared to survivors, it was
demonstrated that lysoPCs, PCs, and ACs could predict
in-hospital mortality on the 1st day of hospital admis-
sion through plasma-based metabolomics using the DI-
MS/MS platform.
In fact, current data show the high potency of quanti-

tative lipid profiling for the prognosis of mortality in
CAP whether with or without clinical features.
Strong relationships were found between lipid profiling
and phenotypic traits: APACHE III and PSI
Multivariate regression (PLS regression) analysis re-
vealed a strong correlation (R2 > 0.9) between the most
differentiating lipid metabolites and two phenotypic
traits APACHE III at day 0 and PSI at days 0 and 1 (Fig.
S8 A-D). Although APACHE III and PSI are significantly
different between non-survivors and survivors, logistic
regression analysis showed they have a lower correlation
with separation of non-survivors and survivors, lacking
predictability compared to lipid metabolites (Table S3).

Can we predict the need for ICU admission using
lysophosphatidylcholines and acylcarnitines?
Our data showed that 40 out of 150 patients with bac-
terial CAP were admitted to ICU with the length of stay
from 1 to 14 days. This data also revealed that 36% (n =
27/75) and 18.7% (n = 14/75) of non-survivors and survi-
vors were admitted to the ICU, respectively. ICU



Fig. 5 DI-MS/MS-based OPLS-DA model to separate in-hospital deaths from survivors using 22 metabolites with VIP > 1.0. R2Y = 0.501,
Q2Y = 0.433, p = 9.91 × 10−11
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admission was 69.2% among in-hospital deaths. Lipid pro-
filing was analyzed among 40 patients who were admitted
to ICU vs. 40 age- and sex-matched patients without ICU
admission. Table S11 shows the analysis of patients’ char-
acteristics that required admission to the ICU versus those
who did not need ICU admission. As it was expected, the
ICU LOS, mechanical ventilation, and noninvasive ventila-
tion frequencies among non-ICU-admitted cohorts were
zero, thus different than non-ICU patients. The only other
significantly different variable was hospital LOS between
ICU- and non-ICU-admitted cohorts.
The results demonstrated that 22 metabolites signifi-

cantly (p < 0.05) changed between ICU and non-ICU pa-
tients (Table S6). Interestingly, we observed decreased
lysoPCs and increased AC compounds in ICU patients
compared to non-ICU patients. This result highlights a
potential role of lysoPCs and ACs as biomarkers to dis-
tinguish patients who need ICU admission for the bac-
terial CAP. Remarkably, these compounds showed a
similar significant change to prognosticate 90-day and
in-hospital mortality.
Are acylcarnitines, lysophosphatidylcholines, and
phosphatidylcholines associated with pneumonia severity?
We further investigated the association of lipid profiles
with pneumonia severity using the PSI score on the day of
admission. Based on the five risk classes of PSI score, the
bacterial CAP cohort was divided into less severe (PSI
grades 1–3) and more severe (PSI grades 4–5) groups. Re-
sults demonstrated that 37 metabolites were significantly
changed between the two groups including 12 metabolites
with a FDR < 0.05 (Table S7). This analysis showed in-
creased ACs and decreased lysoPCs and PCs among pa-
tients with more severe bacterial pneumonia compared to
patients with less severe disease. This difference has
clearly been reflected in heatmap analysis (Fig. S11). This
analysis revealed that ACs and lysoPCs can be used as pre-
dictor biomarkers for determining the severity of CAP.

Diagnosis of ICU-admitted CAP pneumonia from ICU-
ventilated control cohort
To demonstrate the value of plasma-based metabolomics
for the diagnosis of CAP pneumonia from ICU-



Fig. 6 Heatmap analysis shows a separation between in-hospital deaths and survivors using the most differentiating metabolites by DI-MS/MS
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ventilated control, 40 out of 150 bacterial CAP patients
with ICU admission history were compared to 30 ICU-
ventilated controls. Table S4 lists the patient’s character-
istics and hospital and ICU LOS. Both 1H-NMR and
GC-MS data were applied to metabolomically differenti-
ate ICU-admitted bacterial CAP from ICU-ventilated
control. The results showed a very distinctive metabolic
signature between the two cohorts. OPLS-DA analyses
revealed 55 metabolites and 114 features obtained by
1H-NMR and GC-MS, respectively, that contributed to
the separation of the two cohorts (Fig. S9 and S10).
The predictability of discrimination of bacterial CAP



Fig. 7 Loading plot shows correlation of metabolites belonging to different lipid classes and how the metabolites can be used to separate
in-hospital death from survivors. Acylcarnitines increase while phosphatidylcholine (> 36 carbons) and lysophosphatidylcholines decrease in
the in-hospital mortality cohort compared to the survivor cohort
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from ICU control was high for NMR (Q2Y = 0.777)
and GC-MS (Q2Y = 0.852) methods with very good
statistically significant differences between two co-
horts with high sensitivity, specificity, and AUROC
(Table S5). The T test analysis revealed 27 metabo-
lites and 46 known features significantly changed
(FDR q < 0.05) between bacterial CAP when compared
to ICU-ventilated controls using 1H-NMR and GC-
MS, respectively (Table S8 and S9).

Discussion
The present study was designed to examine the role that
metabolomics might play in the prognosis of mortality
among patients with bacterial CAP. In a comprehensive
analysis, the results of this study showed that lipid com-
pounds offer important insights into the prognosis of
90-day mortality of bacterial CAP on the 1st day of ad-
mission to the hospital. Moreover, we also demonstrated
that lipid profiling is capable to predict in-hospital mor-
tality from survivors (> 90 days) using a plasma sample
drawn on the 1st day of admission to the hospital. Our
result provides important insight into the prediction of
mortality in patients who are at the highest risk of dying
in hospital. In a targeted approach using DI-MS/MS,
lysoPCs and ACs were prognostic metabolites for the
mortality of bacterial CAP when compared to survivors.
Correspondingly, decreased lysoPCs, increased ACs, and
decreased PCs significantly changed yielding a finger-
print to prognosticate in-hospital mortality. Besides the
prognosis of mortality of bacterial CAP, we also showed
that targeted lipid profiling using a DI-MS/MS platform
could be used to predict the need for ICU admission
and assessment of severity for the patients with bacterial
CAP. Interestingly, decreased lysoPCs, increased ACs,
and decreased PCs were associated with severity and
ICU admission requirement.
Power analysis using multivariate data analysis (using

R-based analysis) [21] showed that using the most
differentiating metabolites, 24 samples in each group
could provide a significant difference between cohorts
(FDR < 0.05) with a power β = 0.8 for the study. Thus,
the enrollment of 75 samples in each group indicates the
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study should have sufficient power to detect a difference
between groups with 80% power.
To our knowledge, this is the first study to identify

lipids and related metabolites as potential predictors of
in-hospital mortality in CAP patients as well as predic-
tion of ICU admission and assessing CAP severity. Me-
tabolite biomarkers can be used independently or to
supplement other approaches like genomics and proteo-
mics biomarkers or even clinical scoring systems in pre-
cision medicine. Lipids are very diverse biomolecules
comprising a range of different classes including ACs,
glycerophospholipids, SMs, sterol lipids, and glyceroli-
pids. Lipids can play important roles in many biological
and physiological functions such as structural compo-
nents of cell membranes, intermediates in signaling
pathways, homeostasis, and immunity [22]. Once these
studies are externally validated, these findings have a
promising capability of being translated into clinical
practice. Primarily, DI-MS/MS can be considered as a
shotgun technique to quantify limited number or hun-
dreds of metabolites per sample in a very short period of
time (hours). Using the quantitative and targeted ap-
proaches shown in this study will allow one to develop a
new prognostic tool for bacterial CAP investigations and
prognostication. In addition, this study showed that the
semi-quantitative and untargeted GC-MS and NMR ana-
lytical platforms appear to be not efficient enough at this
time to be prognostically helpful for bacterial CAP. Im-
portantly, this study showed that lipids are important
metabolites for the prognosis of 90-day mortality and in-
hospital mortality while other metabolites quantified in
this study such organic acids, amino acids, amines,
sugars, and sugar alcohols were not as predictive of mor-
tality in bacterial CAP. Specifically, lipid compounds in-
cluding saturated and unsaturated fatty acids are in close
relationship with mechanisms of inflammation, the cen-
tral essential mechanisms of the host response to bacter-
ial infections such as seen in bacterial CAP [23]. They
are active substances and important inflammatory medi-
ators in both pro-inflammatory and anti-inflammatory
mechanisms [24, 25]. On the other hand, 90% of surfac-
tant in the lung is formed by lipids and PCs make up
more than 80% of these lipids. Pneumonia may cause
surfactant changes leading to an alteration in lipid me-
tabolism [26]. The low concentration of lysoPCs in non-
survivors may be caused by the consumption of lysoPCs
in the early stages of disease or by conversion of lysoPCs
by phospholipase A due to increased secretion of auto-
toxins [27]. PCs are also major components of the lipid
bilayers of cell membranes as well as lung surfactant and
both are important in lung development [28]. Alveolar
type II cells are responsible for the synthesis and accu-
mulation of PCs in the lung [29]. It is assumed that
damage to the cell membrane, alveolar cell integrity, and
surfactant dysfunction due to inflammatory illness such
as pneumonia is associated with increased PCs in the
blood that could be correlated with the severity and
mortality of CAP. Indeed, several studies have shown
changes of lipid concentration in the blood after acute
lung injury due to sepsis and bacterial and viral infec-
tions [30, 31]. All of the former strongly suggests that
lipids may be interesting targets as putative biomarkers
for the prognosis of mortality of CAP in clinical practice.
The current findings are consistent with those reports

showing the importance of fatty acids and lipids in the
diagnosis and prognosis of CAP and other respiratory
complications such as ARDS and septic shock. For ex-
ample, low- and high-density lipoprotein cholesterol
(LDL-C and HDL-C) were found to be independent pre-
dictors for bacterial CAP adverse outcomes [22]. In
addition, the alterations of some fatty acids such as doc-
osahexaenoic acid, eicosapentaenoic acid, and oleic acid
were associated with increased and decreased risk of
CAP in women and men [32, 33].
Several studies suggest that an increase of AC com-

pounds occurs in patients with CAP. Overall, previous
studies have shown increased short-, medium-, and
long-chain ACs in CAP patients compared to non-CAP
patients [34] and in patients with other types of infec-
tions (intraabdominal infections, acute pyelonephritis,
and primary gram-negative bacteremia) [35, 36]. In
terms of sepsis, ACs were high in bacteremic patients
that did not survive sepsis [37] and in patients with sep-
sis compared to non-infectious SIRS [38]. These studies
show that ACs could be specific biomarkers for CAP
and might be associated with disease severity as these
compounds increase in non-survivors. In the current
study, we also showed increased ACs in CAP non-
survivors vs. survivors.
Decreased PC concentrations in blood have been re-

ported in some invasive bacterial infectious diseases such
as sepsis, CAP, and bacteremia [39]. It has been reported
that there is a decreased level of PCs and phos-
phatidylinositol (PI) in BALF and a significant decrease
in phosphatidylglycerol (PG) and SMs in severe pneu-
monia, and in ARDS associated with pneumonia com-
pared to other less severe pneumonia patients and
controls [40]. There is also a report of decreased level of
PCaaC34:3 in CAP patients compared to different types
of infections [41]. Glycerophospholipids such as lysoPCs,
lysoPEs, and lysoPIs are other possible biomarkers for
the diagnosis and prognosis of CAP reported in several
studies, which are briefly discussed below. A decrease of
lysoPEs and lysoPCs was found in CAP patients com-
pared to non-CAP patients. LysoPEs were found de-
creased in fatal cases of CAP compared to non-fatal
cases [36] and also were found increased in survivors of
CAP compared to other types of infection [41].
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Specifically, lysoPCs were significantly lower in CAP
non-survivors than in survivors, introducing these as
potential prognostic markers for CAP patients who
require hospitalization [35].
Although similar to ACs, lysoPCs have been shown to

be increased in patients with CAP compared to patients
with other types of infection [41]. Nonetheless, the de-
creased lysoPCs (LPCs 16:0, 16:1, and 18:0) were associ-
ated with severe septic shock non-survivors at day 1 and
day 7 in 28-day and 90-day mortality studies [34]. At the
clinical phenotypic level, lower concentrations of
lysoPCs were in inverse correlation with PSI and CURB
scores in CAP non-survivors on day 1 of admission to
hospital and non-survivors admitted to the ICU with se-
vere sepsis or septic shock in 28-day mortality studies
[35, 42]. The data showed glycerophospholipids, particu-
larly lysoPCs, appear to be specific biomarkers for bac-
terial CAP and are probably associated with the severity
of CAP as they decrease in non-survivors versus survi-
vors. These results also support our current findings
showing lower levels of lysoPCs in CAP non-survivors
vs. survivors. Decreased lysoPCs are associated with the
acute stage of CAP that can increase over time during
treatment [27]. The data highlight the role of glycero-
phospholipids (lysoPCs) in respiratory diseases as
lysoPCs are major lung surfactant phospholipids which
are potentially involved in cellular inflammation and
proliferation mechanism association with atherosclerosis
and inflammatory disorders [38]. LysoPCs are the main
degradation product of phospholipids when they are oxi-
dized during apoptosis and lead to either harmless or
highly toxic phospholipids [43, 44].
Regardless of the role of lipid profiling for the diagno-

sis and prognosis of bacterial CAP, profiling of other
metabolites has been widely applied to diagnose and dif-
ferentiate respiratory disorders including CAP. Plasma-
based metabolomics of 240 critically ill patients (SIRS,
sepsis, sepsis-induced ARDS) revealed the application of
metabolomic profiling for the prognosis of 28-day mor-
tality using GC-MS and LC-MS techniques. Amino
acids, carbohydrates, and nucleotides were among the
most differentiating metabolites to predict the mortality
[45]. In a study of only 30 CAP patients from the
GenIMS study, the same study population of the current
study, UHPLC-MS/MS- and GC-MS-based metabolo-
mics showed a contribution of 423 metabolites to
separate survivor from non-survivor cohorts. Of these,
56 metabolites were selected based on their lower false
discovery rate (q < 0.1) which showed the biggest
differences between the two cohorts [46]. Also, in-
creased phytosphingosine, sphinganine, creatine, lac-
tate, and methoxyacetic acid and decreased 4-
hydroxybenzensulfonic acid, dehydroepiandrosterone
sulfate (DHEA-S), and L-arginine were capable of
differentiating patients with severe CAP from a non-
severe cohort [47]. The high sensitivity of metabolites
to intrinsic stimuli in association with high through-
put revealed 11 volatile organic compounds (VOCs)
in exhaled breath samples which could discriminate
pneumonia patients from controls (patients without
pneumonia). Moreover, 52 VOCs were significantly
lower in patients with positive cultures compared to
those with negative culture [48].
Here we show that metabolites, particularly lipids,

could be more reflective biomarkers for prognosis of
mortality of bacterial CAP rather than other historic bio-
markers such as proteins and cytokines. Abnormally
expressed plasma cytokines, chemokines, and PCT and
CRP can be used for the diagnosis and outcome predic-
tion of CAP; however, they may not be predictive
enough for the prognosis of CAP outcomes especially
early in the disease process [6]. Also, lipid profiling par-
ticularly ACs and lysoPCs may be considered as further
potential biomarker to assess patients who need ICU ad-
mission and to assess pneumonia severity. In addition,
the most common severity scoring systems do not have
high enough AUROCs to be capable of predicting 30-
day mortality in CAP [8].
PCs and lysoPCs are the most abundant glyceropho-

spholipids and are major components of all cell mem-
branes and pulmonary surfactant [49], and moreover,
PCs are the most abundant phospholipids contributing
to ATP synthesis and multiple critical mitochondrial
functions such as apoptosis, autophagy, and mitochon-
drial electron transport chain reaction [50]. Importantly,
the decrease of PCs and lysoPCs could reflect a loss of
alveolar epithelial cells and their functions.
The strength of the current study is reflected by the

comprehensive metabolomic approach that shows the
potential application of lipid profiling for the prognosis
of 90-day mortality and in-hospital mortality based on
samples from the 1st day of admission to hospital using
highly specific and significant predictive models. Al-
though the prediction score (Q2 = 0.298) may not be
high for the prognosis of 90-day mortality in this study,
the intercorrelation of lipid compounds from the same
subclass (i.e., lysoPCs, SMs, PCs, and ACs) and similarly
changing trends of lipid metabolites enhances the
predicting power of lipid profiling for the prognosis of
mortality. Additionally, using both multivariate and uni-
variate data analysis, two different approaches, showed
the same changing trends among lipids, which
strengthens the probability of the prediction value of
lipids in bacterial CAP.
Limitations of this study include a relatively small

sample size especially since there is considerable hetero-
geneity of the bacterial CAP cohorts due to comorbidi-
ties such as sepsis, CHF, and neurological disorders
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(Table 1) and the heterogeneity within complexity and
severity of bacterial CAP can affect the prediction power.
In addition, the prediction power for the prognosis of
short-term outcome may not be as strong in retrospect-
ive case-control studies when compared to prospective
studies. Adding to the variation of the study, sampling
has been done in more than 24 centers (in this multicen-
ter study population). Sample handling in multicenter
studies could be one of the major sources of variation
among samples impacting metabolomic profiling and
therefore prediction accuracy. Nonetheless, we believe
that the multicenter sampling, in particular, the geo-
graphical distribution of the current study population
might be a potential strength for the validity of progno-
sis of mortality in which samples represent the different
populations of north, northwest, and central USA. Valid-
ation of this study using lipid-based metabolomic deter-
mination is required in further analyses.

Conclusion
Targeted lipid profiling using a relatively simple DI-MS/
MS method can be used for the prognosis of 90-day
mortality and in-hospital mortality and can help deter-
mine the need for ICU admission and help assess sever-
ity among patients with bacterial CAP in a clinical
setting. This study requires validation using an inde-
pendent cohort of patients. We believe that lipid meta-
bolomics can enhance current prognostic tests and can
be a useful addition to biomarkers such as inflammatory
cytokines, PCT, CRP, and severity scoring systems to
predict outcomes in CAP patients admitted to the
hospital.
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Additional file 1: Figure S1. Coefficient plot shows a relative
concentration of 20 metabolites involve in the discrimination of non-
survivors from survivors by DI-MS/MS. Table S1. Unpaired t-tests show
32 metabolites with significant changes [(FDR < 0.05), highlighted in blue]
between in-hospital deaths and survivors detected in plasma using DI-
MS/MS. Figure S2. Permutation test (200 times) of OPLS-DA model of
metabolites in plasma obtained by DI-MS/MS, to validate the predictabil-
ity of the model to separate survivors (n = 75) from non-survivors (n = 75).
The test shows the prediction is valid. Figure S3. PLS-regression shows a
very strong relationship between the most differentiating metabolites
(n = 20) in the separation of survivors and non-survivors in plasma de-
tected by DI-MS/MS. Figure S4. Coefficient plot shows the relative con-
centration of increased and decreased metabolites in the in-hospital
mortality versus survivors (> 90 days) based on the DI-MS/MS data. Table
S2. Unpaired t-test shows 65 metabolites significantly changed [(FDR <
0.05, highlighted in blue) between in-hospital deaths and survivors (> 90
days) detected by DI-MS/MS of plasma. Figure S6, PLS-regression ana-
lysis shows a very strong correlation between most differentiating metab-
olites separating survivors from in-hospital deaths (using the most
differentiating metabolites, n = 22) detected by DI-MS/MS of plasma. Fig-
ure S7. Permutation test (200 times) to validate the predictability of the
model to separate in hospital deaths (n = 26) from survivors (n = 75). The
test shows the OPLS-DA prediction is valid. Figure S8. Partial least square
regression (PLSR) analysis shows that the most differentiating metabolites
obtained by DI-MS/MS are in strong relationship with APACHE III and PSI
scores, showing metabolites are highly correlated with paraclinical fea-
tures. A: APACHE III, B: PSI at day 0, C: PSI at day 1, and: PSI no Age. Table
S3. Logistic regression of APACHE III and PSI to predict mortality. This
table shows that severity scoring systems (APACHE III and PSI) are not as
good as metabolites biomarkers for the prediction of mortality in these
cohorts because they have lower sensitivity, specificity, AUROC, p values
and regression compared to metabolomics lipid profiling. Table S4.
Characteristics of bacterial CAP ICU patients vs. ICU ventilated controls. ŧ
APACHE III, ŧ ŧ APACHE II. Figure S9. OPLS-DA of NMR metabolites show
a very predictable model to separate the bacterial CAP ICU patients (n =
41) from ICU ventilated control (n = 31) using 1H-NMR, R2Y = 0.871, Q2Y =
0.777, and p = 1.97× 10− 21. Figure S10. OPLS-DA of GC-MS features
show an excellent prediction model to separate the bacterial CAP ICU pa-
tients (n = 41) from ICU ventilated control (n = 31) using GC-MS, R2Y =
0.915, Q2Y = 0.852, and p = 1.3× 10− 16. Table S5. Summarized OPLS-DA
models of two platform to separate ICU-admitted CAP pneumonia (n =
41) from ICU ventilated controls (n = 31), Both NMR and GC-MS show an
excellent prediction models as verified by Q2Y, p value, sensitivity, specifi-
city and AUROC parameters. (AUROC = area under receiver operating
curve). Table S6. Unpaired t-test shows 22 known metabolites obtained
by DI-MS/MS significantly changed (p < 0.05, while 13 metabolites
highlighted had an FDR < 0.05) between ICU and non-ICU CAP patients.
Table S7. Unpaired t-test shows 37 known features significantly changed
(p < 0.05, while 12 metabolites highlighted had a FDR < 0.05) between
patients with severe pneumonia (PSI 4 and 5) vs. patients with less severe
pneumonia (PSI 1, 2 and 3). Figure S11. Heatmap analysis shows a sep-
aration between patients with more severe (PSI 4 and 5) and less severe
(PSI 1, 2 and 3) CAP using the most differentiating metabolites by DI-MS/
MS. Table S8. Unpaired t-test shows 27 metabolites obtained by NMR
significantly changed (highlighted FDR < 0.05) between ICU-admitted
bacterial CAP and ICU ventilated controls. Table S9. Unpaired t-test
shows 46 known features obtained by GC-MS significantly changed
(FDR < 0.05) between ICU-admitted bacterial CAP and ICU ventilated con-
trols. Table S10. Comparison of three analytical platforms shows that DI-
MS/MS is more predictive and significant for 90 day mortality than GC-
MS and NMR. Table S11. The characteristics of CAP patients who were
admitted to ICU vs. CAP patients who were not admitted to ICU.
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