Skip to main content
. 2020 Jul 28;9:e50936. doi: 10.7554/eLife.50936

Table 6. Comparing the performance of the proposed Ensemble Subspace kNN model against conventional machine learning models when using the GA+STAT feature set.

Results of 10-fold cross validation over 30 runs.

Proposed ensemble subspace kNN (EkNN) model
(No. of learners (NL): 30; Subspace Dimension (SD): 16)
Parameters AUC ORP FPR ORP TPR ACC
NL: 30, SD:16 Mean 0.818 0.201 0.836 0.821
Std. 0.021 0.027 0.021 0.020
Simple kNN model (Distance: Euclidean)
k AUC ORP FPR ORP TPR ACC Acc. Diff.
(EkNN vs. kNN)
2 Mean 0.768 0.241 0.730 0.751 +0.070
Std. 0.119 0.160 0.393 0.128 −0.108
5 Mean 0.778 0.300 0.833 0.783 +0.038
Std. 0.107 0.265 0.103 0.103 −0.083
10 Mean 0.753 0.371 0.845 0.758 +0.063
Std. 0.137 0.350 0.120 0.131 −0.111
Support Vector Machine models
Kernel AUC ORP FPR ORP TPR ACC Acc. Diff.
(EkNN vs. SVM)
Linear Mean 0.782 0.342 0.860 0.784 +0.037
Std. 0.126 0.352 0.110 0.120 −0.100
Gaussian Mean. 0.808 0.353 0.876 0.799 +0.022
Std. 0.112 0.416 0.107 0.111 −0.091
Naive Bayes model
Predictor distributions AUC ORP FPR ORP TPR ACC Acc. Diff.
(EkNN vs. Naïve Bayes)
Normal Mean. 0.695 0.132 0.455 0.662 +0.159
Std. 0.169 0.163 0.493 0.181 −0.161