
 

 

Since January 2020 Elsevier has created a COVID-19 resource centre with 

free information in English and Mandarin on the novel coronavirus COVID-

19. The COVID-19 resource centre is hosted on Elsevier Connect, the 

company's public news and information website. 

 

Elsevier hereby grants permission to make all its COVID-19-related 

research that is available on the COVID-19 resource centre - including this 

research content - immediately available in PubMed Central and other 

publicly funded repositories, such as the WHO COVID database with rights 

for unrestricted research re-use and analyses in any form or by any means 

with acknowledgement of the original source. These permissions are 

granted for free by Elsevier for as long as the COVID-19 resource centre 

remains active. 

 



Chaos, Solitons and Fractals 140 (2020) 110171 

Contents lists available at ScienceDirect 

Chaos, Solitons and Fractals 

Nonlinear Science, and Nonequilibrium and Complex Phenomena 

journal homepage: www.elsevier.com/locate/chaos 

On the dynamical modeling of COVID-19 involving Atangana–Baleanu 

fractional derivative and base d on Daub echies framelet simulations 

Mutaz Mohammad 

a , ∗, Alexander Trounev 

b 

a Zayed University, United Arab Emirates 
b Kuban State Agrarian University, Russia 

a r t i c l e i n f o 

Article history: 

Received 15 July 2020 

Revised 21 July 2020 

Accepted 27 July 2020 

Available online 28 July 2020 

Keywords: 

Fractional differential equations 

Novel coronavirus 

Daubechies wavelet 

Tight frame 

Mathematical model 

a b s t r a c t 

In this paper, we present a novel fractional order COVID-19 mathematical model by involving fractional 

order with specific parameters. The new fractional model is based on the well-known Atangana–Baleanu 

fractional derivative with non-singular kernel. The proposed system is developed using eight fractional- 

order nonlinear differential equations. The Daubechies framelet system of the model is used to simulate 

the nonlinear differential equations presented in this paper. The framelet system is generated based on 

the quasi-affine setting. In order to validate the numerical scheme, we provide numerical simulations of 

all variables given in the model. 
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. Introduction 

The novel corona-virus is a new strain of coronavirus which

ay cause illness, fever, dry cough where these symptoms are usu-

lly mild and begin gradually. The world health organization has

eclared this virus as a pandemic in early March of 2020 where

any countries have taken serious actions and implemented cur-

ew, quarantine and lock-down measures as a plan to control the

apid spread of COVID-19. The first case of COVID-19 was detected

n Wuhan city in China at the end of the year of 2019 where it is

uggested that the COVID-19 virus might be originated from bats

nd it’s transmission might related to a seafood market exposure.

any researchers worldwide started to work on developing math-

matical models that best describe the dynamics of this pandemic.

t is known in biological system with memory it would be suit-

ble to use fractional derivatives to describe evolution of the sys-

em [1–10] . Furthermore, Atangana–Baleanu fractional derivative

ABFD) has been one of the most useful operators for modeling

on-local behaviors by fractional differential equations. The advan-

age of using such derivative lies on its properties such as the non-

ocality and non-singularity of its kernel, and the crossover behav-

or in the model can only be best described using this derivative.

dditionally, it allows traditional and various types of initial condi-

ions to be consider in the creation of the dynamical model. Many

cientists proposed new models to best describe the dynamics of
∗ Corresponding author. 

E-mail address: Mutaz.Mohammad@zu.ac.ae (M. Mohammad). 

a  

s  

m

ttps://doi.org/10.1016/j.chaos.2020.110171 

960-0779/© 2020 Elsevier Ltd. All rights reserved. 
ll possible parameters responsible for the daily cases reported in-

luding deaths, control the fatality rate, and prediction of COVID-19

ehavior in future within a specific region. It is known that sev-

ral models can describe the same system, which is a challeng-

ng step. In this paper we intend to formulate a new mathematical

odel of Corona virus based on the model presented in Ndaïrou

t al. [11] based on ABFD. The numerical method simulation is con-

ucted via the framelet system generated using Daubechies scaling

unctions. 

Daubechies wavelets have been proven as a useful tool in a va-

iety of various applications such as filter banks constructions in

mage painting. This is largely due to the fact that wavelets have

he right structure to capture the sparsity in âphysicalâ images,

erfect mathematical properties such as its multi-scale structure,

parsity, smoothness, compactly supported, and high vanishing

oments properties. It has many applications in fractional inte-

ral and differential equations (see for example [12–28] . Framelets

ave been used extensively in the context of both pure and nu-

erical methods in several applications, due to their well prevail-

ng and recognized theory and its natural properties such as spar-

ity and stability which lead to a well-conditioned scheme. In this

aper, an effective and accurate technique based on Daubechies

avelets is presented for solving the transmission model of COVID-

9 based on Caputo fractional derivative. The advantage of using

uch wavelets, lies on its simple structure of the reduced systems

nd in the powerfulness of obtaining approximated solutions for

uch equations that have weakly singular kernels. The proposed

ethod shows a good performance and high accuracy orders. 

https://doi.org/10.1016/j.chaos.2020.110171
http://www.ScienceDirect.com
http://www.elsevier.com/locate/chaos
http://crossmark.crossref.org/dialog/?doi=10.1016/j.chaos.2020.110171&domain=pdf
mailto:Mutaz.Mohammad@zu.ac.ae
https://doi.org/10.1016/j.chaos.2020.110171
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Fig. 1. Daubechies refinable functions with their corresponding wavelets of order q = 1 and q = 2 respectively. 
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Definition 1.1. A function φ ∈ L 2 (R ) is called a scaling function if

φ = 2 

∑ 

k Z 

a [ k ] φ(2 · −k ) , (1.1)

where a [ k ] ∈ � 2 (Z ) is finitely supported sequence and is called the

refinement mask of φ. The corresponding wavelet function is de-

fined by 

ψ = 2 

∑ 

k Z 

b[ k ] φ(2 · −k ) , (1.2)

where b[ k ] ∈ � 2 (Z ) is finitely supported sequence and is called the

high pass filter of ψ . 

For a function f ∈ L 1 (R ) (which can be naturaly extended to

L 2 (R ) ), we use the following Fourier transform defined by 

ˆ f (ξ ) = 

1 √ 

2 π

∫ 
R 

e −ixξ f (x ) dx. 

The Fourier series of the sequence a is defined by 

ˆ a (ξ ) = 

∑ 

k ∈ Z 
a [ k ] e −ikξ , ξ ∈ R . (1.3)

2. Daubechies framelets using the unitary extension principle 

(UEP) 

If g is a wavelet function that has q vanishing moments such

that ∫ 
t m g ( t ) dt = 0 , m = 0 , 1 , . . . , q − 1 . 

Suppose that the function g generates an orthonormal basis of

L 2 (R ) , then the constructed wavelet will be compactly supported

within the domain [0 , 2 q − 1] . Daubechies wavelets do not have

explicit form but defined recursively as follows 

g m 

( x ) = 

√ 

2 

∑ 

k ∈ Z 
h k φm −1 ( 2 x − k ) , 

g 0 ( x ) = χ[0 , 1) (x ) . 

One of the important features of this wavelet is its smoothness as

it increases for a higher q . We present the graphs of φ and its cor-

responding wavelet ψ when q = 1 , 2 and 3,4 in Figs. 1 and 2 re-

spectively. 
efinition 2.1. A sequence { g k } ∞ 

k =1 
of functions in L 2 (R ) is called a

rame for L 2 (R ) if ∃ postive numbers r, R such that 

‖ f ‖ 

2 ≤
∞ ∑ 

k =1 

| 〈 g, g k 〉 | 2 ≤ R ‖ f ‖ 

2 , ∀ g ∈ L 2 (R ) . 

he constants r, R are called frame bounds [29] . A frame is called

ight if we have r = R as frame bounds, and it is Parseval frame if

 = R = 1 . 

The idea is to construct framelet system based on Daubechies

caling function φ and its corresponding wavelet function ψ . As-

ume that � = { ψ � } r � =1 ⊂ L 2 (R ) such that 

 � = 2 

∑ 

k ∈ Z 
b � [ k ] φ(2 · −k ) , (2.1)

here { b � [ k ] , k ∈ Z } r � =1 is a finitely supported sequence. Define the

avelet system 

 ( �) = 

{
ψ �, j,k : 1 ≤ � ≤ r; j, k ∈ Z 

}
, 

here ψ �, j,k (x ) = 2 j/ 2 ψ � (2 j x − k ) . 

heorem 2.2 (UEP [29] ) . Assume that φ ∈ L 2 (R ) be a compactly

upported scaling function. Let { b � [ k ] , k ∈ Z } r � =1 be a set of finitely

upported sequences, then 

 ( �) = 

{
ψ �, j,k : 1 ≤ � ≤ r; j, k ∈ Z 

}
(2.2)

enerates a framelet system for L 2 (R ) if the following is hold for any

 ∈ Z 

r 
 

� =0 

∑ 

k ∈ Z 
b � [ k ] b � [ k − p] = δ0 ,d (2.3)

nd 
r 

 

� =0 

∑ 

k ∈ Z 
( −1 ) 

k −d b � [ k ] b � [ k − d] = 0 . (2.4)

According to Theorem 2.2 , for any constructed framelet system

e have the following representation given by 

f = 

r ∑ 

� =1 

∑ 

j∈ Z 

∑ 

k ∈ Z 

〈
f, ψ �, j,k 

〉
ψ �, j,k . (2.5)

his system can be truncated by U n f as follows 

 n f = 

r ∑ ∑ ∑ 〈
f, ψ �, j,k 

〉
ψ �, j,k . (2.6)
� =1 j<n k ∈ Z 
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Fig. 2. Daubechies refinable functions with their corresponding wavelets of order q = 3 and q = 4 respectively. 

Fig. 3. Daubechies framelet generators with their corresponding scaling functions for q = 1 and q = 2 respectively. 
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.1. Examples of Daubechies framelet systems 

Here we provide some examples on the construction of framelet

ystems basd on several orders of Daubechies scaling functions of

ifferent orders. 

xample 2.1. For q = 1 , let a [ k ] = [0 . 5 , 0 . 5] . Then based on the

EP, we can find two finitely supported sequences b 1 [ k ], b 2 [ k ] such

hat the following two functions generate a framelet system of

 

2 (R ) 

ˆ 
 1 (ξ ) = − (0 . 282238 i ) e (0 . 5 i ) ξ

ξ
+ 

0 . 282238 i 

ξ
− 0 . 564477 e (0 . 75 i ) ξ sin (0 . 25 ξ ) 

ξ
, 

ˆ 
 2 (ξ ) = 

(0 . 282238 i ) e (0 . 5 i ) ξ

ξ
− 0 . 282238 i 

ξ
+ 

0 . 564477 e (0 . 75 i ) ξ sin (0 . 25 ξ ) 

ξ
. 

ote that, according to the UEP we need to solve the following

ystem of equation written in MATLAB software to be able to get

he required sequences b 1 [ k ], b 2 [ k ], where for q = 1 we have 

f unction F = mydaub2(x ) 

F = [(x (1)) 2 + (x (2)) 2 + (x (3)) 2 + (x (4)) 2 − . 5 ; x (1) ∗ x (2) + x (3) ∗ x (4) + (1 / 4)

(x (1)) 2 − (x (2)) 2 + (x (3)) 2 − (x (4)) 2 ] ;
end ;
nd for q = 2 we have the following 

f unction F = mydaub4(x ) 

F = [(x (1)) 2 + (x (2)) 2 + (x (3)) 2 + (x (4)) 2 + (x (5)) 2 + (x (6)) 2 + (x (7)) 2 + (x (8)) 2 − (1 / 2) ;
x (1) ∗ x (2) + x (2) ∗ x (3) + x (3) ∗ x (4) + x (5) ∗ x (6) + x (6) ∗ x (7) + x (7) ∗ x (8) + (9 / 32) ;
x (1) ∗ x (3) + x (2) ∗ x (4) + x (5) ∗ x (7) + x (6) ∗ x (8) ;
x (1) ∗ x (4) + x (5) ∗ x (8) + (−1 / 32) ;
(x (1)) 2 − (x (2)) 2 + (x (3)) 2 − (x (4)) 2 + (x (5)) 2 − (x (6)) 2 + (x (7)) 2 − (x (8)) 2 + (−585 / 270

x (1) ∗ x (2) − x (2) ∗ x (3) + x (3) ∗ x (4) + x (5) ∗ x (6) − x (6) ∗ x (7) + x (7) ∗ x (8) + (3 / 32) ;
x (1) ∗ x (3) − x (2) ∗ x (4) + x (5) ∗ x (7) − x (6) ∗ x (8) + (484 / 4471)] ;
end ;

here x ( k ) is the nonzero value of the compactly supported se-

uences of both b 1 and b 2 . Note that, when q = 2 , we have the

ollowing low pass filter 

 [ k ] = [ 
1 + 

√ 

3 

8 

, 
3 + 

√ 

3 

8 

, 
3 − √ 

3 

8 

, 
1 − √ 

3 

8 

] 

he graphs of Daubechies scaling functions of order one and two

long with their corresponding framelets are depicted in Fig. 3 . 

xample 2.2. For q = 3 , we have the following low pass filter re-

ated to Daubechies scaling function of order 3 given by 

 [ k ] = [0 . 235233 , 0 . 5705584 , 0 . 325182 , −0 . 095467 , −0 . 06041610 , 0 . 0249087] .
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Fig. 4. Daubechies framelet generators with their corresponding scaling functions for q = 3 and q = 4 respectively. 
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Then based on the UEP, we can find two finitely supported se-

quences b 1 [ k ], b 2 [ k ] such that two functions ψ 1 , ψ 2 can generate a

framelet system of L 2 (R ) . Note that, according to the UEP we need

to solve the following system of equation written in MATLAB soft-

ware to be able to get the required sequences b 1 [ k ], b 2 [ k ], where

for q = 3 we have 

f unction F = mydaub6(x ) 

F = [(x (1)) 2 + (x (2)) 2 + (x (3)) 2 + (x (4)) 2 + (x (5)) 2 + (x (6)) 2 + (x (7)) 2 + (x (8)) 2 + (x (9)) 2 +
(x (10)) 2 + (x (11)) 2 + (x (12)) 2 − . 5 ;
x (1) ∗ x (2) + x (2) ∗ x (3) + x (3) ∗ x (4) + x (4) ∗ x (5) + x (5) ∗ x (6) + x (7) ∗ x (8) + 
x (8) ∗ x (9) + x (9) ∗ x (10) + x (10) ∗ x (11) + x (11) ∗ x (12) + (75 / 256) ;
x (1) ∗ x (3) + x (2) ∗ x (4) + x (3) ∗ x (5) + x (4) ∗ x (6) + x (7) ∗ x (9) + 
x (10) ∗ x (8) + x (11) ∗ x (9) + x (12) ∗ x (10) + (0) ;
x (1) ∗ x (4) + x (2) ∗ x (5) + x (6) ∗ x (3) + x (10) ∗ x (7) + x (11) ∗ x (8) + 
x (12) ∗ x (9) + (−25 / 512) ; x (1) ∗ x (5) + x (2) ∗ x (6) + x (11) ∗ x (7) + 
x (12) ∗ x (8) + (0) ; x (1) ∗ x (6) + x (12) ∗ x (7) + (3 / 512) ;
(x (1)) 2 − (x (2)) 2 + (x (3)) 2 − (x (4)) 2 + (x (5)) 2 − (x (6)) 2 + 
(x (7)) 2 − (x (8)) 2 + (x (9)) 2 − (x (10)) 2 + (x (11)) 2 − (x (12)) 2 + (−22 / 129) ;
x (1) ∗ x (2) − x (2) ∗ x (3) + x (3) ∗ x (4) − x (4) ∗ x (5) + x (5) ∗ x (6) + x (7) ∗ x (8) −
x (8) ∗ x (9) + x (9) ∗ x (10) − x (10) ∗ x (11) + x (11) ∗ x (12) + (−468 / 5221) ;
x (1) ∗ x (3) − x (2) ∗ x (4) + x (3) ∗ x (5) − x (4) ∗ x (6) + x (7) ∗ x (9) − x (10) ∗ x (8) + 
x (11) ∗ x (9) − x (12) ∗ x (10) + (44 / 387) ; x (1) ∗ x (4) − x (2) ∗ x (5) + 
x (3) ∗ x (6) + x (10) ∗ x (7) − x (11) ∗ x (8) + x (12) ∗ x (9) + (329 / 16357) ;
x (1) ∗ x (5) − x (2) ∗ x (6) + x (11) ∗ x (7) − x (12) ∗ x (8) + (−11 / 387) ; ] ;

end;

For q = 4 , we have the following low pass filter 

a [ k ] = [0 . 1629017 , 0 . 50547285 , 0 . 44610 0 0 , −0 . 01978751 , 

−0 . 1322535 , 0 . 02180815 , . 0232518005 , −0 . 0074 934 9 , 

−0 . 1322535836 , 0 . 021808150 , 0 . 0232518005 , −0 . 0074 934 9] 

Again we need to solve a bigger system to obtain sequences b 1 [ k ],

b 2 [ k ], where x ( k ) is the nonzero values of the supported sequences.

The system is given by the following 

f unction F = mydaub8(x ) 

F = [(x (1)) 2 + (x (2)) 2 + (x (3)) 2 + (x (4)) 2 + (x (5)) 2 + (x (6)) 2 + (x (7)) 2 + 
(x (8)) 2 + (x (9)) 2 + (x (10)) 2 + (x (11)) 2 + (x (12)) 2 + (x (13)) 2 + (x (14)) 2 + 
(x (15)) 2 + (x (16)) 2 − (1 / 2) ; x (1) ∗ x (2) + x (2) ∗ x (3) + x (3) ∗ x (4) + x (4) ∗ x (5) + 
x (5) ∗ x (6) + x (6) ∗ x (7) + x (7) ∗ x (8) + x (9) ∗ x (10) + x (10) ∗ x (11) + x (11) ∗ x (12) +
x (12) ∗ x (13) + x (13) ∗ x (14) + x (14) ∗ x (15) + x (15) ∗ x (16) + (419 / 1401) ;
x (1) ∗ x (3) + x (2) ∗ x (4) + x (3) ∗ x (5) + x (4) ∗ x (6) + x (5) ∗ x (7) + x (6) ∗ x (8) + 
x (9) ∗ x (11) + x (10) ∗ x (12) + x (11) ∗ x (13) + x (12) ∗ x (14) + x (13) ∗ x (15) + 
x (14) ∗ x (16)+ ; x (1) ∗ x (4) + x (2) ∗ x (5) + x (3) ∗ x (6) + x (4) ∗ x (7) + 
x (5) ∗ x (8) + x (9) ∗ x (12) + x (10) ∗ x (13) + x (11) ∗ x (14) + x (12) ∗ x (15) + 
x (13) ∗ x (16) + (−245 / 4096) ; x (1) ∗ x (5) + x (2) ∗ x (6) + x (3) ∗ x (7) + x (4) ∗ x (8) + 
x (9) ∗ x (13) + x (10) ∗ x (14) + x (11) ∗ x (15) + x (12) ∗ x (16) + (0) ;

x (1) ∗ x (6) + x (2) ∗ x (7) + x (3) ∗ x (8) + x (9) ∗ x (14) + x (10) ∗ x (15) + 
x (11) ∗ x (16) + (49 / 4096) ; x (1) ∗ x (7) + x (2) ∗ x (8) + x (9) ∗ x (15) + 
x (10) ∗ x (16) + (0) ; x (1) ∗ x (8) + x (9) ∗ x (16) + (−5 / 4096) ;
(x (1)) 2 − (x (2)) 2 + (x (3)) 2 − (x (4)) 2 + (x (5)) 2 − (x (6)) 2 + 
(x (7)) 2 − (x (8)) 2 + (x (9)) 2 − (x (10)) 2 + (x (11)) 2 − (x (12)) 2 + 
(x (13)) 2 − (x (14)) 2 + (x (15)) 2 − (x (16)) 2 + (−26 / 2023) ;
x (1) ∗ x (2) − x (2) ∗ x (3) + x (3) ∗ x (4) − x (4) ∗ x (5) + x (5) ∗ x (6) − x (6) ∗ x (7) + 
x (7) ∗ x (8) + x (9) ∗ x (10) − x (10) ∗ x (11) + x (11) ∗ x (12) − x (12) ∗ x (13) + 
x (13) ∗ x (14) − x (14) ∗ x (15) + x (15) ∗ x (16) + (−536 / 3389) ;
x (1) ∗ x (3) − x (2) ∗ x (4) + x (3) ∗ x (5) − x (4) ∗ x (6) + x (5) ∗ x (7) − x (6) ∗ x (8) + 
x (9) ∗ x (11) − x (10) ∗ x (12) + x (11) ∗ x (13) − x (12) ∗ x (14) + x (13) ∗ x (15) + 
−x (14) ∗ x (16) + (202 / 9531) ; x (1) ∗ x (4) − x (2) ∗ x (5) + x (3) ∗ x (6) − x (4) ∗ x (7) + 
x (5) ∗ x (8) + x (9) ∗ x (12) − x (10) ∗ x (13) + x (11) ∗ x (14) − x (12) ∗ x (15) + 
x (13) ∗ x (16) + (155 / 2072) ; x (1) ∗ x (5) − x (2) ∗ x (6) + x (3) ∗ x (7) + 
−x (4) ∗ x (8) + x (9) ∗ x (13) − x (10) ∗ x (14) + x (11) ∗ x (15) − x (12) ∗ x (16) + (−127 / 5684) ;
x (1) ∗ x (6) − x (2) ∗ x (7) + x (3) ∗ x (8) + x (9) ∗ x (14) − x (10) ∗ x (15) + x (11) ∗ x (16) + 
(−224 / 19405) ; x (1) ∗ x (7) − x (2) ∗ x (8) + x (9) ∗ x (15) − x (10) ∗ x (16) + (238 / 31417)] ;
end;

We present the graphs of Daubechies scaling functions of order

hree and four along with their corresponding framelets in Fig. 4 . 

Given the construction in the first part above and to simulate

he resulting equations, now we are ready to introduce the new

OVID-19 fractional model of nonlinear differential equations by

pplying the Atangana–Baleanu derivative. The advantage of using

uch framelet lies in its properties such as the highest number of

anishing moments, redundancy and its applications in solving a

road range of problems such as fractal problems and function dis-

ontinuities, see e.g., [13] . 

. ABFD of COVID-19 model 

Herein, we consider the model presented in Ndaïrou et al.

11] using ABFD. The model has eight nonlinear DEs. To simulate

he system and for simplicity, we consider Daubechies framelet

ystem of order one. 

Hence, the new modified model that obtained by changing the

eft hand side of the system presented in Ndaïrou et al. [11] by in-

olving ABFD. Before presenting the new model in fractional sense,
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Fig. 5. Illustrations of the variables S and E of the fractional COVID-19 model using different values of α. 

Fig. 6. Illustrations of the variables I and P of the fractional COVID-19 model using different values of α. 
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et us provide the definition of ABFD and its associated integral.

he advantage of using such framelets lies 

efinition 3.1. For a real function u ( t ) where t, α > 0 and n ∈ N ,

e have the following fractional operators of order α, namely: 

• The ABFD sense, 

ABC 
a D 

α
t u (t) = 

B(α) 

1 − α

∫ t 

a 

u 

′ ( y ) M α

(
− α

1 − α
( t − y ) α

)
dy , 

where B(α) is a normalization function such that B(0) =
B(1) = 0 and M α is the MittagâLeffler function. 

• The integral operator corresponding to this definition is given

by 

I αu (x ) = 

(1 − α) u (x ) 

B ( α) 
+ 

α

B ( α)�( α) 

∫ x 

0 

u ( t) 

( x − t) 1 −α
dt. (3.1)

We refer the reader to [4,5] for more details and properties of

he fractional derivative. 

Therefore, the new model can be written as follows 

BC 
 

D 

α
t S(t) = −βιH(t ) S(t ) − βP (t ) S(t ) + 

(−β) S(t) ; (3.2) 

N N N 
BC 
 

D 

α
t E(t) = 

βιH(t) S(t) 

N 

+ 

βP (t) S(t) 

N 

+ 

(+ β) S(t) 

N 

− κE(t) ;
(3.3) 

BC 
 

D 

α
t I(t) = −I(t) ( γa + γi ) − I(t) δi + κρ1 E(t) ; (3.4)

BC 
 

D 

α
t P (t) = −P (t) ( γa + γi ) − δp P (t) + κρ2 E(t) ; (3.5)

BC 
 

D 

α
t A (t) = κ( −ρ1 − ρ2 + 1 ) E( t) ; (3.6)

BC 
 

D 

α
t H(t) = γa (P (t) + I(t)) − δh H(t) − H(t) γr ; (3.7)

BC 
 

D 

α
t R (t) = H(t ) γr + γi (P (t ) + I(t)) ; (3.8)

BC 
 

D 

α
t F (t) = δh H(t) + δi I(t) + δp P (t) ; (3.9)
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Fig. 7. Illustrations of the variables A and H of the fractional COVID-19 model using different values of α. 

Fig. 8. Illustrations of the variables R and F of the fractional COVID-19 model using different values of α. 

 

 

 

 

 

 

 ;

s  

p

R

a S E F 
with the initial conditions 

S(0) = N − 6 ; I(0) = 1 ; P(0) = 5 ; A (0) = H(0) = R (0) = F (0) = E(0) = 0 , 

where the model parameters and its values are given in Table 1 for

which the reproduction number 

R o = 

βρ1 (γa ι + γr + δh ) 

(γa + γi + δi )(γr + δh ) 
+ 

(βγa ι + β ′ (γr + δh )) ρ2 

(γa + γi + δa )(γr + δh ) 
= 0 . 945 . 

We provide a numerical scheme based on the collocation tech-

nique by discretizing the domain function across the Daubechies

framelet system being used to solve the proposed COVID-19 model.

Therefore, by truncating each unknown variable using the trun-

cated partial sum given in Eq. (2.6) generated using Daubechies

framelet, our new model will take the following structure 

B(α) 

1 − α

∫ t 

a 
S ′ (y ) M α

(
− α

1 − α
( y − α) α

)
dy = − βιH(t) S(t) 

N 
− βP(t) S(t) 

N 
+ (−β) S(t) 

N 
;

B(α) 

1 − α

∫ t 

a 
E ′ (y ) M α

(
− α

1 − α
( y − α) α

)
dy = βιH(t) S(t) 

N 
+ βP(t) S(t) 

N 
+ (+ β) S(t) 

N 
− κE(t)

B(α) 

1 − α

∫ t 

a 
I ′ (y ) M α

(
− α

1 − α
( y − α) α

)
dy = −I (t) 

(
γa + γi 

)
− I (t ) δi + κρ1 E(t ) ;

B(α) 

1 − α

∫ t 
P ′ (y ) M α

(
− α

1 − α
( y − α) α

)
dy = −P (t) 

(
γa + γi 

)
− δp P (t) + κρ2 E(t) ;
a 
B(α) 

1 − α

∫ t 

a 
A ′ (y ) M α

(
− α

1 − α
( y − α) α

)
dy = κ( −ρ1 − ρ2 + 1 ) E(t) ;

B(α) 

1 − α

∫ t 

a 
H ′ (y ) M α

(
− α

1 − α
( y − α) α

)
dy = γa (P(t) + I(t)) − δh H(t) − H(t) γr ;

B(α) 

1 − α

∫ t 

a 
R ′ (y ) M α

(
− α

1 − α
( y − α) α

)
dy = H(t) γr + γi (P(t) + I(t)) ;

B(α) 

1 − α

∫ t 

a 
F ′ (y ) M α

(
− α

1 − α
( y − α) α

)
dy = δh H(t) + δi I(t) + δp P(t) ;

uch that the derivative of each variable takes the following ap-

roximation 

S ′ (x ) ≈ U n S(x ) = 
r ∑ 

� =1 

∑ 

j<n 

∑ 

k ∈ Z 
c S ψ �, j,k (x ) ; E ′ (x ) ≈ U n E(x ) = 

r ∑ 

� =1 

∑ 

j<n 

∑ 

k ∈ Z 
c E ψ �, j,k (x ) 

I ′ (x ) ≈ U n S(x ) = 
r ∑ 

� =1 

∑ 

j<n 

∑ 

k ∈ Z 
c I ψ �, j,k (x ) ; P ′ (x ) ≈ U n P(x ) = 

r ∑ 

� =1 

∑ 

j<n 

∑ 

k ∈ Z 
c P ψ �, j,k (x ) , 

A ′ (x ) ≈ U n S(x ) = 
r ∑ 

� =1 

∑ 

j<n 

∑ 

k ∈ Z 
c A ψ �, j,k (x ) ; H ′ (x ) ≈ U n H(x ) = 

r ∑ 

� =1 

∑ 

j<n 

∑ 

k ∈ Z 
c H ψ �, j,k (x ) 

 

′ (x ) ≈ U n R (x ) = 
r ∑ 

� =1 

∑ 

j<n 

∑ 

k ∈ Z 
c R ψ �, j,k (x ) ; F ′ (x ) ≈ U n F (x ) = 

r ∑ 

� =1 

∑ 

j<n 

∑ 

k ∈ Z 
c F ψ �, j,k (x ) , 

nd the coefficient C , C , . . . , C to be determined. 
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Table 1 

Parameters description and their values given R o = 0 . 945 . 

Parameter Description Parameter value 

S ( t ) The susceptible cases –

E ( t ) The exposed cases –

I ( t ) Symptomatic and infectious class –

P ( t ) Super-spreaders class –

A ( t ) Infectious but asymptomatic class –

H ( t ) Hospitalized –

R ( t ) Recovery class –

F ( t ) Fatality class –

β Transmission coefficient from infected individuals 2.55 

ι Relative transmissibility of hospitalized patients 1.56 

β ′ Transmission coefficient due to super-spreaders 7.65 

κ Rate at which exposed become infectious 0.25 

ρ1 Rate at which exposed people become infected I 0.580 

ρ2 Rate at which exposed people become super-spreaders 0.001 

γ a Rate of being hospitalized 0.94 

γ i Recovery rate without being hospitalized 0.27 

γ r Recovery rate of hospitalized patients 0.50 

δi Disease induced death rate due to infected class 3.5 

δp Disease induced death rate due to super-spreaders 1.00 

δh Disease induced death rate due to hospitalized class 0.30 

 

[

H

 

l

t

a  

fi

H

W  

p

;

H
 

;

 

 

p  

t

4

 

f  

c  

w  

o  

f  

D  

t  

p

D

 

c  

i

Applying the algorithm proposed in Toufik and Atangana

30] yields the following 

S(t) − S(0) − (1 − α) H 1 (t, S) 

B (α) 
− α

B (α)�(α) 

∫ t 

0 

H 1 (x, S) 

(t − x ) 1 −α
dx = 0 ;

E(t) − E(0) − (1 − α) H 2 (t, E) 

B (α) 
− α

B (α)�(α) 

∫ t 

0 

H 2 (x, E) 

(t − x ) 1 −α
dx = 0 ;

I(t) − I(0) − (1 − α) H 3 (t, I) 

B (α) 
− α

B (α)�(α) 

∫ t 

0 

H 3 (x, I) 

(t − x ) 1 −α
dx = 0 ;

P(t) − P(0) − (1 − α) H 4 (t, P) 

B (α) 
− α

B (α)�(α) 

∫ t 

0 

H 4 (x, P) 

(t − x ) 1 −α
dx = 0 ;

A (t) − A (0) − (1 − α) H 5 (t, A ) 

B (α) 
− α

B (α)�(α) 

∫ t 

0 

H 5 (x, A ) 

(t − x ) 1 −α
dx = 0 ;

(t) − H(0) − (1 − α) H 6 (t, H) 

B (α) 
− α

B (α)�(α) 

∫ t 

0 

H 6 (x, H) 

(t − x ) 1 −α
dx = 0 ;

R (t) − R (0) − (1 − α) H 7 (t, R ) 

B (α) 
− α

B (α)�(α) 

∫ t 

0 

H 7 (x, R ) 

(t − x ) 1 −α
dx = 0 ;

F (t) − F (0) − (1 − α) H 8 (t, F ) 

B (α) 
− α

B (α)�(α) 

∫ t 

0 

H 8 (x, F ) 

(t − x ) 1 −α
dx = 0 ;

Based on a specific division, we create collocation points as fol-

ows 

 i = 

i 

M 

, i = 0 , 1 , 2 , . . . , M; M = 2 

1+ n , 

nd by substituting them to the model we have following simpli-

ed equations given by 

S(t i ) − S(0) − (1 − α) H 1 (t i , S) 

B (α) 
− α

B (α)�(α) 

∫ t i 

0 

H 1 (x, S) 

(t i − x ) 1 −α
dx = 0 ;

E(t i ) − E(0) − (1 − α) H 2 (t i , E) 

B (α) 
− α

B (α)�(α) 

∫ t i 

0 

H 2 (x, E) 

(t i − x ) 1 −α
dx = 0 ;

I(t) − I(0) − (1 − α) H 3 (t i , I) 

B (α) 
− α

B (α)�(α) 

∫ t i 

0 

H 3 (x, I) 

(t i − x ) 1 −α
dx = 0 ;

P(t i ) − P(0) − (1 − α) H 4 (t i , P) 

B (α) 
− α

B (α)�(α) 

∫ t i 

0 

H 4 (x, P) 

(t i − x ) 1 −α
dx = 0 ;

A (t i ) − A (0) − (1 − α) H 5 (t i , A ) 

B (α) 
− α

B (α)�(α) 

∫ t i 

0 

H 5 (x, A ) 

(t i − x ) 1 −α
dx = 0 ;

(t i ) − H(0) − (1 − α) H 6 (t i , H) 

B (α) 
− α

B (α)�(α) 

∫ t i 

0 

H 6 (x, H) 

(t i − x ) 1 −α
dx = 0 ;

R (t i ) − R (0) − (1 − α) H 7 (t i , R ) 

B (α) 
− α

B (α)�(α) 

∫ t i 

0 

H 7 (x, R ) 

(t i − x ) 1 −α
dx = 0 ;

F (t i ) − F (0) − (1 − α) H 8 (t i , F ) 

B (α) 
− α

B (α)�(α) 

∫ t i H 8 (x, F ) 

(t − x ) 1 −α
dx = 0 ;
0 i 
e approximate the integrals in the above model using the com-

osite trapezoidal rule. Therefore, 

S(t i ) = S(0) + (1 − α) H 1 (t i , S) 

B (α) 
+ α

B (α)�(α) 

M−1 ∑ 

k =0 

H 1 (t k , S(t k )) 

(t i − t k ) 
1 −α

+ α

B (α)�(α) 

M−1 ∑ 

k =0 

H 1 (t k +1 , S(t k +1 )) 

(t i − t k +1 ) 
1 −α

;

E(t i ) = E(0) + (1 − α) H 2 (t i , E) 

B (α) 
+ α

B (α)�(α) 

M−1 ∑ 

k =0 

H 1 (t k , E(t k )) 

(t i − t k ) 
1 −α

+ α

B (α)�(α) 

M−1 ∑ 

k =0 

H 1 (t k +1 , E(t k +1 )) 

(t i − t k +1 ) 
1 −α

;

I(t i ) = I(0) + (1 − α) H 3 (t i , I) 

B (α) 
+ α

B (α)�(α) 

M−1 ∑ 

k =0 

H 1 (t k , I(t k )) 

(t i − t k ) 
1 −α

+ α

B (α)�(α) 

M−1 ∑ 

k =0 

H 1 (t k +1 , I(t k +1 )) 

(t i − t k +1 ) 
1 −α

;

P(t i ) = P(0) + (1 − α) H 4 (t i , P) 

B (α) 
+ α

B (α)�(α) 

M−1 ∑ 

k =0 

H 1 (t k , P(t k )) 

(t i − t k ) 
1 −α

+ α

B (α)�(α) 

M−1 ∑ 

k =0 

H 1 (t k +1 , P(t k +1 )) 

(t i − t k +1 ) 
1 −α

;

A (t i ) = A (0) + (1 − α) H 5 (t i , A ) 

B (α) 
+ α

B (α)�(α) 

M−1 ∑ 

k =0 

H 1 (t k , A (t k )) 

(t i − t k ) 
1 −α

+ α

B (α)�(α) 

M−1 ∑ 

k =0 

H 1 (t k +1 , A (t k +1 )) 

(t i − t k +1 ) 
1 −α

(t i ) = H(0) + (1 − α) H 6 (t i , H) 

B (α) 
+ α

B (α)�(α) 

M−1 ∑ 

k =0 

H 1 (t k , H(t k )) 

(t i − t k ) 
1 −α

+ α

B (α)�(α) 

M−1 ∑ 

k =0 

H 1 (t k +1 , H(t k +1 ))

(t i − t k +1 ) 
1 −α

R (t i ) = R (0) + (1 − α) H 7 (t i , R ) 

B (α) 
+ α

B (α)�(α) 

M−1 ∑ 

k =0 

H 1 (t k , R (t k )) 

(t i − t k ) 
1 −α

+ α

B (α)�(α) 

M−1 ∑ 

k =0 

H 1 (t k +1 , R (t k +1 )) 

(t i − t k +1 ) 
1 −α

;

F (t i ) = F (0) + (1 − α) H 8 (t i , F ) 

B (α) 
+ α

B (α)�(α) 

M−1 ∑ 

k =0 

H 1 (t k , F (t k )) 

(t i − t k ) 
1 −α

+ α

B (α)�(α) 

M−1 ∑ 

k =0 

H 1 (t k +1 , F (t k +1 )) 

(t i − t k +1 ) 
1 −α

.

By simulating the above equations and as an illustration of the

roposed numerical algorithm, we present some graphical illustra-

ions for all variables of the new COVID-19 model in Figs. 5–8 . 

. Conclusion 

In the present paper, we presented a COVID-19 model with new

ractional operator using ABFD. This mathematical and dynami-

al model is more suitable to describe the biological phenomena

ith memory than the integer order model. To test the behavior

f all variables of the model, we simulated the resulting nonlinear

ractional differential equations model by involving ABFD based on

aubechies framelet systems and obtained various graphical illus-

rations. It turns out that, increasing of the fractional value of the

arameters resulting a decrease in the infection rates. 
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