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Abstract The antibiotic actinonin kills malaria parasites (Plasmodium falciparum) by interfering

with apicoplast function. Early evidence suggested that actinonin inhibited prokaryote-like post-

translational modification in the apicoplast; mimicking its activity against bacteria. However,

Amberg Johnson et al. (2017) identified the metalloprotease TgFtsH1 as the target of actinonin in

the related parasite Toxoplasma gondii and implicated P. falciparum FtsH1 as a likely target in

malaria parasites. The authors were not, however, able to recover actinonin resistant malaria

parasites, leaving the specific target of actinonin uncertain. We generated actinonin resistant P.

falciparum by in vitro selection and identified a specific sequence change in PfFtsH1 associated

with resistance. Introduction of this point mutation using CRISPr-Cas9 allelic replacement was

sufficient to confer actinonin resistance in P. falciparum. Our data unequivocally identify PfFtsH1 as

the target of actinonin and suggests that actinonin should not be included in the highly valuable

collection of ‘irresistible’ drugs for combatting malaria.

Introduction
Actinonin is an anti-bacterial and anti-parasitic antibiotic derived from streptomycete bacteria

(Gordon et al., 1962; Wiesner et al., 2001). In bacteria, actinonin targets peptide deformylase

(PDF) (Chen et al., 2000), an enzyme involved in prokaryotic post-translational modification and also

present in the relict plastid (apicoplast) of apicomplexan parasites. Actinonin causes defects in

malaria parasite apicoplast development (Goodman and McFadden, 2014) and inhibits recombi-

nantly expressed Plasmodium falciparum PDF (PfPDF – PF3D7_0907900) in vitro (Bracchi-

Ricard et al., 2001) at concentrations consistent with its anti-parasitic activity, all of which led to the

general conclusion that actinonin targets the apicoplast-localized PfPDF in malaria parasites. How-

ever, the characteristics of actinonin —particularly the rapid mode of action and the unusual kinetics

of apicoplast genome loss —are at odds with how all other drugs targeting apicoplast translation

impact the parasite (Amberg-Johnson et al., 2017; Uddin et al., 2018). In a search for the target of

actinonin, Amberg-Johnson et al., 2017 used the related apicomplexan Toxoplasma gondii and

identified a point mutation in the putative metalloprotease TgftsH1 that confers a 3.5-fold resistance

to actinonin. They also showed that actinonin inhibits recombinantly expressed human malaria para-

site FtsH1 (PfFtsH1) in vitro at levels comparable to its antimalarial activity (Amberg-Johnson et al.,

2017). Moreover, parasites with reduced PfFtsH1 expression were more sensitive to actinonin, all of

which prompted the interim conclusion that PfFtsH1, rather than PfPDF, might be the target of acti-

nonin and that PfFtsH1 is a potential new antimalarial target (Amberg-Johnson et al., 2017).

Despite repeated attempts, Amberg-Johnson et al., 2017 were not able to generate actinonin

resistant P. falciparum parasites. Interestingly, the residue mutated from asparagine to serine

(N805S) in TgFtsH1 identified as conferring actinonin resistance by Amberg-Johnson et al. (Amberg-
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Johnson et al., 2017) is already a serine in PfFtsH1 (Table 1), which begs the question of whether

PfFtsH1 is already ‘resistant’ to actinonin. This might mean that actinonin kills malaria parasites

through a mechanism not involving PfFtsH1, perhaps even inhibition of PfPDF. Compounding this

uncertainty is a report that PfFtsH1 is localized in the mitochondrion (Tanveer et al., 2013), which is

inconsistent with the demonstrated impact of actinonin on the malaria parasite apicoplast

(Goodman and McFadden, 2014; Uddin et al., 2018). However, phenotypic evidence from PfFtsH1

knockdowns and changes in post-translational processing of PfFtsH1 in the absence of a functioning

apicoplast (Amberg-Johnson et al., 2017) strongly suggest a relationship between PfFtsH1 and the

apicoplast. These contradictory findings may result from the of differential targeting of the various

processed forms of PfFtsH1 (Tanveer et al., 2013) or stem from the close physical and functional

association between the mitochondria and apicoplast in malaria parasites (van Dooren et al., 2005).

Given the complexity of FtsH1 processing and localization in P. falciparum, it is unlikley that cell bio-

logical studies alone will be able to definitively resolve the issue of whether PfFtsH1 is the primary

target of actinonin.

To determine if PfFtsH1 is the target of actinonin, we generated P. falciparum parasites with

robust resistance to actinonin, identified a point mutation conferring resistance, and recapitulated

the resistance phenotype by introducing a single amino acid change using CRISPrCas9 genome

editing.

Results and discussion
P. falciparum strain D10 parasites were selected for resistance using stepwise increases in actinonin

concentration. Ten million parasites were treated with 2 mM of actinonin, which resulted in no para-

sites being detectable in the culture by microscopy. Fresh, drug-containing media was regularly pro-

vided until parasites were again detectable by microscopy, and normal growth rate had resumed.

Drug concentration was then increased two-fold and the process repeated until parasites were grow-

ing vigorously in media containing 20 mM actinonin. Both the parasite strain and selection methodol-

ogy used differ from previous attempts to generate resistance (Amberg-Johnson et al., 2017),

which may explain why we obtained resistance where others did not.

Several clones were generated from our actinonin resistant parasite line, and each showed consis-

tent actinonin resistance, with IC50 values 18 to 35-fold higher than the parental line (Table 1,

Supplementary file 1a). The clone with the highest level of resistance showed an IC50 of 73.3 mM

actinonin (Table 1, Figure 1B,C). We genotyped four actinonin resistant clones and all retained

wild type sequences of Pf pdf, Pf formyl-methionyl transferase (Pffmt - PF3D7_1313200), and Pf

methionyl amino peptidase (Pfmap - PF3D7_0804400) suggesting that neither PfPDF nor the related

apicoplast post-translational protein modifying enzymes are the primary target of actinonin. Simi-

larly, all four actinonin resistant clones retained wild type sequence for PfRING (PF3D7_1405700),

another actinonin target candidate (Amberg-Johnson et al., 2017). However, each of the clones

Table 1. The impact of mutations in ftsh1 on parasite resistance to actinonin.

Parasite
FTSH1 Peptidase Motif
(partial amino acid sequence)

Actinonin IC50

(mM)

Tg FTSH1 WT (TGGT_259260) 804 FGRDALSNGASSDI 811 14a

Tg FTSH1 ActR 804 FGRDALSSGASSDI 811 44a

Pf 3D7 FTSH1 (PF3D7_1239700) 481 FGKSETSSGASSDI 494 1.99 (n = 1)b

Pf D10 FTSH1 WT 481 FGKSETSSGASSDI 494 2.0 ± 0.2 (n = 4)

Pf D10 FTSH1 ActR 481 FGKSETSSCASSDI 494 73.3 ± 2.7 (n = 4)

Pf D10 (apicoplast minus) 481 FGKSETSSGASSDI 494 43.1 ± 4.1 (n = 2)c

acalculated from data provided in Amberg-Johnson et al., 2017, b and c are both consistent with previously pub-

lished data (Goodman and McFadden, 2014; Amberg-Johnson et al., 2017).
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harbors a single nucleotide polymorphism in Pfftsh1 that changed amino acid 489 (adjacent TgFtsH1

N805S) from glycine to cysteine (Table 1, Supplementary file 1a), strongly implying that PfFtsH1 is

the primary target of actinonin.

To unequivocally confirm that PfFtsH1 is the primary target of actinonin, and that the G489C

mutation is sufficient to confer resistance, we used CRISPr Cas9 mutagenesis to introduce the muta-

tion (with minimal collateral genome disruption) into the native Pfftsh1 gene (Figure 1A). Accord-

ingly, a parasite clone carrying synonymous ‘shield’ mutations in the Pfftsh1 coding sequence

designed to prevent ongoing Cas9 cleavage but retaining glycine 489 (rFtsH1G489G) remained sensi-

tive to actinonin (Figure 1B,C, Supplementary file 1b), whereas two independent clones

(rFtsH1G489Ca/b) modified to have the G489C mutation (in addition to the ‘shield’ mutations) showed

actinonin resistance levels comparable to the actinonin-selected line (wtACTR) (Figure 1B,C,

Supplementary file 1b).

Figure 1. Allelic replacement in Pfftsh1 confers actinonin resistance. (A) Genomic sequences of parasite lines. Upper line is 3D7 reference sequence

with sgRNA (red arrow) and resistance mutation site (dark blue bar) marked. Bottom four lines are genomic sequence traces with shield and resistance

mutations highlighted in light blue and predicted changes to amino acid sequence highlighted in yellow (B) Comparison of parasite growth inhibition

(IC50) based on the presence of the G489C mutation. (C) Dose response curves of data presented in B. Data presented are the mean of 3–5 biological

replicates. Error bars represent the standard error of the mean. P values represent two-tailed, unpaired t-test. (Full statistical analysis available in

Supplementary file 1b).
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Robust actinonin resistance in P. falciparum resulting from the G489C mutation confirms that

PfFtsH1 is indeed the primary target of actinonin. That the resistance levels in PfFtsH1 G489C para-

sites are of the same order of magnitude as that seen in lines that lack an apicoplast (Table 1),

strengthens the conclusion that PfFtsH1 has a role in apicoplast biogenesis, the anomalous localiza-

tion (Tanveer et al., 2013) notwithstanding. The greater levels of resistance achievable through pro-

longed selection, while modest, suggests that these lines may have acquired other mutations that

compensate for reduced PfFtsH1 function and/or alter secondary actinonin targets, such as the other

metalloproteases present in the genome (Amberg-Johnson et al., 2017). Our ability to generate

resistance to actinonin in a relatively small starting population of P. falciparum parasites means acti-

nonin is not an ‘irresistible’ drug (Cowell and Winzeler, 2018), which tempers enthusiasm for devel-

opment of PfFtsH1 as an antimalarial target.

Materials and methods

Key resources table

Reagent type
(species) or resource Designation Source or reference Identifiers

Additional
information

Gene
(Plasmodium
falciparum)

FtsH1 PlasmoDB
(plasmodb.org)

PF3D7_1313200

Gene
(Plasmodium
falciparum)

PDF PlasmoDB
(plasmodb.org)

PF3D7_0907900

Gene
(Plasmodium
falciparum)

MAP PlasmoDB
(plasmodb.org)

PF3D7_0804400

Gene
(Plasmodium
falciparum)

FMT PlasmoDB
(plasmodb.org)

PF3D7_1239700

Gene
(Plasmodium
falciparum)

RING PlasmoDB
(plasmodb.org)

PF3D7_1405700

Strain, strain
background
(Plasmodium
falciparum)

3D7 MR4 - BEI Resources
(beiresources.org)

MRA-102

Strain, strain
background
(Plasmodium
falciparum)

D10 MR4 - BEI Resources
(beiresources.org)

MRA-201

Strain, strain
background
(Plasmodium
falciparum)

D10 ActR This paper Table 1

Transfected
construct
(Plasmodium falciparum)

D10 rftsH1G489G This paper Figure 1

Transfected
construct
(Plasmodium falciparum)

D10 rftsH1G489Ca This paper Figure 1

Transfected
construct
(Plasmodium falciparum)

D10 rftsH1G489Cb This paper Figure 1

Software,
algorithm

GraphPad
Prism software

GraphPad Prism
(graphpad.com)

RRID:SCR_002798

Chemical
compound, drug

Actinonin Sigma Sigma: A6671

Chemical
compound, drug

DSM-1 Sigma Sigma: 533304
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P. falciparum D10 were cultured according to standard protocols (Uddin et al., 2018; Trager and

Jensen, 1976). Apicoplast-minus parasites were generated according to previously described meth-

ods (Uddin et al., 2018; Yeh and DeRisi, 2011). To generate actinonin resistant parasites, 107 D10

parasites were treated with 2 mM actinonin (Sigma-Aldrich) and cultured until parasites began grow-

ing robustly. The actinonin concentration was then increased 2-fold and the culturing repeated until

parasites grew normally at 20 mM actinonin. This selection procedure required 10 weeks of constant

drug selection to recover resistant parasites and 10 months of selection to develop parasites with

the highest levels of resistance. Resistant parasites were cloned by limiting dilution and retested to

confirm the resistance phenotypes. Drug effects were assayed after 72 hr of drug exposure using

the SYBR Green (ThermoFisher) method (Uddin et al., 2018; Goodman et al., 2007).

Genomic DNA was isolated using 200 mL of parasite culture (Isolate II Genomic DNA kit, Bioline).

Candidate actinonin resistance genes were amplified using the primers listed in Supplementary file

1c. CRISPr edited FtsH1 clones were amplified using primers in Supplementary file 1d. Products

were purified (Isolate II PCR and Gel kit, Bioline) and Sanger sequenced (Australian Genome

Research Facility, Parkville). Alignment and analysis of sequenced genes was done using Sequencher

(Gene Codes Corporation, Ann Arbor, MI USA) and Geneious Prime (www.geneious.com).

CRISPr-Cas9 mediated gene-editing utilized pAIO (Spillman et al., 2017) expressing Cas9 and

the Pfftsh1-specific sgRNA 5’-GTAAATCAGAAACTAGTAG-3’ inserted according to standard proto-

cols (Ghorbal et al., 2014) . Two allelic replacement vectors—pFtsH1G489G carrying two synonymous

‘shield’ mutations and pFtsH1G489C carrying a further G to T mutation at base 1465 (Figure 1A)—

were created by cloning a PCR amplified segment of Pfftsh1 into pGEM-T Easy (Promega). Quick-

change XL (Clontech) was used to make sequential modifications for allelic replacement constructs.

The shield mutations were introduced first and then the plasmid carrying the confirmed shield muta-

tions was modified to also include the putative resistance mutation (G1465T). All constructs were

confirmed by sequencing.

Each allelic replacement vector was linearized by digestion with EcoRI and co-transfected with

pAIO-Pfftsh1 using standard transfection methods (Waller et al., 2000). Transfected parasites were

selected by including 10 mM DSM-1 (Sigma-Aldrich) in the culture media for 14 days (rFtsH1G489G

and rFtsH1G489Ca) or 7 days (rFtsH1G489Cb) followed by 10–14 days of culture without drug until para-

sites grew normally in culture. Parasites were cloned by limiting dilution and three to five clones of

each line were screened for actinonin sensitivity and successful modification of the Pfftsh1 allele. All

clones from rFTSH1G489G and rFtsH1G489Ca had the expected gene modifications while only one of

five clones from rFtsH1G489Cb did. Actinonin sensitivity was correlated to the presence of the G489C

mutation in all clones tested. One clone from each recombinant line was selected for complete char-

acterization of actinonin sensitivity.
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