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The coronavirus disease 2019 (COVID-19) has led to high morbidity and mortality in China, 

Europe, and the United States, triggering unprecedented public health crises throughout the 

world. On March 11, 2020, the World Health Organization (WHO) declared COVID-19 as a 

global pandemic. COVID-19 is caused by a novel coronavirus which is now named severe 

acute respiratory syndrome coronavirus 2 (SARS-CoV-2). SARS-CoV-2 is regarded as the 

third zoonotic human coronavirus emerging in the current century, after SARS-CoV in 2002 

and the Middle East respiratory syndrome coronavirus (MERS-CoV) in 2012.

Yang et al. recently published an article (1) using a mathematical model to investigate the 

epidemic development of COVID-19 in China. Based on a modified susceptible-exposed-

infectious-recovered (SEIR) compartmental framework, they predicted the magnitude and 

timing of the epidemic peak and the final epidemic size under various intervention strategies. 

This is a typical example of employing mathematical modeling techniques to study the 

transmission and spread of COVID-19.

Mathematical models have long been generating quantitative information in epidemiology 

and providing useful guidelines to outbreak management and policy development. In 

particular, a number of modeling studies have been performed for COVID-19. For example, 

Wu et al. (2) introduced a SEIR model to describe the transmission dynamics of COVID-19 

in China and forecasted the national and global spread of the disease, based on reported data 

from December 31, 2019 to January 28, 2020. Read et al. (3) reported a value of 3.1 for the 

basic reproductive number of the early outbreak using an assumption of Poisson-distributed 

daily time increments in their data fitting. Tang et al. (4) incorporated the clinical 

progression of the disease, the individual epidemiological status and the intervention 

Open Access Statement: This is an Open Access article distributed in accordance with the Creative Commons Attribution-
NonCommercial-NoDerivs 4.0 International License (CC BY-NC-ND 4.0), which permits the noncommercial replication and 
distribution of the article with the strict proviso that no changes or edits are made and the original work is properly cited (including 
links to both the formal publication through the relevant DOI and the license). See: https://creativecommons.org/licenses/by-nc-
nd/4.0/.

Correspondence to: Jin Wang. Department of Mathematics, University of Tennessee at Chattanooga, Chattanooga, TN 37403, USA. 
jin-wang02@utc.edu. 

Conflicts of Interest: The author has completed the ICMJE uniform disclosure form (available at http://dx.doi.org/10.21037/
jphe-2020-05). The author has no conflicts of interest to declare.

Ethical Statement: The author is accountable for all aspects of the work in ensuring that questions related to the accuracy or integrity 
of any part of the work are appropriately investigated and resolved.

Provenance and Peer Review: This article was commissioned by the editorial office, Journal of Public Health and Emergency. The 
article did not undergo external peer review.

HHS Public Access
Author manuscript
J Public Health Emerg. Author manuscript; available in PMC 2020 July 28.

Published in final edited form as:
J Public Health Emerg. 2020 June ; 4: . doi:10.21037/jphe-2020-05.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

https://creativecommons.org/licenses/by-nc-nd/4.0/
https://creativecommons.org/licenses/by-nc-nd/4.0/
http://dx.doi.org/10.21037/jphe-2020-05
http://dx.doi.org/10.21037/jphe-2020-05


measures into their model, and found that intervention strategies such as intensive contact 

tracing followed by quarantine and isolation can effectively reduce the control reproduction 

number and the transmission risk. Imai et al. (5) conducted computational modeling of 

potential epidemic trajectories to estimate the outbreak size in Wuhan, China, and their 

results indicated that control measures need to block well over 60% of transmission to be 

effective in containing the outbreak. Li et al. (6) applied a meta-population SEIR model and 

Bayesian inference to infer critical epidemiological characteristics in China, and their 

estimates showed that about 86% of all infections were undocumented prior to January 23, 

2020. Leung et al. (7) quantified the transmissibility and severity of COVID-19 in mainland 

Chinese locations outside Hubei province and simulated the potential consequences of 

relaxing restrictions in anticipation of a second epidemic wave in China. Additionally, there 

are many other modeling and simulation results published for COVID-19 but not listed in 

this commentary.

All these studies combined mathematical models with numerical simulation, data validation, 

as well as some statistical techniques. There is no doubt that their findings have covered a 

wide range of epidemiological characteristics associated with COVID-19 and have improved 

our understanding of the complex transmission mechanism of SARS-CoV-2. On the other 

hand, there are several limitations in the current modeling work.

Most of these studies are based on the basic SEIR framework (or, in some cases, its simple 

variations), exclusively focused on the direct, human-to-human transmission pathway. It has 

been commonly accepted that COVID-19 can be transmitted through direct contact between 

human hosts, and both the symptomatic and asymptomatic individuals are capable of 

infecting others. In contrast, the indirect transmission pathway from the environment to 

human hosts is also a highly possible route to spread the coronavirus but has not been 

sufficiently addressed in the literature. A study (8) based on the review of 22 types of 

coronaviruses revealed that viruses such as SARS-CoV, MERS-CoV and endemic human 

coronaviruses can persist on inanimate surfaces like metal, glass or plastic for up to 9 days. 

Another experimental study (9) published in March 2020 found that SARS-CoV-2 was 

detectable in aerosols for up to 3 hours, on copper for up to 4 hours, on cardboard for up to 

24 hours, and on plastic and stainless steel for up to 3 days. These findings that the 

coronavirus can remain viable and infectious in aerosols for hours and on surfaces for days 

indicate a high probability and significant risk of environmental transmission, including 

airborne and fomite transmission, for SARS-CoV-2. Incorporating such an environment-to-

human route into mathematical modeling may better characterize the transmission dynamics 

of COVID-19 and potentially gain deeper understanding of its epidemic patterns.

Another limitation of the current COVID-19 models is that the transmission rates are 

typically fixed as constants, rendering simplicity for both mathematical analysis and data 

fitting. In practice, however, the transmission rates may change with the epidemiological and 

socioeconomic status and may be impacted by the outbreak control. For example, many 

countries (China in particular) implemented strong disease control measures, including 

large-scale quarantine, intensive tracking of movement and contact, strict isolation of 

infected individuals, expanded medical facilities, and social distancing, which can 

effectively (and, in some places, rapidly) reduce the transmissibility of the virus. Meanwhile, 
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when the reported infection level is high, people would be motivated to take voluntary action 

to reduce the contact with the infected individuals and contaminated environment so as to 

protect themselves and their family members. As a result, the actual transmission rates may 

decrease with an ascending outbreak, and may increase at a time of low disease prevalence. 

Consequently, reflecting this time and prevalence dependent feature of transmission rates 

could improve the accuracy in modeling and simulating COVID-19.

Thus far, epidemic models for COVID-19 typically do not consider the economic impact of 

the pandemic. Regarding the control of COVID-19, an intensive debate is currently on-going 

between the two strategies of “suppression” and “mitigation” (10). The suppression policy, 

implemented in China and several other countries, deploys the strongest possible measures 

to sharply reduce the disease transmission and rapidly contain the epidemic, at the cost of 

sacrificing the economic development in the period of outbreak control. The mitigation 

policy, adopted by the US and many European countries, employs more relaxed measures to 

gradually flatten the infection curve and allow herd immunity to build up, while ensuring a 

certain degree of economic growth. Mathematical epidemic models are well positioned to 

incorporate the economic impact of COVID-19, to quantify the interaction of 

epidemiological and economic factors, and to suggest an optimal balance between the 

pandemic control and economic development. In this regard, a combined epidemic-

economic modeling framework would be especially useful to help governments and public 

health administrations with their strategy design and policy making.

At present, many details regarding the ecology, genetics, microbiology and pathology of 

SARS-CoV-2 remain unknown, which adds challenges to the mathematical modeling. 

Meanwhile, there are a number of aspects related to COVID-19, ranging from political and 

societal issues to cultural and ethical standards, which are difficult to be represented in a 

model. We should acknowledge that a mathematical model, by its nature, is a simplification 

and approximation of the reality. Despite these restrictions, applied mathematicians, medical 

researchers and public health scientists are striving to improve the epidemic models and to 

expand their applications for COVID-19 as well as other infectious diseases. Obviously, to 

better reflect the (complex) reality, a model has to incorporate more factors, at a higher level 

of sophistication. Although such a model could be potentially more useful in a practical 

sense, it is important to realize that the increased complexity of a model usually comes with 

increased difficulty for analysis, manipulation and implementation, thus losing part or all of 

the advantages of a simpler model counterpart. Meanwhile, it is essential to note that all 

mathematical models have underlying assumptions and conditions. Regardless of its 

structure and complexity, a model can never be better than its assumptions.

A promising direction to advance mathematical modeling in epidemiology is to connect the 

models with data-driven techniques, particularly machine learning. The work by Yang et al. 
(1) applied a machine learning approach based on a recurrent neural network that is trained 

by utilizing a 2003 SARS epidemic dataset as well as incorporating the COVID-19 

epidemiological parameters. They found consistent patterns in the predictions from the SEIR 

model and from the machine learning. For another example, Gao et al. (11) developed a deep 

learning algorithm to analyze the infectivity of the novel coronavirus and predict its potential 

hosts, and their findings indicated that bats and minks may be two animal hosts of this virus. 
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These results are encouraging for wider applications of data analysis and computing 

approaches to study epidemics and pandemics, particularly COVID-19. Machine learning 

and other artificial intelligence techniques can complement and improve mathematical 

epidemic models by taking advantage of the large data sets currently available, including 

epidemic, genetic, demographic, geospatial and mobility data, the scale of which is typically 

far beyond the applicability of a standard mathematical model. On the other hand, 

mathematical modeling can provide a meaningful way to validate machine learning 

predictions and to guide the development of more efficient and robust algorithms in machine 

learning and data analytics. Thus, the development and advancement of these two different 

quantitative approaches could be mutually beneficial, and their integration could lead to 

potentially transformative progress in the study of COVID-19 and beyond.

With the on-going pandemic, we will surely see more mathematical models developed, 

analyzed and applied to COVID-19, and many of the modeling limitations and challenges 

mentioned here will hopefully be overcome soon. Although the full potential and impact of 

mathematical modeling for such a pandemic are still to be seen, the future looks bright. 

Nevertheless, in the development and application of such epidemic models, we stress the 

importance of validating key modeling assumptions, connecting models with realistic data, 

tailoring models to practical needs, and leveraging the support from other analytical and 

computational techniques.
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