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Abstract

Objective: To reliably and quickly diagnose children with posterior urethral valves (PUV), we 

developed a multi-instance deep learning method to automate image analysis.

Methods: We built a robust pattern classifier to distinguish 86 children with PUV from 71 

children with mild unilateral hydronephrosis based on ultrasound images (3504 in sagittal view 

and 2558 in transverse view) obtained during routine clinical care.

Results: The multi-instance deep learning classifier performed better than classifiers built on 

either single sagittal images or single transverse images. Particularly, the deep learning classifiers 

built on single images in the sagittal view and single images in the transverse view obtained area 

under the receiver operating characteristic curve (AUC) values of 0.796±0.064 and 0.815±0.071, 
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respectively. AUC values of the multi-instance deep learning classifiers built on images in the 

sagittal and transverse views with mean pooling operation were 0.949±0.035 and 0.954±0.033, 

respectively. The multi-instance deep learning classifiers built on images in both the sagittal and 

transverse views with a mean pooling operation obtained an AUC of 0.961±0.026 with a 

classification rate of 0.925±0.060, specificity of 0.986±0.032, and sensitivity of 0.873±0.120, 

respectively. Discriminative regions of the kidney located using classification activation map 

demonstrated that the deep learning techniques could identify meaningful anatomical features 

from ultrasound images.

Conclusion: The multi-instance deep learning method provides an automatic and accurate 

means to extract informative features from ultrasound images and discriminate infants with PUV 

from male children with unilateral hydronephrosis.
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Congenital abnormalities of the kidney and urinary tract (CAKUT) are the most common 

cause of end-stage renal disease (ESRD) in childhood.1 Although many children with 

CAKUT are diagnosed prenatally,2 postnatal ultrasound remains the cornerstone for 

characterizing and diagnosing congenital kidney abnormalities3 and in surveilling the 

kidneys of children with CAKUT diagnosed prenatally. The diagnosis of CAKUT based on 

ultrasound imaging relies on multiple anatomical measures, such as kidney size, symmetry 

of the kidneys, hydronephrosis, and echogenicity of the kidney parenchyma.4 However, 

these anatomical measures are typically obtained manually and exhibit moderate inter-

observer variation, which decreases reliability of diagnosis.5 Automated image analysis that 

accurately identify congenital kidney disease could improve the efficiency and reliability of 

diagnosis of children with CAKUT early in life.

Pattern recognition models built on imaging features of diagnostic imaging data have 

demonstrated promising performance to aid diagnosis of kidney diseases.6, 7 However, most 

features of kidney images were empirically defined and therefore may not fully harness the 

full discriminative power of the ultrasound images. Recent deep learning studies using 

diagnostic imaging have demonstrated promising performance in learning imaging features 

to aid diagnosis and predict clinical outcomes.8, 9 Particularly, convolutional neural networks 

(CNNs) have been widely adopted to learn informative imaging features in order to achieve 

optimal pattern recognition performance, including using a single 2D ultrasound images to 

classify normal kidneys and those with CAKUT.10, 11 A single 2D ultrasound image 

provides partial anatomic information of the kidney and the same kidney’s appearance in 2D 

ultrasound images varies in angle and orientation. Consequently, the classification models 

built upon single 2D ultrasound images might not be robust enough to different views of 

ultrasound images of the same kidney. On the other hand, multiple 2D ultrasound scans of 

the same kidney in different views are routinely collected in clinical practice. A 

classification model built upon different views of ultrasound images of the same kidney 

might be able to achieve robust classification performance. Such a classification model could 

be built using multiple instance learning (MIL) that treats all 2D ultrasound images of the 

same individual together to yield an overall classification score.12
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In the present study, we develop a multi-instance deep learning method to learn 

discriminative features of kidney ultrasound images and determine its performance in 

discriminating children with CAKUT from children with isolated hydronephrosis.

Materials and Methods

Imaging data and Participants

Ultrasound kidney images were obtained from 86 infants with CAKUT and 71 children with 

mild unilateral hydronephrosis (controls) at a local hospital for children. The individuals 

with CAKUT all had posterior urethral valves (PUV), the most common CAKUT diagnosis. 

These were randomly sampled from patients enrolled in the Registry of Urologic Disease, a 

comprehensive patient registry that includes 90% of patients seen in the Urology clinic since 

2000. The controls were male children with unilateral mild hydronephrosis (Society of Fetal 

Urology grade I-II). The children with CAKUT had varying degrees of increased cortical 

echogenicity, decreased corticomedullary differentiation, and hydronephrosis. In order to 

decrease selection bias, all cases and controls were selected without knowledge of the 

appearance of the kidneys on ultrasound.

The first ultrasound scans after birth were used and all identifying information was removed. 

For each individual, multiple 2D ultrasound images in sagittal and transverse views were 

collected during routine clinical care using Philips, Siemens, or General Electric ultrasound 

scanners with an abdominal transducer. All the images had 1024×768 pixels with pixel size 

ranging from 0.08×0.08mm2 to 0.12×0.12mm2. The subjects had varied numbers of 2D 

ultrasound images in different views.

The work described has been carried out in accordance with the Declaration of Helsinki. The 

study has been reviewed and approved by the Institutional Review Board.

Problem formulation using multiple instance learning

We formulated the diagnosis of CAKUT based on ultrasound images as a pattern 

classification problem. Given a subject X with multiple 2D kidney images xi (i = 1, …, I), 
we built a classifier in a MIL setting to classify X as either a CAKUT patient with a positive 

label or a control with a negative label. In the MIL setting, each 2D image is referred to as 

an instance, and all instances of the same subject constitute a bag. In this study, we adopt the 

standard MIL assumption that all instances of a negative bag are all negative (normal) and a 

positive (abnormal) bag has at least one positive instance. The classification of a bag X is 

achieved by a scoring function P(X) that is permutation-invariant to its elements of X in the 

following form13

P X = g ∑xi ∈ X f xi ,

where f and g are suitable transformation functions. In our method, f is implemented as a 

deep learning model at an instance-level to obtain a probability of CAKUT for each 2D 

image xi, i.e., pi = f(xi), and g is implemented as a mean or max pooling operation.
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Deep learning for CAKUT diagnosis at an instance-level based on transfer learning

Instead of building an instance-level deep learning classification model on raw ultrasound 

kidney images, we adopted a transfer learning strategy to extract informative image features 

from the images as a starting point, as we have successfully adopted the transfer learning in 

studies of ultrasound image classification and segmentation.11, 14, 15 Our transfer learning is 

based on a deep learning model, referred to as VGG16, which was developed for image 

classification and achieved a top-5 test-accuracy of 92.7% in ImageNet Challenge 2014.16

We trained a deep learning model by adopting the VGG16 model for CAKUT classification 

at an instance-level. We also compared the VGG16 model with other top-performing deep 

learning networks of natural image classification, including the ResNet17 and the Inception 

network.18 Implementation details are presented in the Supplement.

Computer aided classification of CAKUT based on multi-instance pooling

Once a deep learning model was trained for CAKUT classification at an instance-level, we 

applied the model to each individual’s kidney images for computing an overall bag-level 

classification score.

Image preprocessing and data augmentation

We manually identified all kidney images in the sagittal view and the transverse view for 

each individual. Then, all the images were resized to have the same size of 425×321 with 

cropping but without changing the width to height ratio, and each image’s intensity values 

were normalized to [0, 255]. In the training stage, we adopted the following data 

augmentation strategies, including random cropping of the training images by 10 pixels in 

horizontal directions or 5 pixels in in vertical directions, random rotation of the training 

images in [−45°, 45°], and left-right flipping of the training images. After data 

augmentation, the number of images per view and per patient for training was the number of 

the original training images multiplied by 42042 (21×11×91×2).

Implementation and evaluation of the deep learning model

The deep learning method was implemented based on Python 3.7.0 and TensorFlow r1.11. 

We trained deep learning models with a minibatch of 8 images using Adam stochastic 

optimization with a learning rate of 10−5. The maximum number of iteration steps was set to 

50000. A TITAN XP graphics processing unit (GPU) on a Linux workstation was used to 

train the deep learning model.

We trained 2 different deep learning models. The first one was trained based on images in 

the sagittal view, referred to as S training; and the second one was trained based on images 

in the transverse view, referred to as T training. Since the deep learning models were trained 

to classify individual kidney images, we refer to the models as single-instance deep learning 

(SIL) models. Based on the SIL models, corresponding MIL models were built. 

Furthermore, a multi-view MIL model was built to utilize images in both the sagittal view 

and the transverse view by applying the SIL models to images in their corresponding views.
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The deep learning models were evaluated in terms of their classification performance, 

estimated using a 5-fold cross-validation. We first randomly split the whole dataset into 5 

subsets. Then, we selected one subset as testing data to evaluate and optimize classification 

performance of a deep learning model trained based on the other 4 subsets. This process was 

repeated until each subset had been used as the testing set. The classification performance 

was measured by area under receiver operating characteristic curve (AUC). We also reported 

classification accuracy (ACC), specificity, and sensitivity.

We first evaluated the classification performance of the SIL models in order to estimate the 

diagnostic performance based on a single 2D ultrasound kidney image. We also adopted the 

gradient-weighted class activation mapping (CAM) [31] to visualize how different kidney 

regions contributed to the kidney classification.

We then evaluated the classification performance of the MIL models that were built on 

images in the sagittal view, the transverse view, or both views. We also compared the MIL 

models built using the mean and max pooling operators. Table S1 of supplementary data 

summarizes all evaluation in terms of classification models trained and tested using images 

in different views.

RESULTS

Data characteristics

Table 1 summarizes demographic data and numbers of 2D ultrasound images in different 

views of all the participants. Consistent with the diagnosis of PUV, the cases and sex-

matched controls were all male and had similar ages at time of imaging. However, they 

differed by race and gestational age, although the gestational age differences would likely 

not be clinically important (37.1 vs 38.5 weeks). Participants had varied numbers of 2D 

ultrasound images in different views. No significant difference was observed between the 

patients with PUV and controls in their numbers of 2D images of different views.

Classification performance and computational cost of the SIL models and the MIL models

Table 2 summarizes classification performance of different SIL and MIL models on the 

testing datasets. All the SIL models obtained AUC values were around 80%, and the SIL 

models trained and tested on images in the transverse view had slightly better performance 

than those trained and tested on images in the sagittal view. The Multi-View MIL model had 

the best classification accuracy and its AUC value was slightly better than the T (T training) 

MIL model’s AUC value.

ROC curves of different classification models on all subjects under comparison are shown in 

Figure 1. The ROC curves further demonstrated that the MIL models had better performance 

than the SIL models and the multi-view MIL model with mean pooling had the best 

performance.

On average, the SIL’s computational time was 0.189s/image, the S (S training) MIL’s 

computational time was 4.22s/subject, the T (T training) MIL’s computational time was 

3.019s/subject, and the Multi-view MIL’s computational time was 7.236s/subject.
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Kidney regions contributed to the classification

Figure 2 show class activation mapping results of randomly selected kidney images obtained 

using the SIL models trained on images in different views. These results indicated that 

discriminative regions were located in both the renal parenchyma and the collecting system.

Comparison with other deep learning methods

Supplemental Table 3 summarizes classification accuracy of different classification models 

on the testing datasets. The classification models trained with Inception_Resnet v2 obtained 

the best classification accuracy for classifying images in sagittal view and multiple views, 

and the classification models trained with the VGG16 obtained the best classification 

accuracy for classifying images in in transverse view.

DISCUSSION

In this study, we have demonstrated that multi-instance deep learning could achieve 

excellent performance to rapidly classify infants with PUV based on kidney ultrasound 

images. These results indicate that the multi-view multi-instance deep learning model built 

on kidney images in multiple views could obtain higher classification accuracy than deep 

learning models built on individual kidney images and kidney images in one single view, 

either sagittal or transverse. The relatively small standard deviations of the classification 

performance measures across different runs of the cross-validation experiments further 

demonstrated that the classification performance was relatively stable across different testing 

datasets. The high computational efficiency (8 seconds/individual) indicated that the deep 

learning classification system could be adopted in clinical practice.

We compared two different fusion strategies for integrating classification scores of 

individual kidney images, including the max pooling and the mean pooling (supplementary 

data). The experimental results indicated that the mean pooling operator led to better 

classification performance, highlighting that integrating multiple kidney images could 

improve the diagnosis since individual 2D ultrasound kidney images only provide partial 

anatomic information of the kidney. The experimental results suggested that the deep 

learning models built on images in transverse view had slightly better classification 

performance than those built on images in sagittal view. Moreover, the integration of images 

in both sagittal and transverse views led to higher classification accuracy.

As illustrated in Supplementary Figure 4, representative CAKUT images misclassified by 

the deep learning classifiers are visually normal, especially those in top 2 rows. These 

misclassified images highlighted the fact that single 2D images only provide partial 

information of the kidney under study and an individual 2D image of a CAKUT kidney 

could be similar to images of children with mild hydronephrosis both in appearance and in 

the deep leaning feature space.

The deep learning classification models also automatically identified discriminative image 

regions for the classification of CAKUT and normal kidneys. The discriminative image 

regions were located in both the parenchyma of the kidney and the collecting system. These 

results indicated that the deep learning models extracted informative imaging features since 
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the deep learning models were built upon ultrasound images without telling the algorithm 

where the kidney is in the images. This finding is important since controls had mild 

unilateral hydronephrosis; despite the dilation of the collecting system, the deep learning 

models could discriminate severity of dilation and associated parenchymal changes.

This study did not determine the clinical utility of deep learning. Specifically, these results 

do not suggest replacing clinical decision making or current standards of care. A much 

greater body of evidence, including prospective comparative effectiveness studies, is needed 

before making any recommendations that have such high consequences. However, these 

findings suggest that deep learning might be able to guide whether subsequent diagnostic 

imaging, such as voiding cystourethrogram, should be obtained for those infants with 

kidneys that have features of PUV. In addition, these findings raise the possibility that the 

discriminative image regions might be associated with severity of underlying kidney disease 

and clinical outcomes such as chronic kidney disease progression. The deep learning results 

provide complementary discriminative imaging information to anatomical kidney features, 

such as renal parenchymal area19, 20 and texture features.6, 7 However, no kidney 

segmentation is needed to compute the anatomical measures for the deep learning method. 

In fact, the deep learning models built upon the whole kidney images had better performance 

than a classification model built upon deep transfer learning features and texture features of 

the kidney in ultrasound images alone.11 We speculate that the refinement of parameters of a 

pretrained VGG16 model adopted in our study improved discriminative power of the deep 

learning imaging features and the multi-view and multi-instance learning further improved 

the classification performance.

We compared three different pre-trained deep learning models to initialize our kidney image 

classification networks, including the VGG16, the ResNet, and the Inception network. The 

experimental results indicated that they yielded similar classification accuracy for both 

single image classification and multi-instance image classification. However, class activation 

mapping results obtained by the ResNet and the Inception network also highlighted regions 

outside of the kidney, as illustrated in Supplementary Figure 2 and Supplementary Figure 3.

One limitation of the present study is that the classification performance was estimated using 

cross-validation based on ultrasound data collected at a single institution. However, 

ultrasound images were obtained with a variety of ultrasound machines with different 

technologists performing the scans. We will validate the deep learning method based on 

external data that contains other CAKUT diagnoses in order to obtain a more accurate and 

generalizable estimation of the classification. Second, although our method is fully 

automatic and does not require kidney segmentation, it did require manually selecting 

images in sagittal view or transverse view. A fully automatic method is needed to automate 

the selection of images in different views. Furthermore, our deep learning models did not 

include the kidney size or other clinical measures that are potentially informative for the 

disease diagnosis.21 It merits further investigations if the kidney size or other clinical 

information could provide additional discriminative information to the learned deep learning 

imaging features for diagnosis of CAKUT, but beyond the scope of this report since we 

focused on the ultrasound kidney images. In addition, we only included postnatal 

ultrasounds, but there is clinical value in examining antenatal ultrasounds when the 
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diagnosis is unknown. Future studies should also evaluate the clinical utility of advanced 

image analysis for children with kidney disease.

Supplementary Material

Refer to Web version on PubMed Central for supplementary material.
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Figure 1. 
ROC curves of different classification models under comparison. (a) ROC curves of S (S 

training) SIL, S (S training) MIL models, and multi-view MIL models; (b) ROC curves of T 

(T training) SIL, T (T training) MIL models and Multi-view MIL models.
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Figure 2. 
Class activation mapping results of randomly selected CAKUT and control kidney images 

obtained by the SIL model trained on images in sagittal view and transverse view. Kidney 

regions in warm color contributed more to the classification than those in cold color. The 

color bar indicates relative activation.
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Table 1.

Demographic information and numbers of 2D kidney images in different views.

Cases (N = 86) Controls (N = 71) p-value

Characteristics

Sex n (%) N/A

Male 86 (100) 71 (100)

Age at first US (months) Mean (Std) 0.91 (1.89) 1.48 (2.32) 0.09

Gestational age (weeks)* Mean (Std) 37.1 (2.8) 38.5 (2.3) 0.004

Race n (%)

White 28 (32.6) 40 (56.3) 0.0006

Black 34 (39.5) 8 (11.3)

Asian 3 (3.5) 4 (5.6)

Other 21 (24.4) 19 (26.8)

CAKUT n (%) PUV 86 (100) N/A N/A

number of 2D images in sagittal view/individual 22.7±9.4 21.9±7.6 0.546

number of 2D images in transverse view/individual 15.8±6.1 16.9±6.5 0.285

*
N used to calculate gestational age statistics is lower due to lack of existing data; N = 75 for cases and N = 42 for controls. Difference in numbers 

of 2D kidney images of individuals was assessed using two-sample t-test.
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Table 2.

Five-fold cross-validation results of SIL models and MIL models on test datasets.

Models AUC Accuracy Sensitivity Specificity

S (S training) SIL 0.796±0.064 0.838±0.047 0.811±0.112 0.875±0.042

T (T training) SIL 0.815±0.071 0.852±0.053 0.841 ±0.092 0.863±0.070

S (Straining) MIL 0.949±0.035 0.912±0.036 0.873±0.090 0.960±0.060

T (T training) MIL 0.954±0.033 0.904±0.038 0.868±0.073 0.945±0.093

Multi-view MIL 0.961±0.026 0.925±0.060 0.873±0.120 0.986±0.032
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