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Abstract

Bacterial skin infections are a major societal health burden and are increasingly difficult to treat 

due to the emergence of antibiotic resistant strains such as community-acquired methicillin-

resistant Staphylococcus aureus. Understanding the immunological mechanisms that provide 

durable protection against skin infections has the potential to guide the development of 

immunotherapies and vaccines to engage the host immune response to combat these antibiotic 

resistant strains. To this end, mouse skin infection models allow researchers to examine host 

immunity by investigating the timing, inoculum, route of infection and the causative bacterial 

species in different wildtype mouse backgrounds as well as in knockout, transgenic and other 

types of genetically engineered mouse strains. To recapitulate the various types of human skin 

infections, many different mouse models have been developed. For example, four models 

frequently used in dermatological research are based on route of infection, including: (i) 

subcutaneous infection models, (ii) intradermal infection models, (iii) wound infection models, 

and (iv) epicutaneous infection models. In this article, we will describe these skin infection models 

in detail along with their advantages and limitations. Additionally, we will discuss how humanized 

mouse models such as the human skin xenograft on immunocompromised mice might be used in 

bacterial skin infection research.
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INTRODUCTION

The skin provides the first line of defense by providing a physical barrier with a low pH and 

temperature, an abundance of antimicrobial peptides and the normal healthy skin 

microbiome that protect against microbial invasion. However, when the protective skin 

barrier is damaged, breached, or develops a microbial dysbiosis, skin infections can arise. 

Staphylococcus aureus (S. aureus) is the leading cause of skin and soft tissue infections 

(SSTIs) in the U.S. (Dantes et al., 2013, Suaya et al., 2014). With the emergence of 

antibiotic-resistant bacterial clinical isolates such as community-acquired methicillin-

resistant S. aureus (CA-MRSA), it is critical to understand the host immune responses that 

promote bacterial clearance in order to develop non-antibiotic immune-based therapies to 

prevent and/or treat skin infections. To investigate these immunological processes, mouse 

models that mimic various human skin infections have been developed and have been 

instrumental in identifying novel immunotherapeutic targets. This review will discuss 

different mouse skin infection models along with a human skin xenograft model, and the 

advantages and limitations of each model. Although we will focus on S. aureus and other 

bacterial pathogens to describe each mouse skin infection model, these models do not 

exclude or may not be representative of fungal, parasitic, or viral skin infections.

Mouse Models of Skin infection

Mouse skin infection models can be categorized into four groups based on the depth of 

infection: (i) subcutaneous infection in which the bacteria are inoculated below the dermis; 

(ii) intradermal infection in which the bacteria are inoculated into the dermis; (iii) wound 

infection in which the bacteria are inoculated into full-thickness incisional or excisional 

wounds; and (iv) epicutaneous infection in which the surface of the skin is exposed to the 

bacterial inoculum (Figure 1). These four models will be described in the context of S. 
aureus skin infections. Lastly, we will discuss the potential for translational studies with 

human skin xenografts. Understanding the strengths and weaknesses of each model will help 

provide key insights into which system is most appropriate to study specific immunologic 

responses as summarized in Table 1.

1. Subcutaneous Infection Models—The subcutaneous infection model mimics more 

invasive infections, such as subcutaneous abscesses and cellulitis (McCaig et al., 2006, 

Miller et al., 2005). Upon subcutaneous inoculation of S. aureus into the backs of mice, a 

deep abscess comprised of neutrophils forms around that bacteria. This abscess typically 

forms below the panniculus carnosus muscle in the deep dermis that primarily involves the 

subcutaneous fat above the deeper muscle layers (Liese et al., 2013, Tseng et al., 2011). 

Thus, this model has been widely used to elucidate immune mechanisms against deep soft 

tissue infections with various bacterial species such as S. aureus and S. pyogenes (Medina, 

2010, Tseng et al., 2009). For instance, by subcutaneously inoculating different wild-type 

mouse strains with S. aureus, it was seen that resistance to the bacterial infection was 

associated with increasing number of infiltrating neutrophils at the site of infection (Nippe et 

al., 2011). The subcutaneous infection model has also been used to elucidate the role of 

antimicrobial peptides (AMPs) during S. aureus skin infections. The activities of hBD3 and 

LL-37 was shown to be essential for controlling subcutaneous skin infections by promoting 
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the killing of S. aureus by either maintaining the anti-staphylococcal environment or 

permeabilizing the bacterial membrane, respectively (Cheung et al., 2018). Additionally, the 

subcutaneous model was used to discover an unexpected role for adipocyte-derived LL-37 in 

the control of S. aureus infection (Zhang et al., 2015). This model can also be used to 

investigate durable immune responses that protect the host from recurrent infections. For 

example, re-infected mice showed innate immune memory (e.g., trained memory) of 

macrophages against a recurrent S. aureus subcutaneous infection (Chan et al., 2018). 

However, obtaining the muscle lesion size, which is a common readout for the subcutaneous 

infection model, involves a more invasive procedure that requires sacrificing the mice 

(Tseng et al., 2011).

2. Intradermal Skin Infection Models—The intradermal skin infection model also 

recapitulates the hallmarks of human S. aureus skin infections, including dermonecrotic 

lesions and neutrophilic skin abscesses, which corresponds to the progression and severity of 

the infection (Asai et al., 2010, Mölne et al., 2000). In addition, bioluminescent bacterial 

strains and in vivo optical imaging systems can be used in conjunction to noninvasively and 

longitudinally monitor the dynamics of the bacterial infection (Miller et al., 2006). 

Genetically engineered mouse strains are also useful to study components of the host 

response required for protection against skin infections. For example, the critical role of the 

inflammasome and IL-1β/IL-1R signaling in promoting neutrophil recruitment and host 

defense against S. aureus skin infections was uncovered using mice deficient in ASC 

(apoptosis-associated speck-like protein containing a C-terminal caspase recruitment 

domain), IL-1β or IL-1R as well as IL-1β-DsRed reporter mice (Cho et al., 2012, Miller et 

al., 2006, Miller et al., 2007). In addition, mice lacking γδ T cells exhibited significant host 

defense defects due to impaired IL-17 production (Cho et al., 2010). Transgenic reporter 

mouse strains, such as the IL-17A-tdTomato/IL-17F-GFP dual-color reporter mice, can 

provide insights into the expression kinetics and relevant expressing cell types of host-

derived cytokines that are important for protection against intradermal S. aureus infections 

(Marchitto et al., 2019). The intradermal model can also be modified to investigate the 

mechanisms of immunological memory by re-infecting mice at a different skin site from the 

original intradermal infection (Gaidamakova et al., 2012, Montgomery et al., 2014, 

Sampedro et al., 2014). Remarkably, using a S. aureus intradermal skin re-infection model, a 

clonal population of γδ T cells was found to expand in the draining lymph nodes and traffic 

to the site of infection to confer protection against a secondary S. aureus intradermal 

infection (Dillen et al., 2018). Despite the widespread use of S. aureus intradermal models of 

infection, inherent biological differences between mice and humans need to be considered 

such as the activity of specific S. aureus toxins that are highly active against human but not 

mouse cells, especially superantigens such as toxic shock syndrome toxin-1 (TSST1) 

(Salgado-Pabón and Schlievert, 2014). To overcome this limitation, humanized mice that 

express the human receptors (e.g., HLA-DR4 knock-in mice) targeted by these S. aureus 
toxins have been developed in which TSST1 has superantigen activity (Xu et al., 2014). 

Mouse immune cells are also less sensitive to the cytolytic activity of Panton-Valentine 

leukocidin (PVL) and α-hemolysin (Hongo et al., 2009, Spaan et al., 2013, Tseng et al., 

2015). However, whereas α-hemolysin mainly has cytolytic activity against leukocytes and 

development of large purulent abscesses in humans, it induces keratinocyte cell death in 
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mice that manifests as large dermonecrotic lesions (Kennedy et al., 2010). Additional 

interrogation of the pathophysiology and immunological responses can be done by 

histological, flow cytometric, or RNA/protein analyses to verify the relevance and validity 

phenotypic observations (Marchitto et al., 2019). Importantly, mice have an abundant 

population of γδ T cells called dendritic epidermal T cells (DETCs), which is not present in 

human epidermis (albeit 1–10% of resident T cells in the dermis of human skin are γδ T 

cells) (Nielsen et al., 2017). Mice also have more subsets of γδ T cells that reside at 

different layers of the skin with both conserved and distinct physiological functions as those 

in humans (Girardi, 2006, Suwanpradid et al., 2017). In addition to the differences in skin 

resident immune cells, there are other general immunological differences between the two 

species that could lead to discrepancies in infection outcomes between mouse and humans 

(McGovern et al., 2014). In humans, neutrophils make up the majority of circulating 

leukocytes whereas lymphocytes exist in higher percentages in mice (Mestas and Hughes, 

2004). Furthermore, differences in hair follicles also contribute to differential protective 

mechanisms in mouse and human skin by influencing the accessibility, mobility, and 

communication of epithelial cells that initiate innate immune response against foreign 

pathogens (Al-Nuaimi et al., 2010, Bekeredjian-Ding et al., 2017, Oh et al., 2016). 

Therefore, it is important to consider a broad spectrum of differences between mouse and 

human when performing skin infection models.

3. Wound Infection Models—S. aureus is the most common pathogen isolated from 

infected skin wounds, with diabetic patients being particularly susceptible to the 

development of chronic, non-healing wounds (Dunyach-Remy et al., 2016, Giurato et al., 

2017, Tong et al., 2015). Pseudomonas aeruginosa is another invasive bacterial species 

commonly found in wounds that causes severe tissue damage (Mutluoglu and Uzun, 2011, 

Sivanmaliappan and Sevanan, 2011). Mouse wound infection models replicate multiple 

features of infected human wounds such as purulent drainage, necrotic debris and delayed 

wound healing. The mouse wound infection model is performed by inoculating bacteria into 

full-thickness incisional cuts or excisional wounds (Dai et al., 2011). For example, incisional 

wounds can be inoculated with a bioluminescent S. aureus strain in Lysozyme M-EGFP 

(LysM-EGFP) reporter mice to longitudinally monitor both the bacterial burden and 

neutrophil recruitment dynamics during the course of infection and wound healing (Figure 

2A–D) (Anderson et al., 2019, Kim et al., 2008). Furthermore, histological analysis of the 

infected wound skin can be used to analyze neutrophil abscess area, bacterial band width, 

and the presence of specific cells (Figure 2E) (Cho et al., 2011). The benefits of these 

different wound infection models include the ability to replicate polymicrobial infections 

that typically occur in human wounds (Dalton et al., 2011, Pastar et al., 2013). By infecting 

the wounds of diabetic mice with polymicrobial isolates from human diabetic foot ulcers, 

Kalan et al. were able to correlate strain-specific S. aureus phenotypes in mice with patient 

outcomes (Kalan et al., 2019). With the availability of a new strain of bioluminescent S. 
aureus expressing click beetle red luciferase and a P. aeruginosa lux strain, it is now possible 

to longitudinally and noninvasively monitor the dynamics of each bacterial strain in the 

context of wound infection (Miller et al., 2019). Additionally, various different strains of 

genetically-engineered diabetic mice exist that exhibit impaired host defense against S. 
aureus wound infections, similar to human diabetics (Guo et al., 2013, Ortines et al., 2018). 
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It is important to consider the route and depth of infection in the skin as these can affect the 

immunological processes involved. For instance, both IL-1α and IL-1β were found to be 

involved in neutrophil recruitment and immunity against a S. aureus wound infection, while 

IL-1β played a more predominant role against an intradermal S. aureus infection (Cho et al., 

2011, Yan et al., 2016). Different cellular composition between mouse and human skin may 

lead to challenges in translating findings in mouse wound infection models. Unlike human 

skin, mouse skin is highly populated with DETCs, which are responsible for sensing skin 

injury and producing IL-17A to promote wound healing and to strengthen skin barrier 

function (MacLeod et al., 2013). Another limitation to this model is that wound contraction 

is much more pronounced in mouse skin than human skin. Some groups have tried to 

overcome this limitation by covering the wound bed with a transparent breathable film (that 

also keeps the wound open longer) or suturing a splint to prevent wound contracture (Griffin 

et al., 2015).

4. Epicutaneous Infection Models—S. aureus commonly colonizes the lesional skin 

of human atopic dermatitis (AD) patients and the level of colonization correlates with 

disease severity (Byrd et al., 2017, Kong et al., 2012). Patients with hyper-immunoglobulin 

E syndrome, which is often due to a dominant negative mutation in STAT3 gene, have been 

characterized by atopic manifestations and higher susceptibility to S. aureus and/or Candida 
cutaneous infections as a result of impaired Th17 development (Horváth et al., 2011, Milner 

et al., 2008). These clinical observations have caused intense interest in understanding the 

role of S. aureus in the immune pathogenesis of AD skin inflammation. To model this, a S. 
aureus-soaked gauze pad is applied to the shaved and depilated dorsal skin of mice. The 

erythematous skin inflammation that mimic human AD conditions in mice can be measured 

by disease scoring, epidermal thickening, and elevated serum IgE, while the increased skin 

barrier defect can be measured through transepidermal water loss (TEWL) (Alexander et al., 

2018, Nakamura et al., 2013). The use of mouse genetic cre/lox systems provide another 

important tool for researchers to identify the cells involved in immune responses by 

targeting gene deletion in a specific cell type. For example, a cre/lox mouse with T cell 

specific deletion of MyD88 was used to uncover a novel role for IL-36-mediated IL-17 T 

cell responses in epicutaneous S. aureus-driven skin inflammation (Liu et al., 2017). Tape 

stripping of the skin can be performed prior to epicutaneous skin infection to recapitulate the 

barrier defect seen in AD skin. In this model, S. aureus -derived proteases and phenol-

soluble modulin alpha (PSMα), which are under the regulation of the bacteria’s quorum 

sensing system, promoted skin inflammation by inducing epidermal proteolysis and skin 

barrier damage (Williams et al., 2019). Similarly, S. aureus was shown to exploit the barrier 

defect in filaggrin-deficient (ft/ft) mice to promote Th2 and Th22 cytokines that are 

associated with exacerbation of AD skin inflammation (Nakatsuji et al., 2016). Exploitation 

of skin barrier defects is not limited to S. aureus, but also vaccinia virus, which is the cause 

of a life-threatening condition called eczema vaccinatum in AD patients. Furthermore, 

cutaneous exposure to vaccinia virus in ft/ft mice through scarification, which recapitulates 

the route of exposure during smallpox vaccination in humans, showed IL-17A mediated 

dissemination of the virus in the skin (Oyoshi et al., 2015). Therefore, the epicutaneous 

infection model is useful in investigating the host and pathogen-derived factors that 

contribute to AD-like skin inflammation and AD-associated complications. Nonetheless, 
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some of these models have used depilatory creams that result in baseline skin inflammation. 

Moreover, the models that wrap a pathogen-soaked gauze pad around the mouse to 

artificially expose the mouse skin to the pathogen of interest does not truly recapitulate the 

normal S. aureus colonization of uncovered skin in AD patients.

To investigate the cross-talk between the skin microbiome and host immune cells, an 

alternate epicutaneous infection model has been developed where a bacteria-soaked cotton 

swab is rubbed onto the shaved backs of mice (Belkaid and Segre, 2014, Kugelberg et al., 

2005). This model was instrumental in understanding how skin discriminates between 

commensal and pathogenic skin microbes. In particular, the commensal S. epidermidis 
promoted T regulatory cell (Treg) expansion and skin immune tolerance in a crucial window 

in neonatal life (Scharschmidt et al., 2015). However, S. aureus manipulated IL-1β release to 

inhibit Treg expansion and induce skin inflammation (Leech et al., 2019). Furthermore, the 

model has been used to understand how the commensal bacterial strain S. epidermis 
promotes protection against pathogens as well as accelerate wound healing (Linehan et al., 

2018). On the other hand, epicutaneous inoculation with Corynebacterium accolens 
promoted skin inflammation through activation of long-lasting skin T cells (Ridaura et al., 

2018). Additionally, isolated S. aureus strains colonizing human AD induced more skin 

inflammation than laboratory strains isolated from other body sites (Byrd et al., 2017). 

Alternatively, Candida albicans was applied to the skin to interrogate a role for cutaneous 

sensory neurons in host defense (Kashem et al., 2015). Despite the usefulness of the swab 

epicutaneous model, it generally is done with multiple bacterial (or fungal) applications that 

might not fully replicate the normal colonization of commensal microbes on human skin.

Human Skin Xenograft Model

Given the inherent differences between human and mouse skin, human skin xenografts can 

be used to validate and translate the findings in mouse models to human skin (Parker, 2017). 

To prevent graft rejection, human skin biopsies are sutured onto immunodeficient mice that 

include NSG (NOD.Cg-Prkdcscid IL2rgtm1Wjl), NOG (NOD.cg-Prkdcscid IL2rgtm1Sug), and 

NRG (NOD.Cg-Rag1tm1Mom IL2rgtm1Wj) mice, all of which lack T, B and NK cells 

(Kenney et al., 2016). Moreover, it is possible to perform human skin xenografts in 

combination with engraftment of CD34+ stem cells (allowing the development of human 

immune cells in the same mice) to provide the new in vivo capability to study the human 

immune system in the context of a human skin infection (Brehm et al., 2012). There are 

numerous advantages for the use of human skin, including healthy samples that are readily 

available and engrafted skin tissue with epidermal and dermal layers and vascularized skin 

that closely resembles normal human skin. For example, Soong et al. demonstrated toxin-

deficient, agr mutants of S. aureus are able to persist on the human skin by stimulating 

autophagy (Soong et al., 2015). In addition, epicutaneously swabbed S. aureus on human 

skin xenografts led to local production of IL-8, which induced neutrophil migration to the 

skin to promote bacterial clearance (Schulz et al., 2019). Studies involving human skin 

xenograft infections are not widely used, and thus represent an exciting opportunity in the 

dermatology field to translate the immunological findings from mouse skin infection models 

to human skin.
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CONCLUSION

Mouse models of skin infection remain the most commonly used model of skin infections 

due to their relatively inexpensive experimental costs as well as the opportunity to take 

advantage of genetically engineered mice and in vivo optical imaging techniques. Currently, 

a great variety of skin infection models and genetically engineered mice are readily 

available, which serve as extremely valuable tools for noninvasive and longitudinal 

monitoring of the underlying immune responses and host-pathogen interactions that occur 

during skin infections. Mouse skin infection models will continue to be essential for better 

understanding skin immunological responses in different contexts, including skin 

colonization, impetiginization, abscesses and wounds as well as in the setting of diseases 

such as atopic dermatitis and diabetes. Unfortunately, mouse models cannot completely 

replicate the pathogenesis of human disease. Therefore, these limitations need to be 

considered when translating the results to cutaneous immune responses in human skin 

(summarized in Table 1). Further advancements in humanized skin xenografts in 

immunocompromised mice are continually being developed to help validate and improve the 

discrepancies between the species.

MULTIPLE CHOICE QUESTIONS

1. Which of the following would be the most immunologically relevant purpose to 

re-infect mice in a skin infection model?

A. To study primary T cell responses to skin infection.

B. To examine memory T cell responses to skin infection.

C. To study innate immune responses during initial skin infection.

D. To study polymicrobial infections.

Answer: B. To examine memory T cell responses to skin infection

Detailed Answer: Memory T cells are involved in the secondary response to skin 

infection.

2. Which of the genetically engineered mouse strains can be used to monitor 

cytokine expression kinetics during skin infections?

A. IL-17A/F KO mouse

B. Mouse with specific IL-17A/F deletion in T cells

C. IL-17A-tdTomato/IL-17F-GFP dual-color reporter mice

D. All of the above

Answer: C. IL-17A-tdTomato/IL-17F-GFP dual-color reporter mice

Detailed Answer: The IL-17A-tdTomato/IL-17F-GFP dual-color reporter mouse 

allows for in vivo visualization of IL-17A and IL-17F with an In Vivo Imaging 

System.
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3. Which of the following skin infection models has the potential to be used with 

human skin xenografts?

A. Epicutaneous model

B. Intradermal model

C. Wound model

D. All of the above

Answer: D. All of the above

Detailed Answer: Human skin xenografts can be adapted to work with any of the 

skin infection models.

4. The epicutaneous skin infection model replicates which type of skin 

inflammation?

A. Atopic dermatitis

B. Psoriasis

C. Vitiligo

D. Alopecia areata

Answer: A. Atopic dermatitis

Detailed Answer: The epicutaneous model replicates S. aureus colonization and 

skin inflammation on atopic dermatitis skin.

5. Which bacteria is the leading cause of skin infections in humans?

A. Staphylococcus epidermidis

B. Pseudomonas aeruginosa

C. Staphylococcus aureus

D. Corynebacterium accolens

Answer: C. Staphylococcus aureus

Detailed Answer: S. aureus is the leading cause of skin and soft tissue infections 

in humans.
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SUMMARY

Advantages

• Mouse skin infection models are powerful tools to elucidate immune 

mechanisms of protection and identify therapeutic targets against skin 

infections.

• Human skin xenografts on immunocompromised mice provide the potential to 

validate findings from mouse infection models in human skin.

Limitations

• Immune responses can differ against the same infectious agent depending on 

the skin infection model used and should be verified in each model separately.

• There are inherent immunological and physiological differences between 

mouse and human skin.
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Figure 1. Graphical and photographic representations of bacterial skin infection models.
(A) Graphical representation of mouse skin infection models as defined by the depth of 

infection in the skin. (B) Representative clinical photographs of each of the following skin 

infection models (left panel: control; right panel: experimental): (1) epicutaneous infection 

where bacteria was inoculated on the surface of intact skin by applying a gauze soaked with 

bacteria or swabbing (Dai et al., 2011, Malhotra et al., 2016, Williams et al., 2019), (2) 

wound infection where S. aureus was inoculated on a full-thickness skin incisional or splint-

sutured excisional wound (Archer et al., 2020, Morimoto et al., 2014), (3) intradermal 

infection model where S. aureus was inoculated into the dermis of the dorsal skin and 

developed dermonecrosis (Liu et al., 2017), (4) subcutaneous infection where S. aureus was 

inoculated into the subcutaneous tissue, which lead to dermonecrosis and muscle necrosis 

(Tseng et al., 2011).
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Figure 2. S. aureus skin infection in vivo imaging and histology.
Three 8-mm in length, parallel scalpel wounds on the backs of (A-D) LysM-EGFP mice or 

(E) C57BL/6 mice inoculated with 2 × 106 colony-forming units (CFUs) per 10 μl of 

Staphylococcus aureus or no bacteria (none). (A) Representative photographs of in vivo S. 
aureus bioluminescence. (B) In vivo S. aureus burden as measured by in vivo 
bioluminescence imaging (mean total flux (photons per second) ± SEM) (logarithmic scale). 

(C) Representative photographs of in vivo EGFP-neutrophil fluorescence. (D) In vivo 
fluorescence imaging of EGFP-neutrophil infiltration (mean total flux (photons per second) 

± SEM). (E) Representative photomicrographs of sections from skin punch biopsies at 1 day 

after wounding ± S. aureus infection labeled with hematoxylin and eosin (H&E) stain, anti-

Gr-1 mAb (neutrophil marker), and Gram stain. Scale bars = 150 μm. This figure was 

derived from (Cho et al., 2011).
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Table 1.

Summary of mouse skin infection models for immunity research

Type Human Relevance Model Description Limitations References

Subcutaneous 
model

• Cellulitis

• Necrotizing 
fasciitis

• Myositis

• Inoculation of 
bacteria into 
subcutaneous tissue

• Used to study 
infection in the 
context of dermal, 
subcutaneous, and 
muscular tissues

• Some measurements 
require invasive 
sampling

(Berube et 
al., 2014, 
Jeong et 
al., 2019, 
Nippe et 
al., 2011, 
Tseng et 
al., 2011)

Intradermal 
model

• Folliculitis

• Furuncle

• Cellulitis

• Erysipelas

• Injection of bacteria 
into dermis

• Used to elucidate the 
epidermal and dermal 
contribution to 
protection against 
infection

• Immunological 
differences between 
humans and mice 
(e.g., γδ T cells 
subsets, composition 
of circulating immune 
cells).

(Asai et al., 
2010, 
Brown et 
al., 2009, 
Dillen et 
al., 2018)

Wound models

• Incisional 
Wound

• Diabetic 
ulcerative 
skin 
infections

• Surgery site 
infections

• External 
wound 
infections

• Polymicrobial 
infections

• Infection of full-
thickness skin 
incisions

• Examination of 
wound healing and 
immunity in response 
to bacterial infection

• Differences in wound 
healing mechanisms 
between mouse and 
humans

(Guo et al., 
2013, 
Ortines et 
al., 2018, 
Zolfaghari 
et al., 
2009)

• Excisional 
Wound

• Diabetic 
ulcerative 
skin 
infections

• Surgery site 
infections

• External 
wound 
infections

• Polymicrobial 
infections

• Infection of full-
thickness skin 
excisional wounds

• With film or suturing, 
can better replicate re-
epithelization wound 
closure of human skin

• Differences in wound 
healing mechanisms 
between mouse and 
humans

(Fila et al., 
2016, Shi 
et al., 
2007)

Epicutaneous models

• Gauze 
Infection

• Atopic 
dermatitis 
skin 
inflammation

• Covered topical 
infection on intact or 
tape stripped skin

• Used to investigate 
disease pathogenesis 
of human atopic 
dermatitis

• Unknown 
contribution of 
depilatory cream to 
skin inflammation

• Contact via gauze 
does not replicate 
direct colonization of 
bacteria on patient 
skin

(Liu et al., 
2017, 
Nakatsuji 
et al., 2016, 
Williams et 
al., 2019)
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Type Human Relevance Model Description Limitations References

• Swab 
Infection

• Noninvasive 
bacterial 
colonization

• Atopic 
dermatitis 
skin 
inflammation

• Impetigo

• Uncovered topical 
infection on intact or 
tape stripped skin

• Used to investigate 
how the skin 
microbiome 
influences the local 
immune system

• Exposure to non-
physiological 
inoculum

(Kugelberg 
et al., 2005, 
Linehan et 
al., 2018, 
Malhotra et 
al., 2016, 
Pastagia et 
al., 2011)

• Human 
Skin 
Xenograft

• Closely 
resembles 
normal 
human skin

• Transplantation of 
human skin onto 
immunocompromised 
mice

• Potential to apply 
murine skin infection 
models in human skin 
to validate 
translational relevance 
of findings

• Limited to 
immunocompromised 
mice

• Skin infection models 
are largely untested

(Schulz et 
al., 2019)
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