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Thyroid cancer cells have a high amino acid demand for proliferation, invasion, and metastasis. Amino acids are taken up by thyroid 
cancer cells, both thyroid follicular cell and thyroid parafollicular cells (commonly called “C-cells”), via amino acid transporters. 
Amino acid transporters up-regulate in many cancers, and their expression level associate with clinical aggressiveness and progno-
sis. This is the review to discuss the therapeutic potential of amino acid transporters and as molecular targets in thyroid cancer. 
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INTRODUCTION

Amino acids play essential roles in protein synthesis, which 
promotes cell growth and proliferation in both normal cells and 
cancer cells [1-4]. Nonessential amino acids are synthesized 
from essential amino acids; however, essential amino acids can-
not be synthesized de novo. Amino acids, particularly essential 
amino acids, are required to be taken up by various cells via dif-
ferent amino acid transporters. Among the 20 standard amino 
acids, 11 are nonessential: alanine, asparagine, aspartate, cyste-
ine, glutamate, glutamine, glycine, proline, serine, tyrosine, and 
arginine; the remaining nine are essential: histidine, isoleucine, 
leucine, lysine, methionine, phenylalanine, threonine, trypto-
phan, and valine.

Thyroid cancer (TC) is the most frequent endocrine carcino-
ma, with an incidence of 12.9, 25.8, and 64.1 per 100,000 indi-
viduals in the USA (2011 to 2015), Puerto Rico (2011 to 2015), 
and Korea (2008 to 2010), respectively [5,6]. Most TCs are as-

sociated with a low mortality risk, with gradual progression, no 
clinical metastasis, and an excellent prognosis [7]. Some papil-
lary thyroid carcinomas (PTCs) such as microcarcinoma with 
very low mortality risk may not require surgical treatment (clin-
ical active surveillance) [8-10]. However, several PTCs associ-
ated with a high mortality risk require treatment including sur-
gery, 131I-radiotherapy, and chemotherapy targeting the vascular 
endothelial growth factor receptor. In particular, anaplastic thy-
roid cancer (ATC) is associated with a high mortality risk, with 
a 3-year survival ratio of <20% [11,12]. This review focuses on 
amino acid transporters as molecular therapeutic targets and 
their clinical applications for TC.

AMINO ACID TRANSPORTERS AND 
THYROID CANCER

Transporters are classified into two broad categories based on 
adenosine triphosphate (ATP) dependence [13]. ATP-dependent 
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transporters, known as ATP-binding cassette (ABC) transport-
ers, hydrolyze ATP to obtain energy for transmembrane translo-
cation of their substrates. Transporters without an ATPase do-
main, called solute carriers (SLCs), facilitate diffusive transport. 
Most amino acid transporters are SLCs, and belong to several 
groups based on their substrates and sodium dependency; how-
ever, they have been classified in accordance with their se-
quence homology. L-type amino acid transporters (LATs) are 
categorized as system L transporters, which transport neutral 
amino acids including alanine, asparagine, cysteine, glutamine, 
glycine, proline, serine, tyrosine, isoleucine, leucine, methio-
nine, phenylalanine, threonine, and valine.

Among amino acid transporters, L-type amino acid transport-
er 1 (LAT1; SLC7A5), LAT2 (SLC7A8), LAT3 (SLC43A1), 
LAT4 (SLC43A2), alanine-serine-cysteine transporter (ASCT, 
SLC1A5), amino acid transporter B(0,+) (ATB0+, SLC6A14), 
cystine/glutamate exchanger (xCT, SLC7A11), and cationic 
amino acid transporter 3 (CTR3, SLC7A3) are associated with 
various cancers (Table 1). LAT1 and LAT2 are the first and sec-

ond system L amino acid transporter isoforms, discovered in 
1998 [14,15] and 1999 [16-18], respectively. In healthy individ-
uals, LAT1 is expressed in the Sertoli cells, kidney distal tu-
bules, pancreatic islet cells, and gastrointestinal organs includ-
ing the esophagus, stomach, small intestine, and colon [19]. 
LAT1 is demonstrated strong upregulation in many cancers, and 
higher upregulation of LAT1 associate with poor survival in 
various cancers including head and neck squamous cell carcino-
ma (HNSCC), breast, lung, esophagus, and biliary duct cancers 
[20]. Furthermore, LAT1 suppression decreases cell growth and 
proliferation through attenuation of mammalian target of ra-
pamycin (mTOR) signaling in many cancer cells [20,21], and 
impaired migration and invasion of gastric and prostate cancer 
cells [22,23]. Thus, LAT1 is a strong candidate for molecular-
targeted therapy for various cancers. Furthermore, TC cells re-
portedly display LAT1 upregulation, thus rendering LAT1 a 
novel molecular therapeutic target [24-27].

LAT2 has similar expression patterns as LAT1, being primar-
ily expressed in gastrointestinal organs and the kidney proximal 

Table 1. Amino Acid Transporters Associated with Thyroid Cancer

Protein Gene Major substrates Co-activator Expression in thyroid cancer Outcome on 
overexpression

LAT1 SLC7A5 Leu, Ile, Val, Phe, Met, His, Tyr, Trp 4F2hc/CD98 Upregulation in
   PTC [24]
   ATC [24,26]
   MTC [27]

Poor in
   PTC [24,25]
   ATC [26]

LAT2 SLC7A8 Ala, Asn, Cys, Gln, Gly, Ile, Leu, Met, Phe , Ser, 
Thr, Tyr, Val

4F2hc/CD98 Upregulation
   PTC [30], MTC [27]
No change in
   FTC, ATC [30]

No data

LAT3 SLC43A1 Leu, Ile, Val, Phe, Met No No data No data

LAT4 SLC43A2 Leu, Ile, Val, Phe, Met No Downregulation in
   PTC, FTC, PDTC, ATC [30]

No data

ASCT2 SLC1A5 Ala, Ser, Cys, Thr, Gln, Asn, Glu No Upregulation in
   MTC [39]
Nochange in
   PTC, FTC, PDTC, ATC [39]

No change in
   alla [39]

ATB0+ SLC6A14 Ala, Ser, Cys, His, Met, Ile, Leu, Val, Phe, Tyr, Trp No No data No data

xCT SLC7A11 Gln 4F2hc/CD98 No data Poor in
   PTC [25]

CTR3 SLC7A3 Arg, Lys No No data Poor in
   PTC [25]

LAT1, L-type amino acid transporter 1; His, histidine; Met, methionine; Leu, leucine; Ile, isoleucine, Val, valine; Phe, phenylalanine; Ala, alanine; Asn, 
asparagine; Cys, cysteine; Gln, glutamine; Gly glycine; Ser, serine; Thr, threonine; Trp, tryptophan; Tyr, tyrosine; Arg, arginine; Lys, lysine; PTC, papil-
lary thyroid cancer; ATC, anaplastic thyroid cancer; ASCT, alanine-serine-cysteine transporter; MTC, medullary thyroid cancer; FTC, follicular thyroid 
cancer; PDTC, poorly differentiated thyroid cancer; ATB, amino acid transporter B; xCT, cystine/glutamate exchanger; CTR, cationic amino acid trans-
porter. 
aThe survival was calculated in thyroid cancer, in the following subtypes: PTC, FTC, MTC, PDTC, and ATC.
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tubule [19]. LAT2-knockout mice display a mild phenotype and 
almost no visible symptoms except for aminoaciduria [28]. 
Both LAT1 and LAT2 contain 12 transmembrane domains that 
form a channel for their substrates [29]. However, it remains 
unclear whether LAT2 expression levels vary during TC. Badzi-
ong et al. [30] reported that LAT2 is upregulated in PTC but its 
levels remain unchanged in follicular thyroid cancer (FTC) and 
ATC. However, Barollo et al. [27] reported LAT2 downregula-
tion in medullary thyroid cancer (MTC), a neuroendocrine tu-
mor. Thus far, data on LAT2 expression in TC are controversial.

LAT3 has been isolated through expression cloning from he-
patocarcinoma cells [31] and its primary structure is reportedly 
identical to that of prostate cancer over-expressed gene 
1(POV1), which is reportedly upregulated in prostate cancer 
[32]. The substrate selectivity of LAT3 is similar to that of 
LAT1; its substrates include isoleucine, leucine, methionine, 
phenylalanine, and valine (Table 1) [31]. LAT3 is upregulated 
in the liver, skeletal muscle, and pancreas [31] and apparently 
serves as a critical transporter in several cancers. LAT3 knock-
down significantly inhibits the leucine uptake, cell proliferation, 
and metastasis in human prostate cancer cell lines in vitro [33]. 
LAT3 is potentially associated with cancer cell proliferation and 
metastasis; however, no study has reported the expression of 
LAT3 in TC.

LAT4 was identified on the basis of its sequence homology 
with LAT3 [34]. LAT4 is upregulated in peripheral blood, the 
placenta, kidney, and spleen [34]. Badziong et al. [30] reported 
that LAT4 is downregulated in PTC, FTC, and ATC. In contrast, 
LAT4 is overexpressed in Graves’ disease. However, the role of 
LAT4 in thyroid carcinogenesis remains unclear.

ASCT2, an Na+-dependent neutral amino acid transporter en-
coded by SLC1A5, is predominantly localized at the cell mem-
brane [35] and mediates the exchange of amino acid substrates, 
particularly mediating rapid glutamine uptake in proliferating 
cancer cells [36]. ASCT2 upregulation worsens the prognosis of 
HNSCC, clear-cell renal-cell carcinoma, gastric cancer, triple-
negative breast cancer, ovarian cancer, and other cancers 
[37,38]. Kim et al. [39] (2016) reported ASCT2 upregulation in 
MTC originating from parafollicular cells but not in other TCs 
of follicular origin, including PTC, FTC, poorly differentiated 
carcinoma, and ATC.

ATB0+ is a member of the Na+- and Cl−-dependent neurotrans-
mitter transporter family, and is upregulated in the lungs, fetal 
lungs, trachea, and salivary gland. ATB0+ transports both neutral 
and cationic amino acids, and has approximately 60% amino 
acid similarity with glycine transporters GLYT1 and GLYT2 

[40]. The blockade of ATB0+ is associated with a reduction in 
pancreatic cancer cell proliferation, indicating the potential of 
ATB0+ as a drug target in cancer chemotherapy [41]. However, 
the role of ATB0+ in TC remains unclear.

xCT is a cysteine/glutamate transporter, which plays a key 
role in glutathione synthesis. xCT overexpression decreases en-
dogenous reactive oxygen species (ROS) levels and increases 
the migration and invasion of glioblastoma cells [42]. Further-
more, xCT accelerates tumor growth and tumor associated-sei-
zures and helps predict the outcomes of patients with malignant 
glioma [43]. In PTC, xCT upregulation was reportedly associat-
ed with poor survival [25].

CTR3 is a sodium-independent cationic amino acid transport-
er, which is glycosylated and localized at the plasma membrane 
[44]. Shen et al. [25] reported that SLC7A3 expression is associ-
ated with extrathyroidal extension, higher cancer stage, BRAF, 
RAS mutation, and mortality in PTC. 

Though the protein expression of amino acid transporters al-
ters in many cancers including TC, gene mutations of amino 
acid transporters are still unclear. The point mutations in SL-
C7A5 were reported just one case with a missense mutation in 
breast cancer [45]. Bik-Multanowski and Pietrzyk [46] screened 
for SLC7A5 mutations in phenylketonuric patients and three 
polymorphism and one new mutation (G41D) were detected 
[47]. Recently, SLC7A8 expression was showed in the mouse 
inner ear and that abolish of LAT2 resulted in age-related hear-
ing loss [48]. They also reported significant decreases in LAT2 
transport activity for patient’s variants (p.V302I, p.R418H, 
p.T402M, and p.V460E) in SLC7A8. Gene mutations of amino 
acid transporters according to TC has not been clarified at the 
moment.

LAT1 AND THYROID CANCER

LAT1 is one of the most appropriate candidates for molecular-
targeted therapy for TC from follicular cell (Table 2). Shen et al. 
[25] reported that a poor prognosis is associated with SLC7A5 
upregulation in PTC. Hafliger et al. [24] and Enomoto et al. [26] 
reported the therapeutic potential of the selective LAT1 inhibi-
tor JPH203 in TC. Hafliger et al. [24] reported that LAT1 is 
overexpressed in PTC and ATC, and LAT1 overexpression is 
associated with a poor prognosis of PTC [24]. Enomoto et al. 
[26] reported that LAT1 and co-expressed 4F2hc are overex-
pressed in ATC patients through immunohistochemical analy-
ses, and LAT1 overexpression is associated with poor outcomes 
in ATC. Both studies confirmed that JPH203 inhibits the prolif-
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eration of human TC cell lines in vitro. Furthermore, Hafliger et 
al. [24] and Enomoto et al. [26] reported the antitumor effect of 
JPH203 in different in vivo models, e.g., v-raf murine sarcoma 
viral oncogene homolog B1 (BRAF)V600E/4,5-bisphosphate 3-ki-
nase catalytic subunit alpha (PIK3CA)H1047R-double mutant 
mice that constitute spontaneous ATC models with an activated 
mitogen-activated protein kinase (MAPK) and phosphatidylino-
sitol 3-kinase (PI3K) pathway, and a xenograft mouse model 
established using ATC cell line 8505C containing BRAF, PI-
3K3R1/2, and p53 mutations [48,49]. JPH203 can thus be con-
sidered a highly reliable therapeutic candidate for TC, particu-
larly ATC.

Furthermore, LAT1 may be considered a therapeutic target in 
MTC, which originates from parafollicular cells. Barollo et al. 
[27] confirmed that LAT1 overexpression in MTC paralleled 
glucose transporter 1 overexpression and that LAT1 is overex-
pressed in an MTC cell line, TT, through Western blotting. 
However, it remains unclear whether inhibiting overexpressed 
LAT1 attenuates MTC proliferation.

In numerous cancers, LAT1 upregulation is associated with 
metastasis. In non-small-cell lung cancers, lymph node metasta-
sis-positive squamous cell carcinomas express LAT1, while no 
positive LAT1 signals have been reported in non-metastatic 
cells [50]. A group of cells with LAT1 upregulation displayed 
larger metastatic lesions in gastric carcinoma [51]. LAT1 ex-
pression in neuroendocrine tumors was significantly associated 
with lymph node metastasis [52]. The functional significance of 
LAT1 in metastasis has been reported. RNAi-mediated LAT1 
knockdown inhibited the migration and invasion of gastric can-
cer cells [23] and a cholangiocarcinoma cell line [53]. 2-Ami-
nobicyclo-(2,2,1)-heptane-2-carboxylic acid (BCH) reportedly 
inhibited proliferation and migration in a human epithelial ovar-

ian cancer cell line [54]. Although the positive association be-
tween cancer metastasis and LAT1 expression has been report-
ed, no studies have indicated the association between LAT1 
overexpression and TC metastasis thus far.

CLINICAL APPLICATION OF LAT1-
TARGETING AGENTS

LAT1 inhibitors
BCH is a prototypical non-selective LAT1 inhibitor [55]. BCH 
inhibits LAT1, thus inhibiting the uptake of L-leucine with an 
IC50 of 73.1 to 78.8 µM in three cancer cell lines (human oral 
epidermoid carcinoma, human osteogenic sarcoma, and rat gli-
oma cells) [56]. Because high BCH concentrations are required 
for inhibiting highly proliferous cancer cells, no clinical trials 
have been performed thus far. JPH203 (KYT-0353) is a selec-
tive LAT1 inhibitor with an IC50 of 0.06 µM for L-leucine [57], 
strongly inhibiting HT-29 colon cancer cell growth, with an 
IC50 value of 4.1 μM. In 2017, Kongpracha et al. [58] synthe-
sized another LAT1 inhibitor, SKN103, based on the structure 
of T3 and reported the inhibition of L-leucine uptake of 4 hu-
man cell lines (pancreas ductal adenocarcinoma, squamous cell 
carcinoma, cervix adenocarcinoma, and adenocarcinomic alve-
olar basal epithelia) and inhibition of tumor cell growth in two 
cell lines (pancreas ductal adenocarcinoma, and squamous cell 
carcinoma); however, no in vivo assays have been conducted 
thus far.

JPH203 was recently evaluated in a first-in-human phase 1 
clinical trial (UMIN Clinical Trials Registry UMIN000016546). 
Okano et al. [59] reported among 17 patients with advanced 
solid tumors, one patient with biliary tract cancer presented a 
partial response and five patients with biliary tract cancer or 

Table 2. Studies Reporting the Role of LAT1 in Thyroid Cancer

Hafliger et al. [24] Enomoto et al. [26] Barollo et al. [27] Shen et al. [25]

Histology PTC, ATC ATC MTC PTC

Clinical sample analysis mRNA IHC mRNA, IHC mRNA

Survival analysis PTC ATC

In vitro study

   Inhibitors JPH203 JPH203, siRNA

   Cell cycle analysis G0/G1 cell cycle arrest

   Apoptosis analysis TUNEL positive

In vivo mouse study Conditional KO xenograft model

LAT1, L-type amino acid transporter 1; PTC, papillary thyroid cancer; ATC, anaplastic thyroid cancer; MTC, medullary thyroid cancer; IHC, immuno-
histochemistry; TUNEL, terminal deoxynucleotidyl transferase dUTP nick end labeling; KO, knock-out.
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colorectal cancer presented stable disease. Common treatment-
related adverse events included malaise, nausea, and a grade 1 
or 2 fever. JPH203 is currently being evaluated in a phase 2 
clinical trial among patients with advanced biliary tract cancers 
(UMIN Clinical Trials Registry UMIN000034080). To our 
knowledge, no LAT1 inhibitor has been clinically assessed for 
TC, in both follicular cell and parafollicular cells thus far.

Diagnosis via positron emission tomography
Imaging analysis of TC has largely been dependent on radioac-
tive iodine such as 123I and 131I scintigraphy. Positron emission 
tomography (PET) has greater sensitivity than single-photon 
imaging (planar and single photon emission computed tomogra-
phy [SPECT]) [60]. Upon uptake of radioactive iodine into fol-
licular cells via the sodium/iodide symporter, positron-labeled 
124I was developed as a PET tracer to detect TC. These primarily 
help detect metastatic and recurrent foci of TC after total thy-
roidectomy, through postoperative 131I administration. 2-18F-
fluoro-2-deoxy-d-glucose (18F-FDG) is a most common tracer 
for visualizing glucose metabolism through PET. Cancer imag-
ing via 18F-FDG PET is based on the observation that most can-
cers, including TC, metabolize glucose at an abnormally high 
rate [61]. Therefore, evaluation of glucose metabolism through 
18F-FDG PET helps differentiate between malignant and benign 
tumors, staging and diagnosis, treatment, evaluation of thera-
peutic outcomes, prediction of prognosis, responsiveness as-
sessment, and relapse [62,63]. Moreover, high 18F-FDG accu-
mulation is associated with low 131I accumulation based on de-
differentiation of the follicular thyroid cell (flip-flop) [64,65]. 
However, 18F-FDG PET sometimes yields false-positive results, 
especially in Hashimoto thyroiditis and Graves’ disease, and 
false-negative results for brain metastasis because of their high 
background levels [62,66].

To resolve these issues, amino acid assessment has gained in-
creasing attention as alternative probes instead of glucose mea-
surement via 18F-FDG. Representative amino acids or their ana-
logs developed as PET probes are L-3-18F-fluoro-α-methyl tyro-
sine (18F-FAMT), 6-18F-fluoro-L-3,4-dihydroxy-phenylalanine 
(18F-DOPA), L-[11C-methyl] methionine (11C-MET), O- (2-
[18F]fluoroethyl)-l-tyrosine (18F-FET), and 18F-NKO-035. 18F-
NKO-035, a LAT1-selective substrate, was recently developed 
as an anti-cancer agent at Osaka University [67]. A clinical trial 
revealed that NKO-035 has high affinity for LAT1 (Japanese 
Registry of Clinical Trials, jRCTs051190057). Of these, 18F-
FDOPA and 11C-MET have been assessed among TC patients 
[68,69]. 18F-FDOPA PET/CT is a suitable modality for detecting 

metastatic, persistent, and residual MTC; however, 18F-FDG 
PET/CT may be considered for aggressive MTC in cases dis-
playing signs of dedifferentiation or rapidly rising CEA levels 
[68,69]. Thus far, 11C-MET PET has not been proven superior to 
18F-FDG PET in detecting recurrent differentiated TC [70]. 
However, few studies have focused on amino acid transporters 
in TC. Further studies are required to determine the utility of 
amino acid transporter imaging in TC.

Boron neutron capture therapy
Boron neutron capture therapy (BNCT) is an anticancer therapy 
using high linear energy transfer alpha particles. Particle radia-
tion is generated by fission reactions when an irradiated thermal 
neutron beam collides with boron captured by a malignant tu-
mor (Fig. 1). The traveling distance of particle radiation is limit-
ed to approximately 5 to 9 μm, and it then disrupts only cancer 
cells capturing boron without damaging other cells around tar-
get cells [71,72]. The success of BNCT depend on 10B com-
pound concentration of tumor/normal tissue ratios (T/N ratio). 
This difficult task could be performed by synthesizing a boron 
compound that is selectively delivered by LAT1. Indeed, p-bo-

Fig. 1. Schematic representation of the nuclear capture reaction in 
Boron neutron capture therapy. On irradiation of the 10B compound, 
p-boronophenylalanine (BPA), with thermal neutrons, alpha parti-
cles and lithium nuclei are obtained, subsequently damaging cancer 
cells selectively. The track ranges of the two emitted particles with-
in the body are approximately 5 to 9 μm, and this distance is not 
greater than the diameter of the cancer cells. The emitted particles 
thus damage only the cancer cell nuclei and do not approach adja-
cent normal cells. Therefore, damage is suppressed in normal cells, 
since they do not take up BPA via L-type amino acid transporter 1 
(LAT1), and cancer cells are selectively damaged.
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ronophenylalanine (BPA), a boron compound commonly used 
in BNCT, is incorporated in cancer cells through LAT1 [73-75], 
which serves as an optimal mediator for boron delivery. BNCT 
has achieved certain clinical outcomes in case of high T/N ratio 
in boron concentration; however, it requires a large-scale nucle-
ar reactor to generate neutrons. Nonetheless, a compact acceler-
ator has been developed as an alternative to a nuclear reactor, 
and it can be installed in a hospital, thus facilitating the easy ap-
plication of BNCT [76]. Dagrosa et al. [77-79] reported the ap-
plication of BNCT for undifferentiated TC in vitro and in an in 
vivo mouse model. However, the clinical advantages of BNCT 
in TC management remain unknown.

REGULATION OF LAT1

MYC, a proto-oncogene, is upstream of LAT1. The consensus 
binding sequence of MYC is located at the LAT1 promoter [80]. 
Moreover, MYC knockdown downregulates LAT1 in human 
pancreatic cancer cell lines [80]. MYC is usually expressed at 
baseline levels in healthy adults [81]; however, MYC overex-
pression owing to gene amplification, gene translocation, or 
other gene mutations [82] results in malignant transformation. 
Notably, MYC is upregulated in patients with TC including 
ATC, and MYC overexpression promotes TC pathogenesis [83-
86]. Therefore, MYC is a LAT1 regulator, partly even in TC.

Furthermore, hypoxia-inducible factor (HIF) 2 regulates 
LAT1. HIF2a, an isoform of the HIF family regulating respons-
es to hypoxia, binds to the LAT1 promoter and upregulates 
LAT1 in renal carcinoma and neuronal cells [87,88]. Exogenous 
HIF2a upregulation induces LAT1 expression in the lung and 
liver tissues, wherein LAT1 is generally downregulated [87]. 
Furthermore, aryl hydrocarbon receptor (AHR) binds to its con-
sensus binding sequence in LAT1 and induces LAT1 expression 
in breast cancer cell lines [89]. The NOTCH signaling pathway 
and activating transcription factor 4 (ATF4) also be candidate 
an important upstream regulator of LAT1 in human T-cell acute 
lymphoblastic leukemia and prostate cancer, respectively 
[33,90]. The knockdown or small molecule inhibition of EZH2, 
the epigenetic regulator enhancer of zeste homolog 2, leads to 
de-repression of RXRα resulting in reduced LAT1 expression in 
non-small cell lung cancer model [91]. However, the effect of 
these factors on LAT1 expression in TC is still unclear.

CONCLUSIONS

Numerous studies have reported the crucial role of amino acids 

and their transporters in various cancers; however, relatively 
few studies have determined their potential in the clinical man-
agement of TC. A detailed understanding of amino acid metabo-
lism in different cancers would facilitate the development of cu-
rative therapy for cancers. Amino acid transporters, especially 
LAT1, are potential targets for molecular-targeted therapy, im-
aging, and diagnosis in numerous cancers including TC. The 
clinical implications of amino acid transporters have recently 
been reported. Further studies are required to clarify potential 
molecular targets for treating TC.
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