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ABSTRACT
Combining multiple levels of theory in free energy simulations to balance computational accuracy and efficiency is a promising approach
for studying processes in the condensed phase. While the basic idea has been proposed and explored for quite some time, it remains
challenging to achieve convergence for such multi-level free energy simulations as it requires a favorable distribution overlap between
different levels of theory. Previous efforts focused on improving the distribution overlap by either altering the low-level of theory for
the specific system of interest or ignoring certain degrees of freedom. Here, we propose an alternative strategy that first identifies the
degrees of freedom that lead to gaps in the distributions of different levels of theory and then treats them separately with either con-
straints or restraints or by introducing an intermediate model that better connects the low and high levels of theory. As a result, the
conversion from the low level to the high level model is done in a staged fashion that ensures a favorable distribution overlap along the
way. Free energy components associated with different steps are mostly evaluated explicitly, and thus, the final result can be meaningfully
compared to the rigorous free energy difference between the two levels of theory with limited and well-defined approximations. The addi-
tional free energy component calculations involve simulations at the low level of theory and therefore do not incur high computational
costs. The approach is illustrated with two simple but non-trivial solution examples, and factors that dictate the reliability of the result are
discussed.
Published under license by AIP Publishing. https://doi.org/10.1063/5.0012494., s

I. INTRODUCTION

Hybrid quantum mechanical/molecular mechanical (QM/MM)
methods1–9 have become an established technique in computational
chemistry, biochemistry, and biophysics as well as materials sci-
ence.7,9–16 One of the remaining challenges for predictive applica-
tions for condensed phase systems is to compute reliable free energy
changes. As discussed in numerous studies,17–20 this requires, in
principle, an accurate QM/MM potential function and adequate
sampling, which is difficult to accomplish for most condensed phase
studies at this stage. Therefore, a potentially attractive alternative is
to conduct multi-level free energy simulations20–29 in which a low-
level QM/MM potential (e.g., using a semi-empirical QM method)
is used to conduct extensive sampling, while a higher-level QM/MM

potential (e.g., with a density functional theory or a correlated wave-
function method as QM) is used to improve the free energy esti-
mate; if the process of interest is not reactive in nature, the low-level
method can be a classical MM model as well. A commonly discussed
free energy cycle is shown in Fig. 1; due to the state function nature of
free energy, ΔGH

A→B = ΔGL
A→B +ΔGL→H

B −ΔGL→H
A , where “L” and “H”

indicate the low and high levels of theory, respectively. For the quan-
tities on the rhs of the equation, ΔGL

A→B is obtained with a low-level
of theory and therefore can be computed with extensive sampling
using, for example, umbrella sampling30 or its more modern vari-
ants.31 The “vertical” components, ΔGL→H

A/B , are needed only for the
end-states, A/B; for the multi-level free energy simulation to be com-
putationally worthwhile, calculations of ΔGL→H

A/B should rely mostly
(if not exclusively) on sampling at the low-level, and high-level
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FIG. 1. A thermodynamic cycle that uses the low-level (L) method as a reference
potential to indirectly compute the free energy difference between states A and B
at the high (H) level. In this work, we focus on a single vertical leg and discuss the
computation of ΔGL→H .

single point energy calculations are done only at a limited number
of uncorrelated snapshots. The most naïve estimator, for example, is
the one-step free energy perturbation,ΔGL→H

A/B = −kBTln⟨e−βΔU
L→H
A/B ⟩L,

which, in principle, requires sampling only at the low level.
While this is an intuitive idea and has been explored for quite

a few times in previous studies in slightly different forms,20–29

reaching converged results, in practice, for ΔGL→H
A/B based on low-

level sampling alone has been difficult, except for relatively sim-
ple or structurally rigid systems. This is not unexpected since it
has been well-known in the free energy simulation literature that
a single step perturbation gives reasonable results only if the two
end-states (in this case, low- and high-level potential energies) are
sufficiently similar such that the standard deviation of energy dif-
ference (in our case, ΔUL→H

A/B ) is on the order of several kBT.32–35

More quantitative metrics for the distribution overlap between the
two end-states have been developed by several authors,32,33,36,37 but
most of them are not straightforward to use for the case of multi-
level free energy simulations in which high-level sampling is to be
avoided as much as possible. Accordingly, based on the work of
Kofke and co-workers,38–40 Boresch and Woodcock developed an
approximate version41 of the Π score38,39 to estimate the degree
of distribution overlap between two levels of theory; a value of
>0.5 was recommended as the indicator of the minimal overlap
for the meaningful one-step free energy estimate. It was found
that the approximate Π score correlates reasonably well with the
width of the ΔUL→H distribution, which can also be an instruc-
tive factor for monitoring the convergence of one-step free energy
estimates.33,34,41

The test of a range of small molecules in both gas phase and
solution using CHARMM22/36 as the low-level and DFTB342,43 as
the high-level indicated that the overlap Π score is favorable for
rigid molecules.44 For more flexible molecules, such as a serine
amino acid in the gas phase, the overlap is poor with a negative
Π score.45 To improve the convergence behavior, several strategies
have been developed. If the main difference between the two levels
of theory concerns the bonded degrees of freedom, one approach
is to conduct non-equilibrium free energy simulations by rapidly

switching the potential function; since the bonded degrees of free-
dom (especially bond stretch and angle bending) tend to be highly
localized, rapid switching at the picosecond time scale appeared
effective, although many trajectories (on the order of thousands
or more) are usually required for stringent numerical convergence,
which is a well-documented feature for non-equilibrium free energy
simulations46 based on the Jarzynski equality47 or the fluctuation
theorem.48

When more general degrees of freedom are responsible for the
deviation between different levels of theory, it seems necessary to
modify the low-level of theory such that the distribution overlap with
the high-level method is improved. This has been done by several
authors in the broader context of free energy simulations. For exam-
ple, Rossi and Truhlar49 pioneered reaction-specific-parameters to
improve the semi-empirical QM method for the specific system of
interest; this has been adapted in the framework of the string method
with force matching by Zhou et al.50 for effective reaction free energy
simulations. Similarly, Shen andYang51 reported an approach in
which a neural network is used to iteratively improve the low-level
QM method in reaction free energy simulations. Plotnikov et al.
developed “para-dynamics,”52 which iteratively improves the ref-
erence potential in the empirical valence bond (EVB) framework
using ab initio QM single point energies. Specifically, in the context
of multi-level free energy simulation based on the thermodynamic
cycle in Fig. 1, Heimdal and Ryde advocated for the parameteri-
zation of better force fields as the reference approach.19 Similarly,
Woodcock and co-workers45,53 as well as York and co-workers54,55

proposed to use force-matching to improve the low-level poten-
tial based on single-point high-level force calculations; for relatively
rigid small molecules in solution or a protein active site, encouraging
results have been reported. For rigid molecules, another possibility
is to compute only the QM/MM interaction energies,56 although this
is clearly an approximation and may lead to considerable errors as
the flexibility of molecules increases.57

Despite this progress, it is worthwhile exploring alternative
strategies for connecting different levels of theory in quantitative
free energy simulations. For example, while the non-equilibrium
approach can benefit from “embarrassingly parallel” simulations,53

conducting thousands of picosecond scale trajectories that involve
explicitly mixing low- and high-levels of potentials is computation-
ally demanding when the QM region is large; moreover, conducting
many fast non-equilibrium switching simulations likely entangles
the free energy difference due to the stiff bonded degrees of free-
dom with that arising from incomplete sampling of other degrees of
freedom. Similarly, improving a low-level method with force match-
ing or even a neural network may not be straightforward for large
systems.

Motivated by these considerations, we explore an approach in
which the low-level theory is not modified explicitly; instead, the
transformation from the low-level to the high-level potential func-
tion is done in a staged fashion such that a favorable distribution
overlap is always maintained. Although the transformation is car-
ried out in multiple stages and thus involves more computations,
most of these computations are done at the low-level of theory, and
therefore, the approach still offers a significant gain in computa-
tional efficiency compared to brute-force free energy simulations
that explicitly mix low and high level potential functions in multiple
windows.
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In the following, we first describe the fundamental considera-
tion behind our development and then present the staged transfor-
mation approach. Next, as a proof of concept, we study two small
but non-trivial molecules in solution and discuss technical choices
that are likely important to the effectiveness of our specific thermo-
dynamic path. We end with a few concluding remarks, including our
perspective regarding future developments.

II. METHOD
In the following discussion, we focus on a single vertical

leg of the thermodynamic cycle in Fig. 1. To simplify nomencla-
ture, we make the assumption that the A/B conversion depicted
in the generic thermodynamic cycle in Fig. 1 involves the entire
QM region only, which will also be simply referred to as the
“solute.”

A. Fundamental considerations
As shown schematically in Fig. 2, different strategies can be

used to improve the distribution overlap between L and H levels of
theory [panel (a)]. The most natural approach, as mentioned above
in the Introduction, is to modify the low level of theory [L → L′,
panel (b)]. Since this may not be straightforward, one could con-
sider other alternatives. One possibility is to artificially broaden the
distribution at the low level of theory (i.e., sample P′L rather than PL
with, for example, a higher temperature or Tsallis statistics58) so as
to develop the distribution overlap with H; to complete the thermo-
dynamic cycle, however, one has to either reweight P′L or compute
the free energy difference between the original and broadened dis-
tributions. In fact, panel (c) can be considered as a special case for
panel (d) in which an intermediate distribution PM is introduced to
bridge the otherwise separated PL and PH ; PM can be sampled using
a different level of theory, using L in a different thermodynamic
state, or using L in the presence of additional constraints/restraints
(see below). The fundamental philosophy is that instead of mod-
ifying L explicitly, efforts are spend to bridge the distributions of
L and H, provided that the computational costs of L and H are

sufficiently different, including additional steps that require sam-
pling with L or a comparable level of theory does not significantly
reduce the computational advantage of the multi-level free energy
approach.

Given the fundamental aim of our approach, the key is then
to identify the degrees of freedom responsible for creating the gap
in the distributions of L and H. This is certainly not a trivial prob-
lem and can benefit from innovative approaches such as machine
learning (see discussion in Sec. IV). For the case of integrating low-
level and high-level QM potentials, which is the major motivation
for our work, the likely situation is that they differ mainly in bonded
degrees of freedom,19,45,55 such as bond lengths, bond angles, and
selected dihedrals. While low-level QM methods generally suffer
from inadequate electronic polarization59–61 and inaccurate multi-
ple moments,62,63 it is unlikely that the charge distribution is grossly
misrepresented as compared to a high-level QM description; never-
theless, the impact of different non-bonded terms on the distribution
is also explored in the following test cases. Denoting the degrees of
freedom that cause a poor overlap between L and H as X and the
rest (QM) degrees of freedom as Y, our strategy is then to treat
them differently when converting between the L and H levels of
theory.

B. A staged transformation approach
Recognizing that different “solute” degrees of freedom X, Y

feature different distribution overlaps between L and H and that
X tends to be more local in nature, the basic thermodynamic path
that we propose is shown in Fig. 3(a) in which the system is trans-
formed from L to H in a staged fashion: first, imagine turning on
a confinement potential to restrain/constrain X to the free energy
minimum on the L level (X0), then evaluate the “reorganization free
energy cost” (ΔGL

Λ) of changing X0 to X′0, the free energy minimum
at the H level of theory, with X restrained/constrained to X′0, eval-
uate the free energy change associated with changing the potential
function from L to H, ΔGL→H

0 , and finally, imagine turning off the
confinement potential on X on the H level. Formally, the total free
energy change is written as the sum of contributions from all stages
(Fig. 3),

FIG. 2. Different strategies for improving the energy difference (ΔU) distribution overlap between L and H levels of theory, which is critical to the convergence of free energy
simulations that rely on sampling at either one end-state or both end-states.32,33,36,40 (a) The two end-states have a gap in the ΔU distribution. (b) One can modify the
low-level method (L→ L′) to improve the ΔU distribution based on, for example, force-matching45,55 or a neural network.51 (c) One can modify the distribution of the same
low level method (PL → P′L), with, for example, Tsallis sampling,58 to improve the ΔU distribution. (d) One can introduce an intermediate level of method (or distribution) PM
to bridge the distributions at the L and H levels. The staged protocol described here falls into this category.
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FIG. 3. A simple staged transformation approach for computing the free energy
difference at two levels (L/H) of theory, ΔGL→H . (a) The staged thermodynamic
path treats the selected degrees of freedom (X) separately from the rest (Y); X
represents the degrees of freedom that lead to a large gap in the ΔULH distribution.
Assuming that the free energy costs for confining X to values at (or near) the free
energy minima are similar at the L and H levels, ΔGL→H , is given by the sum
of ΔGL→H

0 , which converges readily since the sampling involves only Y, and the
“reorganization free energy,” ΔGL

Λ, which is the free energy cost of changing X0
to X′0 at the low level of theory. (b) A simple one-dimensional illustration for the
staged transformation approach: W (X) is the potential of mean force and the key
approximation is that the configurational entropies for X are comparable at the L
and H levels.

ΔGL→H = ΔGL
cfn + ΔGL

Λ + ΔGL→H
0 − ΔGH

cfn. (1)

If we approximate that the confinement free energies evaluated at the
L and H levels are comparable (vide infra), then the expression can
be simplified into the sum of only two contributions,

ΔGL→H ≈ ΔGL
Λ + ΔGL→H

0 . (2)

The staging strategy can be better illustrated with a simple
example where X is one-dimensional, as shown in Fig. 3(b). Define
the potential of mean force in X at different levels (L/H) as

WL/H(X) = −kBTln∫ dYe−βU
L/H
(X,Y) + C, (3)

we can express the free energy difference between L and H in terms
of W at the free energy minimum and the entropic contributions
associated with X (SL/HX ),

ΔGL→H = [WH(X′0) − TSHX ] − [WL(X0) − TSLX], (4)

and here, the entropic contributions can be regarded as the confine-
ment free energies in Eq. (1). If the entropic contributions at the L
and H levels are comparable, this can be simplified and rearranged
as

ΔGL→H ≈WH(X′0) −WL(X0)
= [WH(X′0) −WL(X′0)] − [WL(X0) −WL(X′0)]
≡ ΔGL→H

0 + ΔGL
Λ. (5)

The significance of this simple rearrangement is that ΔGL→H
0 is

evaluated by sampling along the Y degrees of freedom, which fea-
ture a favorable overlap between L and H; the “reorganization” in
the X degrees of freedom, ΔGL

Λ, is evaluated at the low-level of
theory.

Before discussing the evaluation of ΔGL→H
0 and ΔGL

Λ in detail
in Subsection II C, we note that in these basic schemes discussed
so far, we approximate that the confinement free energies (ΔGL/H

conf ),
which are mostly entropic in nature, are similar at the L and H
levels of theory and therefore do not need to be evaluated explic-
itly. If the “solute” is structurally rigid, it is possible to explicitly
evaluate the confinement free energies with normal mode anal-
ysis.8,64,65 As the region of interest becomes large and/or flexi-
ble, either ignoring the difference between ΔGL/H

conf and harmonic
approximations becomes unreliable. Instead, it is preferable to limit
X to a small number of bonded degrees of freedom for which
free energy contributions can be evaluated using approximate ana-
lytic expressions66 while treating differences in specific dihedral
angles and/or non-bonded terms differently. Accordingly, we imag-
ine a more general staged transformation path as illustrated in
Fig. 4.

Along this more general transformation path, the difference in
specific dihedral terms can be considered by turning on restraining
potentials at the L level so that the corresponding dihedral distri-
bution overlaps favorably with that at the H level; the free energy
contribution of turning on the restraining potential can be eval-
uated explicitly as commonly done in binding free energy sim-
ulations.67 In the event that the distribution overlap between L
and H is also impacted by difference in non-bonded interactions,
such as partial charge distributions, it is also possible to introduce
an intermediate level of model M to bridge the distributions (see
Sec. III).

C. Evaluation of ΔGL→H
0 and ΔGL

Λ

In this subsection, we discuss in more detail the calculations
of ΔGL→H

0 and ΔGL
Λ. The former is done with X constrained at X′0,

while the latter involves changing from X0 to X′0; thus, both cal-
culations rely on the determination of free energy minima on the
L and H free energy surfaces. Provided that X includes only local-
ized degrees of freedom such as bond-stretches and angle-bending
or stiff torsions, X0 and X′0 are expected to be well-defined and
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FIG. 4. A more general staging strategy for transforming from the L to H level of theory with the controlled distribution overlap along the path. Here, X = {R, Φ}; the general
aim is to minimize the number of degrees of freedom that are constrained ({R}) such that the approximation of similar “confinement free energies” at the L/H levels is expected
to hold; any difference in softer degrees of freedom, such as selected dihedrals ({Φ}), can be controlled with a biasing potential and the corresponding free energy can be
evaluated as commonly done in ligand-binding simulations.67 To further improve the distribution overlap, an intermediate level of model with improved partial charges, for
instance, can be introduced (see Sec. III).

straightforward to determine with relatively short equilibrium MD
simulations (see Sec. III B for a discussion of impacts of choosing dif-
ferent X0 and X′0 values and Sec. III C for a discussion of sampling
requirement).

Once X0 and X′0 are determined, ΔGL→H
0 and ΔGL

Λ can be com-
puted using the well-established simulation methodologies. Specif-
ically, for ΔGL→H

0 , since sampling along Y is expected to feature
a favorable distribution overlap between L and H, it is possi-
ble that 1-step free energy perturbation that relies on sampling
only at the L level is sufficient for practical convergence. On the
other hand, it is always more robust to conduct some sampling
at the H level so that the distribution overlap can be explic-
itly assessed, including sampling at the H level also enables more
reliable free energy estimates using techniques such as the linear
response approximation (LRA)18,20,68 or Bennet acceptance ratio
(BAR).69–71

For the computation of ΔGL
Λ, which involves sampling only at

the L level, different strategies can be employed. The most straight-
forward approach is to use the dual topology free energy per-
turbation to convert the solute/QM region from X0 to X′0. One
could pursue an alternative thermodynamic path (see Fig. 6) in
which the solute, while adopting structure X0 and X′0, is first
decoupled from the environment; then, the conversion from X0 to
X′0 can be done with free energy perturbation in the gas phase,
which is expected to converge rapidly. The important point is
that regardless of the chosen path, all ΔGL

Λ simulations require
sampling at the L level only and therefore are computationally
inexpensive.

D. Computational setup of test systems
As a proof of concept, we illustrate the staged transforma-

tion approach with two simple but non-trivial examples in a water
droplet (Fig. 5) and we examine a single vertical leg of the thermo-
dynamic cycle in Fig. 1. For the purpose of this work, we mainly
focus on the choice of CHARMM3672 as the low (L) level and
DFTB3/3OB/MM73 as the high (H) level; we also study the case in
which L is DFTB3/3OB/MM and H is B3LYP/6-31G(d)/MM.

1. System setup
The small molecule solute is weakly restrained to be at the cen-

ter of a 12 Å radius water droplet, which is not subject to any special

solvent boundary potential. Non-bonded interactions at the pure
MM level are computed with extended electrostatics74 available in
CHARMM,75 which computes electrostatic interactions with group-
based multipoles beyond the cutoff (12 Å) distance; this option is
consistent with the fact that QM/MM electrostatic interactions are
computed without any cutoff.

For simulations aimed at probing the distribution overlap
between L = MM (CHARMM36) and H = DFTB3/3OB/MM, the
molecular dynamics simulations are typically NVT simulations at
300 K with ∼100 ps of sampling. For L = DFTB3/3OB/MM and H =
B3LYP/MM, the sampling is ∼50 ps. For the integration time step, it
is 0.5 fs for simulations with a completely unrestrained solute. With
the bonded degrees of freedom constrained (SHAKE76), the integra-
tion time step is 2.0 fs. For simulations that also probe the effect of
restraining angular degrees of freedom, the force constant used is
300 kcal/mol rad2.

2. Free energy simulations
With L = MM (CHARMM36) and H = DFTB3/3OB/MM, it

is possible to compute the ΔGL→H with “brute-force” thermody-
namic integration using multiple λ windows that connect the L and
H levels. We have done so for the cases of unrestrained solutes
and for each solute, 11 λ windows (0.0, 0.05, 0.15, . . ., 0.95, 1.0)
are used with each window sampled by 350 ps of production runs
followed by 60 ps of equilibration. For the more approximate free
energy estimators: 1-λ FEP, LRA, and BAR, 100 ps of produc-
tion run is used for the relevant windows; 1-λ FEP employs only
the L-level sampling, while the other estimators employ sampling
with both end-states (L and H). The lengths of these simulations
are chosen such that they represent the typically affordable level
of computations using QM potentials such as DFT. In addition to
unrestrained solutes, we have also examined the consistency among
these approximate free energy estimators for cases where the solute
is either completely frozen or partially constrained/restrained (see
Tables for details); the sampling is also 100 ps of production run for
the relevant windows. Finally, for L = DFTB3/3OB/MM and H =
B3LYP/MM, we also computed ΔGL→H using the various approxi-
mate free energy estimators with 50 ps of production for the relevant
windows.

For the exploration of the staged transformation protocol,
we focus on the case of unrestrained solutes with L = MM
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FIG. 5. Test systems explored in this
work: (a) blocked serine: N-acetyl-
serine-methyl-amide (Ser) and (b)
methyl di-phosphate (MDP). [(c) and
(d)] A water droplet of radius 12 Å that
contains a Ser or MDP.

(CHARMM36) and H = DFTB3/3OB/MM. For the “confinement
step,” we apply both bond constraint (SHAKE) and angle restraint
using a large force constant of 300 kcal/mol rad2 with the reference
structures collected from free 1 ns L (i.e., X0) and H (i.e., X′0) simu-
lations (see Sec. III B for a discussion of selection criteria); to test the
sensitivity of the results to the choice of the reference, we choose five
X0 and five X′0, leading to 25 possible combinations. As discussed
below, even with the constraints/restraints on the bonded degrees
of freedom, the overlap between the L and H distributions is not
optimal. Therefore, we take the advantage of the flexibility of the
staged transformation approach (Fig. 4) and include an additional
intermediate (M) level, which differs only from L in terms of the
partial charges; instead of the standard CHARMM36 charges, we use
the Mulliken charges at the DFTB3/3OB level calculated for a ran-
dom snapshot collected from the aforementioned DFTB3/3OB/MM
simulations.

For the computation of ΔGL
Λ, since L = CHARMM36, we use

the specific thermodynamic cycle outlined in Fig. 6, which involves
five separate sets of free energy simulations in either the water
droplet [ΔGL

slv(R0) and ΔGL
slv(R′0)] or in the gas phase [ΔGL

nbond(R0),
ΔGL

nbond(R′0), and ΔGL
bonded(R0,R′0)]. Since all these simulations are

at the low-level, they are readily conducted with multi-λ thermody-
namic integration with 11 λ windows (0.0, 0.05, 0.15, . . ., 0.95, 1.0),
with each window sampled for at least 100 ps.

3. Scores used to evaluate distribution overlap
To help characterize the distribution overlap between the L and

H levels, we follow the discussions of Kofke and co-workers.37–40,77,78

In particular, we have computed the following two sets of scores. The
first set is based on the total energy distributions at different levels
of theories. As discussed in Refs. 38 and 39, we define the following
energy distributions:

● ρLL(UL) ≡ ρL: sample with L, examine the distribution of UL;
● ρHH(UH) ≡ ρH : sample with H, examine the distribution of

UH ;
● ρLH(UH): sample with L, examine the distribution of UH ;

and
● ρHL(UL): sample with H, examine the distribution of UL.

Then, one can define the following overlap integrals, which
range between 0 and 2 depending on the degree of overlap: (a) H
in L,

KHL = 2∫
∞

−∞

dULρLL(UL)∫
UL

−∞

dU′LρHL(U′L). (6)

FIG. 6. A sample thermodynamic cycle used to compute the reorganization free
energy, ΔGL

Λ, in which the solute is first decoupled from the environment and
then removed of any non-bonded interactions; finally, the difference in the bonded
free energies is evaluated, leading to ΔGL

Λ = [ΔG
L
slv(R

′

0) − ΔGL
slv(R0)] +

[ΔGL
nbond(R

′

0) − ΔGL
nbond(R0)] + ΔGL

bonded(R0,R′0). Note that all calculations
are done at the low level of theory, and most steps are done in the gas phase;
thus, the computational cost is modest.

J. Chem. Phys. 153, 044115 (2020); doi: 10.1063/5.0012494 153, 044115-6

Published under license by AIP Publishing

https://scitation.org/journal/jcp


The Journal
of Chemical Physics ARTICLE scitation.org/journal/jcp

(b) L in H,

KLH = 2∫
∞

−∞

dUHρHH(UH)∫
UH

−∞

dU′HρLH(U′H). (7)

The second set of scores is based on the Kullback–Leibler (KL)
divergence of total energy distributions,

sL = ∫
Γ
dγρL(γ)ln

ρL(γ)
ρH(γ)

, (8)

sH = ∫
Γ
dγρH(γ)ln

ρH(γ)
ρL(γ)

. (9)

These can be shown to be related to the dissipative work associated
with the L→H conversion,

sL = ⟨βWL→H⟩L − βΔF, (10)

sH = −⟨βWH→L⟩H + βΔF, (11)

where W is the work; for FEP, it is just the energy gap ΔUHL. These
relative entropies can be used to define the Π scores,

ΠLH =
√

sL
sH

WL(
1

2π
(M − 1)2) −

√
2sL, (12)

ΠHL =
√

sH
sL
WL(

1
2π
(M − 1)2) −

√
2sH , (13)

where M is the sample size, WL(x) is the Lambert W function,
defined as the solution for w in the equation x = wew. It was proposed
that good sampling is expected if Π > 0. Woodcock and Boresch
explored a simplified version of the Π score that assumes sL = sH .41

III. RESULTS AND DISCUSSION
In the following, we first illustrate the impact of separately treat-

ing X degrees of freedom on the distribution overlap between L and
H, then we demonstrate that the staged transformation approach
indeed leads to the expected free energy difference between L and
H by comparing to brute-force thermodynamic integration for
ΔGL→H , which involves explicitly mixing the L and H potential func-
tions in multiple-λ windows. Finally, we briefly comment on the
issue of sampling on both the L and H levels of potential energy
surfaces. While the work was motivated by conducting multi-level
QM/MM simulations, the L level is taken to be CHARMM36 in most
analyses, with DFTB3/3OB/MM being the H level; nevertheless, we
also include results on the combination of DFTB3/3OB/MM as L
and B3LYP/6-31G(d)/MM as H.

A. Improvement of distribution overlap
with confinement of X degrees of freedom

As discussed extensively in the literature,32,40 free energy
simulation results depend critically on the ΔU distribution

FIG. 7. Energy difference (ΔULH) distribution for L = CHARMM36 and H = DFTB3/3OB/MM. The solid lines are for the “forward (FW)” distribution (i.e., sampling with L), and
the dashed lines are for the “backward (BW)” distribution (i.e., sampling with H). The four solution cases are (a) a fully unrestrained blocked serine, (b) a blocked serine with
a frozen structure, (c) a fully unrestrained methyl diphosphate (MDP), and (d) a MDP with a frozen structure.
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TABLE I. Computed ΔGL→H values (in kcal/mol) and distribution overlap scores for a blocked serine in water.a

ΔGb Overlap scoresc

Low High Constraints M-λ TI 1-λ FEP LRA BAR Staged ΠLH ΠHL Overlap (%) KHL KLH

C36 DFTB3 Free −18 545.3 −18 541.2 −18 545.5 . . . −18 545.4 −4.04 −4.09 0.01 0.58 0.30
(0.6) (0.5) (2.9/1.2)

C36 DFTB3 Frozen . . . −18 557.1 −18 559.1 −18 559.1 . . . −2.03 −1.64 0.22 0.79 0.55
(0.6) (0.5) . . .

MULL DFTB3 Bond . . . −18 484.5 −18 485.4 −18 485.9 . . . −0.89 0.34 2.01 0.95 0.70
(0.3) (0.2) . . .

MULL DFTB3 Frozen . . . −18 483.6 −18 483.7 −18 483.6 . . . 1.66 1.42 31.67 0.92 0.82
(0.2) (0.2) (0.2)

DFTB3 B3LYP Free . . . −339 808.6 −339 809.1 −339 809.0 . . . −0.17 −0.68 2.75 0.73 0.43
(0.6) (0.5) . . .

aC36 = CHARMM36; DFTB3 = DFTB3/3OB/MM; and in MULL, the partial charges of the solute are taken as Mulliken charges from a DFTB3 calculation and held fixed during each
MULL simulation.
bM-λ TI: 11-λ window thermodynamic integration; 1-λ FEP: single window FEP based on L sampling; LRA: linear response approximation based on sampling with both end-states
(L and H) windows; BAR: Bennet-Acceptance-Ratio based on the same sampling data from LRA; and Staged: staged transformation protocol introduced here. The statistical errors
are estimated based on block averaging and are less than 0.1 kcal/mol for M-λ TI. For the staged transformation, the uncertainty is estimated based on 25 different choices of X0 , X′0
combinations (see Table III for detailed data).
cΠLH ,HL : Eqs. (12) and (13); KHL ,LH : Eqs. (6) and (7); and Overlap %: the fraction of ΔU data points that lie in the overlapped region.

overlap of the two end-states. The challenge of establishing the good
distribution overlap is well illustrated in Figs. 7(a) and 7(c): with-
out any conformational restraint, there is essentially no ΔU overlap
between the CHARMM36 (L) and DFTB3/3OB/MM (H) simula-
tions for both a serine and a methyl diphosphate (MDP) in solu-
tion. The overlap is even smaller for the case of MDP with an
apparent gap in the ΔU distribution of ∼25 kcal/mol. The lack of
overlap is well captured by the various overlap scores reported in
Tables I and II, for example, the Π scores are large and negative with
values ∼−4.

To reveal whether the lack of overlap is largely dominated by
the intra-solute degrees of freedom or by the non-bonded param-
eters at the low (CHARMM36) level, we first reexamine the ΔU
distributions with simulations in which the solute structure is frozen.
As shown in Figs. 7(b) and 7(d), freezing the intra-solute degrees
of freedom improves the ΔU overlap for both cases analyzed;
the improvement is visibly more transparent for MDP, suggest-
ing that the CHARMM36-CGENFF79 model leads to considerably
different conformations for MDP compared to DFTB3/3OB.
Examination of snapshots suggests that the difference largely lies

TABLE II. Computed ΔGL→H values (in kcal/mol) and distribution overlap scores for a methyl diphosphate in water.a

ΔG Overlap scores

Low High Constraints M-λ TI 1-λ FEP LRA BAR Staged ΠLH ΠHL Overlap % KHL KLH

C36 DFTB3 Free −18 857.3 −18 845.1 −18 858.2 . . . −18 858.0 −3.92 −3.92 0.00 0.22 0.45
(0.5) (0.6) (1.9)

C36 DFTB3 Frozen . . . −18 885.0 −18 885.9 −18 885.9 . . . −2.00 −1.52 0.70 0.75 0.68
(0.7) (0.6) . . .

MULL DFTB3 B + A . . . −18 813.3 −18 814.9 −18 814.9 . . . −0.22 0.88 2.11 0.77 0.93
(0.3) (0.3) . . .

MULL DFTB3 Frozen . . . −18 820.4 −18 820.3 −18 820.3 . . . 2.69 2.95 84.75 0.81 0.83
(0.1) (0.1) . . .

DFTB3 B3LYP Free . . . −765 491.4 −765 494.1 −765 493.8 . . . −1.20 −1.63 0.17 0.33 0.02
(0.3) (0.3) . . .

DFTB3 B3LYP B + A . . . −765 501.7 −765 502.6 −765 502.3 . . . 0.66 0.09 5.36 0.80 0.90
(0.2) (0.2) (0.2)

aSee footnote of Table I for notations; B+A means constrained bond lengths and restrained bond angles with a force constant of 300 kcal/mol rad2 . For detailed data for the staged
transformation with different X0 , X′0 combinations, see Table IV.
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in the bond angles and several dihedrals. Correspondingly, vari-
ous overlap scores improve significantly; the Π scores, for example,
increase from ∼−4 for the unconstrained simulations to ∼−2 for the
frozen-solute simulations.

Even with the solute structure entirely frozen (thus fully con-
sistent between L and H simulations), the ΔU distribution overlap
is minimal, suggesting that there are significant differences in the
non-bonded interactions between the solute and the solvent in the L
and H simulations. The situation can be substantially improved by
replacing the MM partial charges at the L level with Mulliken charges
calculated at the DFTB3/3OB/MM level based on a single random
snapshot, as shown in Figs. 8(a) and 8(b) for serine and MDP, respec-
tively; the Π scores are now positive and in the range of ∼1.5 to
3. Since the Mulliken charges in these intermediate models are not
updated during the simulation, the excellent ΔU overlaps suggest
that the lack of electronic polarization per se is not a major factor
that impacts the distribution overlap, even for a highly charged and
polarizable solute such as MDP. However, the overlap deteriorates
significantly when the solute structure is no longer frozen with only
bonds constrained with SHAKE [Figs. 8(c) and 8(d)], highlighting
the importance of capturing the structural dependence of charge
distribution. In the case of MDP, constraining the covalent bonds
and restraining the bond angles help improve the ΔU distribution
overlap considerably.

When the L is DFTB3/3OB/MM and H is B3LYP/6-
31G(d)/MM, there is a decent (∼3%) overlap in ΔU distribution
for serine in water, but the overlap is minimal (∼0.17%) for MDP
[Figs. 9(a) and 9(b)]; the Π scores are small negative values and
∼−1, respectively. With constrained bond length and restrained
bond angles, as shown in Fig. 9(c), the overlap improves sub-
stantially for MDP to ∼5.4%; the Π scores also become positive
(Table II).

In short, the results in this subsection indicate that both bonded
and non-bonded degrees of freedom may contribute to modulate
the distribution overlap between L and H levels of theory. With a
decent QM level as L, it is expected that the overall charge distri-
bution is reasonably represented compared to H, even for a highly
charged and polarizable molecule such as MDP. Small differences
in stiff bonded degrees of freedom such as bond stretch and bond
angle can lead to a poor distribution overlap, which can be improved
with constraints/restraints. When the L level is MM, the non-bonded
interactions might be sufficiently different from the H level, and
thus, constraining/restraining stiff intra-solute degrees of freedom
alone may not be sufficient for improving the distribution overlap to
a satisfactory level. For the test cases studied here, replacing the MM
charges with a single set of Mulliken charges improves the overlap
significantly, especially when combined with constraining/restraining
stiff intra-solute degrees of freedom.

FIG. 8. Similar to Fig. 7, but the partial charges on the MM solute are replaced by Mulliken charges from a DFTB3/3OB/MM calculation; note that these Mulliken charges are
held fixed in each trajectory. The four solution cases are (a) a blocked serine with a frozen structure, (b) a MDP with a frozen structure, (c) a blocked serine with all covalent
bonds constrained with SHAKE, and (d) a MDP with all covalent bonds constrained using SHAKE and free (red) or restrained (blue) bond angles.
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FIG. 9. Similar to Fig. 7 but with L = DFTB3/3OB/MM and H = B3LYP/6-31G(d)/MM. The three solution cases studied are (a) a fully unrestrained blocked serine, (b) a fully
unrestrained MDP, and (c) a MDP with covalent bonds constrained using SHAKE and bond angles restrained.

B. Staged transformation is able to complete
the thermodynamic cycle

In Sec. III A, we examine whether the staged transformation
approach is able to reproduce theΔGL→H result of brute-force multi-
λ thermodynamic integration for free serine and MDP in solution.
Prior to the discussion, we first compare ΔGL→H computed with var-
ious approximations for the different simulations used to explore
the ΔU overlap in the last subsection; this helps better illustrate
the impact of the distribution overlap on the reliability of estimated
ΔGL→H .

With a free solute in water, the distribution overlap is poor for
serine and MDP for both L/H combinations tested here; accord-
ingly, the simple 1-λ FEP result is significantly different from
other estimators (Tables I and II). For a free serine in water,
L = CHARMM36 and H = DFTB3/3OB/MM, the 1-λ FEP value
differs by ∼4 kcal/mol from the multi-λ TI result; the difference is
even larger, ∼13 kcal/mol for MDP. With L = DFTB3/3OB/MM and
H = B3LYP/6-31G(d)/MM, the overlap is minimal for MDP in
water; thus, 1-λ FEP differs from a linear response approximation
(LRA) estimator by ∼3 kcal/mol. By contrast, the overlap is appre-
ciable (∼2.75%) for a free serine in water, and 1-λ FEP agrees with
LRA to ∼0.5 kcal/mol.

For all other cases explored here, which involves either chang-
ing the MM charges or confining/restraining stiff intra-solute
degrees of freedom, improvement of the ΔU overlap is highly

correlated with the level of consistency among 1-λ FEP, LRA, and
BAR estimators. As far as the percentile of the overlap is higher than
1%, the three estimators are within 1 kcal/mol (see Tables I and II).
Another observation is that the LRA estimator is robust for the two
test systems studied here. Even for the cases of free solutes in water
for which the distribution overlap between L/H is poor, the LRA esti-
mator is ∼1 kcal/mol from the brute-force multi-λ simulation; this is
rather remarkable considering that the error for 1-λ FEP can be as
large as 13 kcal/mol. This observation resonates with several pre-
vious studies that also highlighted the significant gain in conducting
sampling on the H level,18,20,68 even in cases where BAR has difficulty
in convergence.

To examine the effectiveness and limitations of the staged
transformation approach, we study the cases of fully unrestrained
small solutes (serine and MDP) in water with L = CHARMM36
and H = DFTB3/3OB/MM for which the reference ΔGL→H val-
ues are readily computed using brute-force multi-λ TI simulations.
From the results shown in Tables I and II, the staged transformation
approach indeed gives an average result consistent with the multi-
λ TI reference value for both Ser and MDP in water; the difference
appears to be less than 1 kcal/mol. However, we note that the staged
transformation approach requires the determination of equilibrium
or representative structures at the L (X0) and H (X′0) levels in the
“confinement step.” Therefore, it is important to understand the
sensitivity of the result to the choice of these reference structures,
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FIG. 10. Distribution of X0, X′0 for a blocked serine and MDP. (a) and(b) illustrate the superposition of the structures; one X0 is shown in licorice and colored based on
element, the rest X0 shown in gray lines; X′0 structures are shown in a different color in line form. [(c) and (d)] Φ − Ψ free energy surfaces of a blocked serine in solution with
(c) CHARMM36 and (d) DFTB3-Mulliken charges, the latter better resembles the DFTB3/3OB/CHARMM result (see, e.g., Ref. 53). [(e) and (f)] Free energy map projected
onto the first two principal components for a MDP in solution using (e) CHARMM36 and (f) DFTB3/3OB/CHARMM. The dots indicate the locations of X0, X′0, and the labels
correspond to those used in Table III.
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TABLE III. Computed ΔGL→H values (in kcal/mol) for a fully unrestrained blocked serine in solution from the staged transformation approach using different combinations of
confined reference structures (i.e., X0, X′0).a

X′0 sample 1 X′0 sample 2 X′0 sample 3 X′0 sample 4 X′0 sample 5

ΔGL→H
0 −18 550.6 ± 0.3 −18 551.9 ± 0.2 −18 553.9 ± 0.3 −18 556.3 ± 0.5 −18 550.2 ± 0.2

X0 sample 1 4.5/−18 546.1b 5.0/−18 546.8 9.6/−18 544.3 11.1/−18 545.2 11.1/−18 539.0
X0 sample 2 2.4/−18 548.2 2.9/−18 548.9 7.6/−18 546.3 9.0/−18 547.3 9.1/−18 541.1
X0 sample 3 3.9/−18 546.7 4.5/−18 547.4 9.1/−18 544.8 10.6/−185 45.7 10.6/−18 539.6
X0 sample 4 3.1/−18 547.5 3.7/−18 548.2 8.3/−18 545.7 9.7/−18 546.5 9.8/−18 540.4
X0 sample 5 3.0/−18 547.6 3.5/−18 548.3 8.2/−18 545.8 9.6/−18 546.7 9.6/−18 540.5
Avg.c −18 545.4 ± 2.9 (−18 546.7 ± 1.2)

aSee text for the discussion of the selection of the confined structures. The first row lists the values of ΔGL→H
0 , which depends only on the choices of R0

′ , as discussed in Sec. II D 2,
we introduced an intermediate level of model (M) that uses the CHARMM36 force field, except that the partial charges are replaced by DFTB3/3OB Mulliken charges computed for a
single snapshot in solution; thus, ΔGL→H

0 = ΔGL→M
0 +ΔGM→H

0 , where the L/M conversion is done with multi-λ TI due to the low computational cost, and M/H conversion is done with
1-λ FEP due to the favorable distribution overlap illustrated in Fig. 8. For other entries, the value before the slash is ΔGL

Λ , and the value after the slash is ΔGL→H
= ΔGL→H

0 + ΔGL
Λ .

bFor this specific combination, the confined structures (X0 , X′0) are close to the minima on the L/H free energy surface based on the 2D projection [see Figs. 10(c) and 10(d)].
cThe average ΔGL→H value is reported as the “Stage” entry in Table I; values with parentheses are the results without including data from R0

′ sample 5 [see Fig. 10(d)], which leads to
consistently different values (see text).

especially if the confinement free energies ΔGL/H
cfn are not explicitly

computed, i.e., the approximation is that they cancel out perfectly
between the L and H levels.

To this end, for each test case, we have sampled 25 different
combinations of X0 and X′0 by choosing five reference structures
at each level of theory. Ideally, X0 and X′0 should be selected by
identifying structures near the free energy minima at L and H lev-
els of theory [Fig. 3(b)], which requires projecting the free energy
surface onto different dimensions using, for example, principal com-
ponent analysis.80 In this work, to test the robustness of the result, we
chose X0 and X′0 by simply identifying structures that have the low-
est potential energies for the solute, including both intra-solute and
solute–solvent interactions. As illustrated in Figs. 10(c)–10(f), some
of the selected structures are indeed close to the free energy minima,
while others are not. The spread of the conformations, as shown by
the superpositions in Figs. 10(a) and 10(b), is more modest for the
blocked serine than MDP; the root mean squared difference (RMSD)
among the different structures is ∼0.05 Å, with some dihedral angles
differing by ∼20○ for the blocked serine and ∼40○ for MDP. In

principle, the staged transformation approach ought to be applicable
to any reference structure (X0 and X′0) combinations, although the
assumption of canceled ΔGL/H

cfn is expected to work better for X0 and
X′0 close to the respective free energy minimum.

The results for these 25 combinations are shown in Tables III
and IV, which illustrate several points worth noting. First, without
considering the free energy components associated with changing
the confined degrees of freedom from X0 to X′0, the free energy
quantity ΔGL→H

0 is sensitive to the choice of X′0; the magnitude of
variation is ∼6 kcal/mol for serine and ∼8 kcal/mol for MDP. More
importantly, the magnitude of ΔGL→H

0 can be substantially differ-
ent from the true ΔGL→H value, by as much as ∼20 kcal/mol for
MDP. Indeed, the “reorganization free energy,” ΔGL

Λ, ranges from
3 kcal/mol to 11 kcal/mol for the blocked serine, and 12 kcal/mol
to 25 kcal/mol for MDP (see numbers before slashes in Tables III
and IV). Second, for the combination of X0, X′0 that are close to the
free energy minima (highlighted in bold in Tables III and IV), at
least based on the 2D projection in Fig. 10, the computed ΔGL→H

values are indeed close to the m-λ TI results (−18 545.3 kcal/mol

TABLE IV. Computed ΔGL→H values (in kcal/mol) for a fully unrestrained methyl diphosphate in solution from the staged transformation approach using different combinations
of confined reference structures (i.e., X0, X′0).a

X′0 sample 1 X′0 sample 2 X′0 sample 3 X′0 sample 4 X′0 sample 5

ΔGL→H
0 −18 878.6 ± 0.3 −18 878.6 ± 0.2 −18 876.4 ± 0.2 −18 872.8 ± 0.2 −18 880.5 ± 0.3

X0 sample 1 23.7/−18 854.8 21.6/−18 857.0 17.7/−18 858.7 16.0/−18 856.8 24.7/−18 855.8
X0 sample 2 22.9/−18 855.7 20.8/−18 857.8 16.9/−18 859.5 15.2/−18 857.6 23.9/−18 856.6
X0 sample 3 20.0/−18 858.6 17.8/−18 860.7 13.9/−18 862.4 12.3/−18 860.5 20.9/−18 859.6
X0 sample 4 23.2/−18 855.3 21.1/−18 857.5 17.2/−18 859.1 15.5/−18 857.2 24.2/−18 856.3
X0 sample 5 21.7/−18 856.9 19.6/−18 859.0 15.7/−18 860.7b 14.0/−18 858.8b 22.6/−18 857.8
Avg. −18 858.0 ± 1.9

aSee footnote a of Table III for the format of the entries. The average ΔGL→H value is reported as the “Stage” entry in Table II.
bFor these specific combinations, the confined structures (X0 , X′0) are close to the minima on the L/H free energy surface based on the 2D projection [see Figs. 10(e) and 10(f)].
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for serine and −18 857.3 kcal/mol for MDP), although the differ-
ence can be as large as 3 kcal/mol. Finally, comparing the ΔGL→H

values for the 25 combinations, we see that the results are mixed.
On one hand, the results are largely consistent, for example, while
the ΔGL→H

0 values may differ by as much as 8 kcal/mol, once ΔGL
Λ

is included, the estimated ΔGL→H values are closer in magnitude
with a standard deviation of 1.9 kcal/mol. On the other hand, for
the serine case, one particular choice of X′0 leads to consistently
different ΔGL→H values compared to the other 20 combinations
by as much as ∼6 kcal/mol. As shown in Fig. 10(d), the location
of this reference structure (labeled 5) is not much different from
the other four reference structures in the ϕ, ψ plane. On the other
hand, the five reference structures differ in all degrees of free-
dom (they were collected from a fully unrestrained simulation),
and projection in Fig. 10(d) reflects only two dihedral angles. Evi-
dently, additional studies are required to develop better ways to
determine optimal reference structures, such as using an efficient
clustering analysis. Nevertheless, the current analysis highlights the
importance of collecting multiple reference structures at both L
and H levels to explicitly evaluate the robustness of the free energy
results.

C. Length of sampling at the low- and high-level
of theory

Finally, we briefly comment on the minimal amount of
sampling needed at the L and H levels of theory for the test systems

FIG. 11. Convergence behavior of different free energy estimators for a blocked
serine with a frozen structure in water with respect to the number of data points
included. The L is CHARMM36, and the H is DFTB3/3OB/MM. Note that the refer-
ence M-λ TI value is different from that shown in Table I because a different serine
structure is adopted in this set of calculations.

examined here. For sampling at the low level, we use the example of a
frozen Ser in water, which exhibits the adequate distribution overlap
between L = CHARMM36 and H = DFTB3/3OB/MM [Fig. 7(b)].
We examine the convergence of various free energy estimators for
ΔGL→H

0 with respect to the number of data points included. As
shown in Fig. 11, even for this favorable case, at least 20 000 data

FIG. 12. Normalized dynamic Stokes shift computed for L = CHARMM36 and H = DFTB3/3OB/MM simulations. The four solution cases examined are (a) a fully unrestrained
blocked serine, (b) a blocked serine with a frozen structure, (c) a fully unrestrained methyl diphosphate (MDP), and (d) a MDP with a frozen structure. The longer time constants
from bi-exponential fits are 25.1 ps, 0.7 ps, 15.2 ps, and 1.8 ps for (a)–(d)], respectively. Similar results are found for L = DFTB3/3OB/MM and H = B3LYP/6-31G(d)/MM for
the cases of frozen solutes.
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points are necessary for good statistical convergence; this is in line
with previous analysis.20,25,34,53 As expected, the convergence behav-
ior for BAR and LRA, which involve sampling at both L and H
levels, is superior to the one-step FEP using either L or H sampling
alone.

Another relevant question for multi-level free energy simula-
tion is the time required to equilibrate at the H level, provided that
adequate equilibration has already been done at the L level. For the
computationally expensive H level, minimizing the amount of sam-
pling is crucial to the practical efficiency. Here, we advocate the use
of time-dependent Stokes shift, a quantity borrowed from the con-
densed phase spectroscopy literature.81,82 The normalized dynamic
Stokes shift is defined as

S(t) = ⟨ΔU(t) − ΔU(∞)⟩⟨ΔU(0) − ΔU(∞)⟩ , (14)

where ΔU(t) is the energy difference between the L/H levels at time t
in the H level simulation that started (i.e., t = 0) with an equilibrated
snapshot from the L level simulation. The quantity S(t) reflects the
time scale for the environment to respond to the change of the solute
potential function from L to H.

Specifically, for the two test systems examined here, we exam-
ine the combination of L = CHARMM36 and H = DFTB3/3OB/MM
and we compare the situation of free solutes and frozen solutes,
which are expected to correspond to the limiting behaviors of the
solvent response. To compute S(t), we conduct 30 independent H
level trajectories for each case examined.

As shown in Fig. 12, with a fully flexible solute, solvent response
to the change of the solute potential function from CHARMM36 to
DFTB3/3OB involves at least two time scales, and the longer time
scale is on the order of 20 ps. Although MDP tends to exhibit a
poorer distribution overlap between L and H as compared to Ser
(see Fig. 7), the solvent response time is similar for the two solutes.
With a frozen solute, the solvent response to the change of the
solute potential function is much faster, even the longer time scale
is merely a few picoseconds. These calculations suggest that with
adequately equilibrated simulations at the L level for modest size
solutes (QM regions), the amount of equilibration at the H level is
likely limited to tens of picoseconds, which are readily affordable
nowadays. Whether this is the case for a heterogeneous environ-
ment such as the active site of proteins remains to be examined in the
future.

IV. CONCLUDING REMARKS
There has been tremendous interest in combining different lev-

els of theory to obtain reliable thermodynamic properties for con-
densed phase systems. It has widely been recognized that the key
to such multi-level free energy simulations is to ensure a favor-
able distribution overlap between different levels of theory. There-
fore, the fundamental challenge is to identify the major degrees
of freedom that lead to gaps in the distributions at the L and
H levels of theory and then develop approaches that circumvent
convergence difficulties due to the lack of adequate distribution
overlap.

In this work, we have explored a strategy that converts from
the L to H level of theory in a staged fashion, so as to ensure a
favorable distribution overlap between different models along the

way. The key philosophy behind the strategy is to treat the problem-
atic degrees of freedom (denoted as X in this work), which lead to
distribution gaps, differently from the rest; the stiff degrees of free-
dom in X are treated with constraints (for bond lengths) or hard
restraints (for bond angles), softer degrees of freedom (e.g., dihe-
drals) are treated with biasing potentials, and non-bonded degrees of
freedom (e.g., partial charges) are treated by introducing an interme-
diate level of model (e.g., replacing MM charges with Mulliken/ESP
charges).

Importantly, different models are connected through well-
defined steps in a thermodynamic cycle, and corresponding free
energy components are evaluated explicitly; this is an essential dif-
ference between our approach with more approximate schemes
that compute, for example, only interaction energies. Test cal-
culations using model compounds in solution indicate that the
free energy components for connecting different levels of theory
(e.g., ΔGL

Λ for the X0/X′0 transformation) can be large in mag-
nitude (∼20 kcal/mol) and therefore essential to evaluate explic-
itly. While the staged transformation approach introduces addi-
tional steps, most of the free energy component calculations are
done at the low level of theory and therefore do not significantly
increase the computational cost. In fact, one way of describing our
approach is starting with the L level conformational ensemble, pro-
gressively building up the optimal conformational ensemble that
exhibits a favorable distribution overlap with the high-level of the-
ory such that the amount of expensive H calculations is kept at a
minimum.

As a proof of concept, two simple but non-trivial solution
model systems are used to demonstrate that the staged transforma-
tion scheme is able to reproduce brute-force multi-window ther-
modynamic integration results for the L to H conversion with
encouraging accuracy. For example, for a charged molecule (methyl
diphosphate) in solution, free energy perturbation using only L level
trajectories has a large error of ∼13 kcal/mol, the staged trans-
formation scheme leads to results within 1 kcal/mol–2 kcal/mol
from M-λ TI calculations. We note that in the current imple-
mentation, we do make the approximation that confining the stiff
degrees of freedom in X has similar free energy costs at the L
and H levels of theory (i.e., ΔΔGL/H

cfn ∼ 0); considering the local-
ized nature of these degrees of freedom, the errors of the approx-
imation are likely small, as supported by the favorable results
for the staged transformation calculations, although this needs
to be quantitatively evaluated for more complex systems in the
future.

To apply the staged approach to more complex systems with
a large number of atoms treated at multiple levels, the two major
bottlenecks concern the systematic identification of the X degrees
of freedom and the selection of appropriate reference structures at
different levels of theory (i.e., X0, X′0). For the former issue, cre-
ative solutions likely involve combining multiple short simulations
with machine learning algorithms for identifying variables that lead
to large distribution gaps between different levels of theory, sim-
ilar in spirit to the problem of optimizing collective variables in
free energy simulations.83 In fact, it is conceivable that machine
learning approaches can be used to simultaneously learn the dif-
ference between the different levels of theory and the key coordi-
nates responsible for the distribution gaps. In this way, the staged
transformation approach and Δ-learning51 can be integrated so that
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convergence in ΔGL→H can be achieved with only modest improve-
ment of the low-level method based on a limited amount of high-
level data. For the issue of choosing reference structures, efficient
clustering algorithms and dimensional reduction schemes should be
explored and compared; test calculations illustrate the importance
of sampling multiple reference structures to evaluate the robust-
ness of the result. For cases that involve multiple free energy basins,
it is natural to employ a divide-and-conquer strategy that requires
evaluating free energy difference at the L/H levels of theory for the
different basins separately.84

Finally, we stress the importance of conducting some degree
of sampling at the H level of theory. This helps to explicitly eval-
uate the distribution overlap between the different models, and
even a simple LRA model can be a substantial improvement over
free energy perturbation that relies on the L level sampling alone,
as shown by the model systems studied here. Along this line,
monitoring the energy gap correlation function (i.e., the dynamic
Stokes shift) can be an effective way to evaluate equilibration at
the expensive H level, starting with a well-equilibrated L level
ensemble.
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