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a b s t r a c t 

This paper studies the optimal control of an infectious spread based on common epidemic models with 

permanent immunity and no vaccine availability. Assuming limited isolation control and capacity con- 

straints on the number of infections, an optimal quarantine control strategy that balances between the 

total number of infections and the overall isolation effort is derived from necessary optimality conditions. 

The specific optimal policy is then obtained by optimizing the switching times of this generalized strat- 

egy. In the case of a newly emerged disease, these results can be used in a data-driven receding horizon 

manner to improve actions as more data becomes available. 

The proposed approach is applied to publicly available data from the outbreak of SARS-CoV-2 in Germany. 

In particular, for minimizing the total number of infections or the number of isolated individuals, the 

simulations indicate that a sufficiently delayed and controlled release of the lock-down are optimal for 

overcoming the outbreak. The approach can support public health authorities to plan quarantine control 

policies. 

© 2020 Elsevier Ltd. All rights reserved. 
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. Introduction 

Since the first recorded COVID-19 infections in Wuhan, China,

he disease has spread worldwide. There has been a plurality of

ttempts to interpret and predict the development of the disease

ased on public data using first-principles epidemiological [1–3] ,

ata-driven [4] , or mixed models [5,6] . Based on these predictions,

 wide variety of temporal isolation policies have been established

n most affected countries. However, evaluating the effectiveness

f these responses is notoriously difficult due to the reliability of

vailable data, and since their impact on the outbreak evolution

an only be measured with a substantial delay. 

Mathematical analysis of first-principle models of biological

ystems can provide valuable insight, e.g., on their general proper-

ies [25] , or how to control infectious disease outbreaks [7] . In the

implest model, the population is divided into the susceptible S ,

nfected I and recovered R groups (therefore called the SIR model),

nd their evolution over time is represented as a set of coupled

rdinary differential equations. Augmenting the state by exposed

 individuals, leads to the so-called SEIR model. Applications of

utbreak controls minimizing various different cost functions have

een proposed for the SIR model, e.g., [8–12] to name a few, as

ell as heuristically tailored policies [13,14] . Although S(E)IR mod-

ls can be too simplistic for many real outbreaks, they often allow

eriving complete analytical solutions, thus providing a foundation
E-mail address: vladislav.nenchev@gmail.com 
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or rigorous mathematical results upon which more complex mod-

ls can be built. 

An issue of practical concern for many disease outbreaks with-

ut an available vaccine, such as for SARS-CoV-2 as of June 2020, is

inimizing the overall quarantine effort or the final outbreak size,

hile respecting control and capacity constraints on the current

umber of infections. To account for quarantine measure (similar

o [5] and [15] ), the SIR model is extended by a quarantined sub-

opulation Q . Infected individuals are moved depending on the ap-

lied control rate from I to Q , where they cannot cause additional

nfections. Then, using the direct adjoining approach [16] and ap-

lying Pontryagin’s Minimum Principle (PMP) to the correspond-

ng state- and input-constrained control problem, in this paper it

s shown that bang-bang or bang-boundary controls are admitted

n a particular sequence to solve the corresponding optimal control

roblem. To obtain the specific optimal policy, the switching times

etween the bang-boundary subarcs are determined in an induced

ptimization problem. Analogous results can be obtained for the

EIR model. Upon an outbreak of a previously unknown disease,

etter model parameter estimates can be obtained as more data

ecomes available, and the induced optimization problem can be

ecomputed in a data-driven receding horizon manner to improve

ctions. The proposed methods are applied to publicly available

ata until June 2020 from the outbreak of SARS-CoV-2 in Germany.

n particular, minimizing the total outbreak size or the total num-

er of isolated individuals are studied. The findings of this work

an be used to evaluate if the policies that have been established

https://doi.org/10.1016/j.chaos.2020.110139
http://www.ScienceDirect.com
http://www.elsevier.com/locate/chaos
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in practice resemble the optimal policy, and support public health

authorities in implementing effective future quarantine strategies. 

The remainder of this paper is structured as follows. In

Section 2 , a mathematical statement of the problem is provided.

In Section 3 , the optimal quarantine policy under isolation control

and capacity constraints, and, in Section 4 , the data-driven reced-

ing horizon control scheme are described. Then, in Section 5 , the

approach is applied based on COVID-19 data from Germany until

June 2020. Finally, the main results and future work are discussed

in Section 6 . 

2. Problem statement 

We address epidemics with no vaccine availability, in which the

only available control is based on isolation. Let the entire popu-

lation p be divided into three sub-populations: susceptible S ; in-

fected I ; and recovered R . Births’ and deaths’ effects are neglected.

The recovered population is to be interpreted as those who can

no longer infect others, and, who cannot become reinfected by the

disease. This is known as the classic epidemiological SIR model [7] .

To include quarantine or isolation control, the model is augmented

by introducing a time varying quarantine strength control u ( t ) and

a corresponding quarantined (and also recovered from the disease)

population Q . Then, with x = [ S, I, R, Q] T ⊆ R 

4 + the sub-populations’

evolution is governed by the following system of coupled nonlinear

ordinary differential equations: 

˙ x (t) = f 1 (x (t ) , u (t )) = 

⎡ 

⎢ ⎣ 

− b 
p 

x 1 (t) x 2 (t) 
b 
p 

x 1 (t) x 2 (t) − ( m + u ( t ) ) x 2 ( t ) 

mx 2 (t) 
u (t ) x 2 (t ) 

⎤ 

⎥ ⎦ 

, (1)

where the population p = 

∑ 4 
i =1 x i (t) , and the infection b and re-

covery m rates are assumed to be constant in time. Note that the

model assumes homogeneous mixing among the sub-populations,

as well as uniform susceptibility and disease progress for every in-

dividual in the population. The SIR model assumes a direct tran-

sition from susceptible to infected. It can be easily augmented by

including exposed individuals E to account for a significant incu-

bation period during which individuals have been infected but are

not yet infectious themselves. This so-called SEIR epidemiological

model [7] has been employed in several prior studies, such as the

SARS outbreak, e.g., [17,18] , as well as the COVID-19 outbreak [1–

3] . Since the SEIR model did not provide any additional qualitative

insights in the studied problem, for simplicity, the SIR model is

analyzed, and details for the SEIR model can be found in the ap-

pendix. 

An important characteristic of epidemics is the reproduction

number 

R t = 

b 

m + u (t) 
. (2)

Thus, applying the control u ( t ) results in reducing the effective re-

production number R t . Determining the maximal quarantine con-

trol u max is highly dependent on local quarantine policies and pop-

ulation specifics, directly corresponding to the minimally achiev-

able reproduction number (2) . Another important parameter of

epidemics is the fraction αs of severe conditions among infected

individuals requiring hospitalization and admission to an intensive

care unit. Highly infectious diseases (with a high R t ) causing many

severe conditions in the infected population (corresponding to a

high αs ), may quickly lead to an overload of available treatment

resources and, thus, cause a large number of additional potentially

avoidable deaths. Assuming that the overall available capacity is

described by αc , this capacity limitation can be described as the

linear inequality constraint 

h (x (t)) = αx 2 (t) − 1 , h (x ) ≤ 0 , α = 

αs 

α
. (3)
c 
In this work, the goal is to obtain an optimal quarantine con-

rol policy u ( t ), t ∈ [0, t f ] for a fixed final time t f , that minimizes

 weighted combination of the total number of infections and the

verall number of quarantined individuals at time t f . Note that the

verall number of quarantined individuals corresponds to the ap-

lied level of containment and can, thus, be linked to the econom-

cal impact of the outbreak. The total number of infections is de-

oted by the sum of the final recovered and final quarantined pop-

lations, and is directly correlated to the overall number of deaths.

his can be captured by the cost function 

(x, u ) = g(x (t f )) = w (x 3 (t f ) + x 4 (t f )) + (1 − w ) x 4 (t f ) 

= wx 3 (t f )] + x 4 (t f ) , (4)

here w ∈ [0, 1]. The control is limited to u ( t ) ∈ [0, u max ] at all

imes, such that u = 0 corresponds to an uncontrolled epidemics

volution, and u = u max to the case, when maximal possible isola-

ion is applied. Assuming that a solution u (t) ∈ [0 , u max ] for t ∈ [0,

 f ] exists, this leads to the following (Mayer type) optimal control

roblem. 

roblem 1. For a given initial state x (0) with x 1 (0) > 0, x 2 (0) > 0

nd final time t f , find a function u : [0, t f ] → [0, u max ], such that the

ost (4) is minimized subject to the dynamics (1) , while respecting

he constraint (3) at all times. 

In the following, using the direct adjoining approach and ap-

lying Pontryagin’s Minimum Principle, necessary optimality con-

itions are derived for the optimal control problem above. Further,

t is shown that the obtained locally optimal solutions constitute

n optimal generalized strategy under certain assumptions. 

. Optimal quarantine control 

As (3) is a pure state constraint, (higher order) time derivatives

re used to obtain the control u ( t ) that yields a system evolution

long the active state constraint. Since u ( t ) appears linearly in the

tate equation of x 2 (1) , the first total time derivative of the func-

ion h ( x ( t )) (3) contains the control explicitly: 

 1 (x (t)) = 

d 

dt 
h (x (t)) = α

dx 2 
dt 

= h 1 ,a (x ) + h 1 ,b (x ) u 

= αx 2 ( 
b 

p 
x 1 − m ) − αx 2 u. (5)

et an interval [ τ 1 , τ 2 ] ⊂ [0, t f ] be a boundary arc, if h (x (t)) = 0 for

ll t ∈ [ τ 1 , τ 2 ]. If τ 1 and τ 2 are maximal, let τ 1 be the entry-time

nd τ 2 the exit-time of the boundary arc. On the boundary arc,

 1, b ( x ( t )) � = 0 must hold ∀ t ∈ [ τ 1 , τ 2 ) (regularity condition) . This

ondition is fulfilled, as α > 0 and x 2 (t) = 

1 
α > 0 , ∀ t ∈ [ τ 1 , τ 2 ).

hus, the control on a boundary arc is obtained from 

 1 ( x, u b ) = 0 ⇔ u b ( x ) = −h 1 ,a ( x ) 

h 1 ,b ( x ) 
= 

b 

p 
x 1 − m. (6)

he boundary control (6) depends on x 1 and is, therefore, not guar-

nteed to be in the feasible control set [0 , u max ] . Thus, assume that

¯ b (x (t)) ∈ [0 , u max ] , ∀ t ∈ [ τ1 , τ2 ] (boundedness condition) . 

To derive first order necessary optimality conditions by apply-

ng PMP, a Lagrange multiplier η(t) ∈ R associated with the state

onstraint (3) is introduced. For that, based on the aforementioned

egularity and boundedness conditions on a boundary arc, and

upposing that the state space constraint is not active at the initial

nd final time, i.e., h ( x (0)) < 0, h ( x ( t f )) < 0, the direct adjoining ap-

roach [16] is applied. The corresponding augmented Hamiltonian

s given by 

 ( x, u, λ, η) = λT f n ( x, u ) + ηh ( x ) 

= 

(
b 

p 
x 1 − m 

)
λ2 x 2 − b 

p 
λ1 x 1 x 2 + λ3 mx 2 

+ η( αx 2 − 1 ) + ( λ4 − λ2 ) x 2 u, 

(7)
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ith the adjoint variable λ ∈ R 

4 . As shown in Maurer et al. [19] ,

here exist an absolutely continuous λ( t ) and a piecewise abso-

utely continuous multiplier function η( t ), such that the following

ptimality conditions hold on [0, t f ]: 

˙ (t) = −dH 

dx 
, λT (t f ) = 

∂g(x (t f )) 

∂x 
, (8)

( ̄x , ū , λ, η) | t = t f = 0 , (9)

( ̄x , ū , λ, η) = min 

u ∈ [0 ,u max ] 
H( ̄x (t) , u, λ, η) . (10)

or the SIR model, the following holds: 

˙ λ1 = 

b 

p 
x 2 (t)(λ1 (t) − λ2 (t)) , λ1 (t f ) = 0 , 

˙ λ2 = −αη − b 

p 
λ1 x 1 + ( 

b 

p 
x 1 − (m + u )) λ2 + mw 

+ u, λ2 (t f ) = 0 , 

˙ λ3 = 0 , λ3 (t f ) = w, → λ3 (t) = w, 

˙ λ4 = 0 , λ4 (t f ) = 1 , → λ4 (t) = 1 , 

| t = t f = 0 ⇐⇒ u (t f ) = 0 . 

s the Hamiltonian (7) is linear in u ( t ), the optimal control will

epend on the sign of the switching function, given by 

(x, u ) = 

∂H 

∂u 

= (1 −λ2 ) x 2 . (11)

s suggested in Ledzewicz and Schättler [20] , with the total time

erivative of (11) and the costates (8) , 

dσ (t) 

dt 
| u (t)= ̄u b = 0 (12) 

olds on a boundary arc with t ∈ [ τ 1 , τ 2 ]. This yields the explicit

xpression for the multiplier 

(t) = 

{
1 
αp 

(bx 1 (t)(λ1 (t) − 1) + mp(1 − w )) , if h (x (t)) = 0 , 

0 , if h (x (t)) < 0 . 

(13) 

ssuming that a solution of Problem 1 exists and the control u ( t )

as finitely many switching times, the following proposition holds.

roposition 1. The generalized optimal control policy for Problem 1

s 

 (t) = 

⎧ ⎪ ⎨ 

⎪ ⎩ 

0 , if t ∈ [0 , t 1 ) , σ (t) > 0 , 

u max , if t ∈ [ t 1 , t 2 ) , σ (t) < 0 , 

u b , if t ∈ [ t 2 , t 3 ) , σ (t) = 0 

0 , if t ∈ [ t 3 , t f ] , σ ( t) > 0 , 

(14) 

ith 0 ≤ t 1 ≤ t 2 ≤ t 3 ≤ t f , assuming that u b (x 1 (t 2 )) ≤ u max , and 

 1 = t 2 , if u b (x 1 (t 1 )) ≤ u max , 

 1 < t 2 , if u b (x 1 (t 1 )) > u max . 
(15) 

f t 3 > t 2 , the tangency constraints 

 2 (t 2 ) = 

1 

α
, t 3 − t 2 = 

αp 

b 
log ( 

b 

mp 
x 1 (t 2 )) (16) 

ust also hold. 

roof. On interior arcs, where the state constraint is inactive

 ( x ( t )) < 0, from the minimum condition (10) , the optimal control

s 

 (t) = 

{
0 , if σ (t) > 0 , 

u max , if σ (t) < 0 . 
he switching function (11) is zero ⇐⇒ λ2 (t) = 1 or x 2 (t) = 0 .

he latter case is trivial and will be neglected in the following. To

ulfill λ2 (t f ) = 0 , λ2 (0) > 1 and 

˙ λ2 (0+) ≤ 0 , such that the opti-

al control policy may start with a zero segment for [ t 0 , t 1 ). If

 b (x (t 1 )) > u max , h ( x ( t 1 )) < 0, h 1 ( x ( t 1 )) > 0 and σ (t 1 −) < 0 assum-

ng u (t 1 −) = 0 , and as − ˙ σ (t 1 )(0 − u max ) > 0 , a second segment for

 ∈ [ t 1 , t 2 ) may have the control u max . 

On a boundary arc, given the regularity and boundedness

onditions for the boundary control, the minimum condition

10) yields σ (t) = 0 and η( t ) > 0, t ∈ [ τ 1 , τ 2 ) ⊆[0, t f ]. With

 (x (t 2 )) = 0 , h 1 (x (t 2 )) = 0 , u b (x 1 (t 2 )) ≤ u max (from the bounded-

ess condition of the boundary control) and ˙ x 2 (t 2 +)( ̄u b ) = 0 , and

hus, the continuity conditions on the boundary σ (t 2 −)(u (t 2 −) −
 (t 2 +)) ≥ 0 , ˙ σ (t 3 +)(u (t 3 −) − u (t 3 +)) > 0 , a boundary arc with

6) may occur, if the Lagrange multiplier η( t ) > 0, t ∈ [ t 2 , t 3 ). Note

hat if u b (x 1 (t 1 )) ≤ u max , a preceding u max control segment is not

ecessary. With σ (t) = 0 ⇐⇒ λ2 (t) = 1 , h (x (t)) = 0 ⇐⇒ x 2 (t) =
1 
α and u (t) = u b , the remaining ODE’s are solved as 

˙ x 1 ( t ) = − b 

pα
x 1 ( t ) ⇒ 

x 1 ( t ) = x 1 ( t 2 ) e ( 
− b 

αp ( t−t 2 ) ) 

˙ x 3 ( t ) = 

m 

α
⇒ 

x 3 ( t ) = x 3 ( t 2 ) + 

m 

α
( t − t 2 ) 

˙ x 4 ( t ) = 

b 

pα
x 1 ( t ) − m 

α
⇒ 

x 4 ( t ) = x 4 ( t 2 ) + x 1 ( t 2 ) 

(
1 − e ( −

b 
αp ( t−t 2 ) ) 

)
− m 

α
( t − t 2 ) 

˙ 
1 ( t ) = 

b 

pα
( λ1 ( t ) − 1 ) ⇒ 

1 ( t ) = ( λ1 ( t 2 ) + 1 ) e ( 
b 

αp ( t−t 2 ) ) − 1 . 

ubstituting relevant equations into (13) yields 

( τ, t ) = 

1 

pα

[ 
bx 1 ( τ ) 

(
λ1 ( τ ) − 2 e ( −

b 
αp ( t−τ ) ) + 1 

)
+ mp ( 1 − w ) 

] 
. 

he relation u b (x (t 3 )) = 0 ⇐⇒ x 1 (t 3 ) = mp/b, resulting from the

oundedness condition of the boundary control, completes the ad-

itional tangency constraints (16) . 

If h ( x ( t )) < 0 and σ (t) = 0 for t ∈ [ ̃  τ1 , ̃  τ2 ) , a singular arc may

ccur. Since ∂ σ/∂ u = 0 holds trivially, the singular control u s can

e obtained from d σ/d t = 0 with η(t) = 0 and λ2 (t) = 1 , which

ields u s = 

b 
p x 1 − m = u b . The optimality of the corresponding sin-

ular arc can be checked with the generalized Legendre-Clebsch

ondition of first order, which yields 

∂ 

∂u 

[
d 2 

dt 

∂H 

∂u 

]
= − 1 

p 
x 2 (t)(bx 1 (t)(λ1 (t) − 1) + mp(1 − w )) 

= −αx 2 (t) μ( ̃  τ1 , t) ≥0 . 

ransitioning from an interior arc to a singular arc and vice

ersa at time τ ∈ [0, t f ] violates the continuity conditions

(τ−)(u (τ−) − u (τ+)) ≥ 0 , ˙ σ (τ+)(u (τ−) − u (τ+)) > 0 . While

ransitioning from a boundary to a singular arc and vice versa at

ime τ ∈ [0, t f ] satisfies the aforementioned continuity conditions,

t also has to satisfy 

∂ 

∂u 

[
d 2 

dt 

∂H 

∂u 

]∣∣∣∣
t= τ

= αx 2 (τ ) μ(τ, τ ) ≤ 0 . 

f the condition above holds for any junction time τ , then μ( t 2 ,

) > 0 for the boundary arc and μ( τ , τ ) ≤ 0 for the singular arc

ould have to hold simultaneously. Thus, a singular arc will not be

art of the optimal solution. 
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Finally, since h (x (t 3 −)) = 0 and h 1 (x (t 3 −)) = 0 if t 2 � = t 3 ,

˙ x 2 (t 3 )(u = 0) < 0 and the optimal control (14) ends with a zero

segment for t ∈ [ t 3 , t f ], which also satisfies the transversality con-

dition (9) . �

Remark 1. If u b (x 1 (t 2 )) ≤ u max does not hold, by analogous deriva-

tions to the proof above, it can be shown that adding a finite num-

ber n of sequences of a zero arc followed by an u max -arc, until a

switch to the boundary arc at time t 2 n +2 becomes possible with

u b (x 1 (t 2 n +2 )) = u max , fulfills the necessary optimality conditions.

For simplicity, this case is excluded in the following elaborations. 

As a consequence of the above proposition, solutions of

Problem 1 will exhibit the structure of the generalized bang-

boundary control policy (14) . Note that the specific optimal policy

strongly depends on the choice of w as well as the model param-

eters. What remains to be determined are the optimal switching

times. Instead of directly optimizing the switching times t 1 , t 2 , t 3 ,

t 4 , introduce the arc durations ξi = t i − t i −1 , assuming t 4 = t f . Thus,

the induced optimization problem reads 

min ξ1 ,ξ2 ,ξ3 ,ξ4 
g(x (t f )) , 

s.t. (1) , (3) , (14) , (15) , (16) , 
∑ 4 

i =1 ξi = t f , x (0) = x 0 . 

(17)

This optimization problem can be simplified further. If w = 1 , i.e.,

the goal is to minimize only the total number of infections, the op-

timal control is u (t) = u max , ∀ t ∈ [0 , t f ] . Similarly, note that the ex-

istence of a solution to Problem 1 , can be checked, if given an ini-

tial state x 0 and applying u (t) = u max , there exists no time t ∈ [0,

t f ], where the capacity constraint (3) is violated. For other values

of w , the optimal control is given by (14) , which denotes two pos-

sible policies – one containing a boundary arc, and one without

a boundary arc. Note that (1) is explicitly solved on the bound-

ary arc, as already used in the proof of Proposition 1 . Thus, solving

(17) can be replaced by solving the three aforementioned bound-

ary value problems and choosing the policy that yields the mini-

mal cost. 

Corresponding derivations for the SEIR model can be found in

the appendix. The induced optimization problem (17) can be re-

computed in a data-driven manner to obtain an improved quaran-

tine action, as shown in the following. 

4. Data-driven receding horizon control 

While a fast response upon an epidemic outbreak is essential,

for a newly emerged disease, like in the case of COVID-19 at the

beginning of 2020, disease characteristics are highly uncertain. As

more data and insights become available over time, it can be ex-

pected that the parameter estimates of the models can be im-

proved continuously. This can be achieved, e.g., by minimizing the

mean square error loss function between measured state data x̃

until time τ and the state trajectory predicted by the model with

respect to the parameters P = { b, m } of the SIR model, i.e., 

min P 
∑ τ

t=0 

∑ n j 
i =1 

‖ x i (t) − ˜ x i (t) ‖ 

2 , 

s.t. (1) . 
(18)

Analogously, this can be done for the SEIR model with P =
{ b, m, c} . 

At any time τ , using the parameter estimates P τ obtained by

(18) and the measured state ˜ x (τ ) , the induced optimization prob-

lem (17) can be re-solved with x 0 = ˜ x (τ ) . Assume that the param-

eter estimates are updated whenever new data becomes available.

Based on that, a data-driven receding horizon approach is adopted,

where the control is obtained by re-computing (17) , only when the

current parameter estimates deviate from the parameter estimates

used in the previous computation step evaluated by a function ζ
y a pre-defined threshold δ. The similarity function ζ was as-

umed to be a simple absolute deviation in this work, but it can

ontain more complex considerations like, e.g., the covariance of

he estimates. This leads to Algorithm 1 . 

Note that, in general, receding horizon control approaches with

ncertain parameters cannot guarantee that hard constraints will

ot be violated. Thus, to increase satisfaction probability, the ca-

acity constraint (3) can be tightened conservatively based on the

onfidence of the current parameter estimate P t . 

. Application to SARS-CoV-2 outbreak data from Germany 

The proposed method is applied to data from the SARS-CoV-

 outbreak in Germany until June 2020. Two cases are consid-

red – w = 0 and w = 0 . 5 , which correspond to minimizing only

he overall number of isolated individuals and a trade-off between

he overall number of isolated individuals and the total size of the

utbreak, respectively. The optimization problems are solved with

ciPy’s bvp and minimize routines. 

.1. Parameters 

Most parameters are taken from a report of the German Robert

och Institute [21] – a susceptible population of x 1 (0) = 80 . 10 6 

nd an initial number of infections x 2 (0) = 10 0 0 , corresponding to

he number of registered infections in Germany on March 8, 2020.

he initial numbers of recovered and quarantined individuals are

oth 0. For the SEIR model, an initial exposed individuals number

f 100 is assumed. Further, a basic reproduction number R t = 2 . 0

s assumed in the uncontrolled models, as well as an inverse mean

nfectious period in days of m = 0 . 091 . The percentage of infected

ndividuals admitted to an intensive care unit is 1.2% and the mor-

ality is 0.5%. The overall number of intensive care units in Ger-

any was αc = 40 . 10 3 by the end of March 2020 [22] . The as-

umed maximum control value u max is defined such that it leads to

n effective reproduction number ˜ R t = 1 . 0 , i.e., with Eq. (2) given

y u max = 0 . 091 . 

For the receding horizon control approach, publicly available

ata from RKI from March 1 until June 1, 2020 to re-estimate the

arameters P 1 = { b, c, m } for this time period, and assume the ac-

ual parameters R t = 2 . 5 , c = 0 . 25 and u max = 0 . 068 thereafter. The

ontrol is re-computed according to Algorithm 1 . 

.2. Analysis 

Figs. 1 and 2 show the model state trajectories, the capacity

onstraint and the control over time for the uncontrolled (left) and

he optimally controlled (right) with the aforementioned parame-

ers for the SIR and SEIR model, respectively. It is notable that for

oth cases, i.e., for w = 0 and w = 0 . 5 , respectively, the optimal so-

ution is given by a bang-boundary control, when using the SIR or

he SEIR model. 

Applying the optimal control to the SIR model under the given

ssumptions, the pandemic is predicted to lead to an expected to-

al number of cases of 54 084 981, and a total number of deaths

f 270 424. The simulations also indicate that the turnaround (final

eak of active cases) should occur 26 weeks after the start of the

utbreak. The overall outbreak should be completely overcome af-

er 44 weeks, without a second wave of infections. This closely re-

embles predictions made in an der Heiden and Buchholz [21] and

23] . 

Fig. 3 shows the result with the data-driven receding horizon

ontrol. Due to the high estimate of the reproductive number in

he initial phase, the maximal isolation control starts earlier, and,

verall, applies more isolation due to the parameter uncertainty.
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Fig. 1. Solutions using the SIR model. The left column shows the uncontrolled case, and the right column – the optimal solution for both w = 0 and w = 0 . 5 . 

Fig. 2. Solutions using the SEIR model. The left column shows the uncontrolled case, and the right column – the optimal solution for both w = 0 and w = 0 . 5 . 
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s  
ote that the control maintains the capacity constraint. In prac-

ice, a toggling between bang-bang controls could be prevented by

ntroducing a hysteresis, when a new control policy is computed in

lgorithm 1 . 

Applying the optimal control under the given assumptions, the

andemic is predicted to lead to an expected total number of cases

f 49 004 201, and a total number of deaths of 245 021. Note that

he lower number of infections is a consequence of the longer pe-

iod of applied quarantine control compared to the preceding sim-

lation example. Another consequence of the longer quarantine is
 n  
 slightly delayed turnaround that should occur 30 weeks after the

tart of the outbreak. The overall outbreak should be completely

vercome after 50 weeks, without a second wave of infections, and

hile control and capacity constraints are maintained at all times. 

. Summary and discussion 

The optimal quarantine control of an infectious spread was

tudied assuming an SIR epidemic model with permanent immu-

ity and no vaccine availability. The control strategy, which min-
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Fig. 3. Data-driven receding horizon quarantine control of the SEIR model. The left column shows the uncontrolled dynamics, and the estimate of the parameters. The right 

columns depict the controlled result with Algorithm 1 . 

Algorithm 1 Data-driven receding horizon control at time τ . 

Input : Measured data x | [0 ,τ ] 

Parameters : initial parameters P 0 , initial times t 0 , 1 , t 0 , 2 , t 0 , 3 , 

threshold δ, final time t f 
Output : optimal switching times t 1 , t 2 , t 3 

1: if P t−1 = ∅ then 

2: P t−1 ← P 0 , t 1 ← t 0 , 1 , t 2 ← t 0 , 2 , t 3 ← t 0 , 3 . 

3: end if 

4: P t ← solve (18) with data x | [0 ,τ ] and initial parameter value 

P t−1 . 

5: if ζ (P t−1 , P t ) > δ then 

6: t 1 , t 2 , t 3 ← solve (17) initialized with previous t 1 , t 2 , t 3 
7: P t−1 ← P t . 

8: end if 

9: return t 1 , t 2 , t 3 
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x  
imizes the final outbreak state assuming that only limited quar-

antine control is available and capacity constraints have to be re-

spected, was derived from necessary optimality conditions. The

solution is to possibly delay the control action first, and then,

if needed, apply maximal isolation. If the capacity boundary is

reached, a boundary control maintaining the infection numbers

may be applied afterwards, until the infection numbers begin to

drop. This result was used in a data-driven receding horizon con-

trol approach to improve actions as more data becomes available

for a previously unknown disease. The application of the proposed

schemes to publicly available data from the outbreak of SARS-CoV-

2 in Germany indicate that a sufficiently delayed and controlled

release of the lockdown are optimal, and would result in overcom-

ing the outbreak within one year. 

Note that a constant overall population was assumed through-

out this work. Effects resulting from population exchange could be

addressed, e.g., as suggested in Xue et al. [24] , leading to a stochas-
ic induced optimization problem. An interesting remaining ques-

ion is how to determine the maximal isolation control value, as

ell as how to map the boundary control values to practical isola-

ion actions. A promising approach for addressing both topics could

e using machine learning techniques, e.g., building upon ideas

rom [5] . Another research direction could be to embed the pa-

ameter estimation uncertainty into the data-driven optimization

o achieve an improved exploration-exploitation trade-off. 
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ppendix A. Optimal control for the SEIR model 

Including quarantine control analogously to (1) , the sub-

opulationsâ evolution in the SEIR model is governed by the fol-

owing system of coupled nonlinear ordinary differential equa-

ions: 

˙ 
 (t) = f 1 (x (t ) , u (t )) = 

⎡ 

⎢ ⎢ ⎢ ⎣ 

− b 
p 

x 1 (t) x 2 (t) 

cx 3 (t) − ( m + u ( t ) ) x 2 ( t ) 
b 
p 

x 1 (t) x 2 (t) − cx 3 (t) 

mx 2 (t) 
u (t ) x 2 (t ) 

⎤ 

⎥ ⎥ ⎥ ⎦ 

, (19)
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[  
here x = [ S, I, E, R, Q] T ⊆ R 

5 + , the population p = 

∑ 5 
i =1 x i (t) , and b

nd c denote the exposure and infection rates, respectively. The re-

roduction number remains as defined in (2) . Analogously to the

laborations provided for the SIR model, the most important equa-

ions are derived as: 

h 1 ( x ) = αx 2 ( t ) ( cx 3 ( t ) − ( m + u ( t ) ) ) 

u b ( x ) = c 
x 3 ( t ) 

x 2 ( t ) 
− m 

 ( x, u, λ, η) = − b 

p 
λ1 x 1 x 2 + λ4 mx 2 + λ5 x 2 u + ( αx 2 − 1 ) η

+ ( cx 3 − ( m + u ) x 2 ) λ2 + 

(
b 

p 
λ1 x 1 x 2 − cx 3 

)
λ3 

˙ λ1 = 

b 

p 
x 2 ( t ) ( λ1 ( t ) − λ3 ( t ) ) , λ1 

(
t f 

)
= 0 , 

˙ λ2 = −αη + 

b 

p 
x 1 ( λ1 − λ3 ) + ( m + u ) λ2 − m, λ2 

(
t f 

)
= 0

˙ λ3 = c ( λ3 − λ2 ) , λ3 

(
t f 

)
= 0 , 

˙ λ4 = 0 , λ4 

(
t f 

)
= w, → λ3 ( t ) = w, 

˙ λ5 = 0 , λ5 

(
t f 

)
= 1 , → λ5 ( t ) = 1 , 

σ ( t ) = w u − λ2 ( t ) x 2 ( t ) 

η( t ) = 

b 

αp 
( λ1 ( t ) − λ3 ( t ) ) x 1 ( t ) + 

c 

αx 2 ( t ) 
λ2 ( t ) x 3 ( t ) − m 

α

ollowing an analogous approach, Proposition 1 can be proven for

he SEIR model, yielding an identically structured optimal policy. 
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