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Abstract

Priors and payoffs are known to affect perceptual decision-making, but little is understood about 

how they influence confidence judgments. For optimal perceptual decision-making, both priors 

and payoffs should be considered when selecting a response. However, for confidence to reflect 

the probability of being correct in a perceptual decision, priors should affect confidence but 

payoffs should not. To experimentally test whether human observers follow this normative 

behavior, we conducted an orientation-discrimination task with varied priors and payoffs, probing 

both perceptual and metacognitive decision-making. We then examined the placement of 

discrimination and confidence criteria according to several plausible Signal Detection Theory 

models. In the normative model, observers use the optimal discrimination criterion (i.e., the 

criterion that maximizes expected gain) and confidence criteria that shift with the discrimination 

criterion that maximizes accuracy (i.e., are not affected by payoffs). No observer was consistent 

with this model, with the majority exhibiting non-normative confidence behavior. One subset of 

observers ignored both priors and payoffs for confidence, always fixing the confidence criteria 

around the neutral discrimination criterion. The other group of observers incorrectly incorporated 

payoffs into their confidence by always shifting their confidence criteria with the same gains-

maximizing criterion used for discrimination. Such metacognitive mistakes could have negative 

consequences outside the laboratory setting, particularly when priors or payoffs are not matched 

for all the possible decision alternatives.
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2 Introduction

In making a perceptual decision, it is wise to consider information beyond the available 

sensory evidence. To maximize expected gains, one should consider both the baseline 

probability of each possible world state, i.e., priors, as well as the associated risks and 

rewards for choosing or not choosing each response alternative, i.e., payoffs. In the Signal 

Detection Theory (SDT) framework, priors and payoffs alter the threshold amount of 

evidence required to choose one alternative versus another, that is, a shift in the criterion for 

reporting option “A” versus option “B” in a binary task. For example, consider a radiologist 

trying to detect a tumor in an x-ray image. The radiologist should be more likely to report a 

positive result for a suspicious shadow if the patient’s file indicates they are a smoker, as this 

means they have a higher prior probability of cancer. Similarly, the high cost of waiting to 

treat the cancer should also bias the radiologist towards declaring a positive result. In both 

real and laboratory environments, observers have been found to factor in priors and payoffs 

to varying extents when setting the decision criterion (Maddox and Bohil, 1998, 2000; 

Maddox and Dodd, 2001; Wolfe et al., 2005; Ackermann and Landy, 2015; Horowitz, 2017).

Decisions about the state of the world (cancer or not cancer, cat or dog, tilted clock-wise or 

counter-clockwise) are referred to as stimulus-conditioned responses or Type 1 decisions. 

Judgments can also be made about our Type 1 decisions, such as our confidence in the 

decision, which are referred to as response-conditioned responses or Type 2 decisions 

(Clarke et al., 1959; Galvin et al., 2003; Mamassian, 2016). Confidence judgments are often 

operationalized in binary decision-making experiments as a subjective estimate of the 

probability the Type 1 response was correct (Pouget et al., 2016). Confidence plays a broad 

role in guiding behavior, subsequent decision-making, and learning in a multitude of 

scenarios for both humans and animals (?Smith et al., 2003; Beran et al., 47 2012).

How does an ideal-observer radiologist modify confidence judgments in response to varying 

priors or payoffs? Intuitively, a radiologist should be more confident in a positive diagnosis 

when the patient is a smoker, given that they have been educated on the prior scientific 

evidence on the health risks of smoking. Additional confirmatory information should boost 

confidence in that positive diagnosis, and contrary evidence should reduce confidence, 

because priors (smoker or non-smoker) and sensory evidence (cancerous-looking shadow) 

are both informative about the likelihood over possible world states. However, this is not the 

case for payoffs. Incentivizing the different responses with rewards or punishment (e.g., 

delivering good or bad news) does not change the uncertainty about the world state. The 

radiologist should not be more or less confident in their cancer diagnosis if the type of 

cancer would be deadly or benign or if the surgical procedure is expensive or not, even 

though these factors should affect their initial diagnosis. In fact, sometimes payoffs will lead 

the decision-maker to choose the less probable alternative and this should be reflected by 

low confidence in the decision, such as the radiologist erring on the side of caution for a 

patient who smokes with an otherwise normal shadow on the x-ray image.

Our survey of the literature suggests that little is known about how human observers adjust 

confidence in response to prior-payoff structures. In one perceptual study, the prior 

probabilities of target present versus absent affected the placement of the criteria for Type 1 
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and 2 judgments (Sherman et al., 2015), with some evidence that confidence better predicts 

performance for responses congruent with the more probable outcome than those that are 

incongruent. In the realm of social judgments, prior probabilities have been shown to 

modulate the degree of confidence, with higher confidence assigned to more probable 

outcomes (Manis et al., 1980). However, others have found counter-productive incorporation 

of priors, with over-confidence for low-probability outcomes and under-confidence for high-

probability outcomes (Dunning et al., 1990). In regards to payoffs, early work on monetary 

incentives in perceptual categorization did collect confidence ratings, however they were not 

included in any analyses (Lee and Zentall, 76 1966). Consideration of payoff structures is 

ubiquitous in animal studies of confidence that employ post-decisional wagering methods 

(Smith et al., 2003). For example, in the opt-out paradigm, to distinguish between low and 

high confidence, the animal chooses between a small, certain reward and a risky alternative 

with either high reward or no reward, for correct and incorrect perceptual responses 

respectively (Kiani and Shadlen, 2009). However, because animals are motivated by 

expected gain and not explicit verbal instructions, it is impossible to isolate decision 

confidence that has not been confounded with the subjective value of the reward. That is, 

placing a monetary incentive on the confidence decision may alter the perceptual response.

We sought to characterize how human observers adjust their perceptual decisions and 

confidence in response to joint manipulation of priors and payoffs within the same 

perceptual task. We presented oriented Gabors tilted left or right of vertical with a fixed 

orientation magnitude. In separate sessions we adjusted the prior-payoff structure by 

selecting the probability of a leftward-tilted versus rightward-tilted Gabor and by assigning 

different rewards for each of the response alternatives. We considered three classes of 

confidence behavior in our modeling. In the normative-shift models, priors but not payoffs 

determine the placement of confidence criteria. In the gains-shift models, both priors and 

payoffs determine confidence criteria. Finally, in the neutral-fixed models, neither priors nor 

payoffs affect confidence criteria placement. Variants of models within each class included 

1) the nature of Type 1 criterion placement relative to optimal (e.g., decision conservatism), 

and 2) whether Type 1 conservatism was also present when participants were making their 

Type 2 decision. We found that almost all observers were best fit by either a gains-shift 

model or neutral-fixed model, neither of which constituted normative confidence behaviour. 

Furthermore, all observers who shifted the confidence criteria in response to changes in 

priors/payoffs maintained their Type 1 conservatism at the Type 2 metacognitive stage of 

decision-making. These results demonstrate a profound inability of our observers to 

correctly handle both priors and payoffs for metacognitive decision-making.

3 The Decision Models

In this section we describe the rationale and background for the modeling of Type 1 and 

Type 2 decision-making. We follow the example of a left-right orientation judgment 

followed by a binary low-high confidence judgment to match the experimental paradigm 

used in the present study. First the range of Type 1 models are identified, which assess the 

placement of the discrimination-decision criterion under different prior-payoffs scenarios. 

Then the Type 2 models are outlined, describing the different potential relationships between 

the decision criteria for confidence and the criterion for discrimination.

Locke et al. Page 3

Atten Percept Psychophys. Author manuscript; available in PMC 2021 August 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



3.1 The Type 1 Decision

To make the Type 1 decision, observers must relate a noisy internal measurement, x, of the 

stimulus, s, where s ∈ {sL, sR}, to a binary response, which in the context of our experiment 

is “tilted left” (say “s = sL”) or “tilted right” (say “s = sR”). This is done by a comparison to 

an internal criterion, k1, such that if x < k1, the observer will respond with “tilted left”, and 

otherwise “tilted right” (Figure 1a). The only component of the Type 1 model the observer 

controls is the placement of the criterion. The optimal value of k1 (kopt) maximizes the 

expected gain, ensuring the observer makes the most points/money/etc. over the course of 

the experiment. The value of kopt depends on three things:

(i) The sensitivity of the observer, d′. In the standard model of the decision space, 

P(x ∣ sL) N(μL, σL) and P(x ∣ sR) N(μR, σR), with μL = − μR and σL = σR = 1.
Under this transformation, the sensitivity d′ corresponds to the distance between 

the peaks of the two internal measurement distributions.

(ii) The prior probability of each stimulus alternative, P(sL) and P(sR) = 1 − P(sL) .

(iii) The rewards for the four possible stimulus-response pairs, Vr,s, which are the 

rewards (positive) or costs (negative) of responding r when the stimulus is s.

An ideal observer that maximizes expected gain (Green and Swets, 1966) uses criterion

kopt = lnβopt
d′ , (1)

where the likelihood ratio βopt at the optimal criterion is a function of priors and payoffs:

βopt = P sL
P sR

V L, L − V L, R
V R, R − V R, L

. (2)

In our experiment, 0 points are awarded for incorrect answers, allowing us to simplify:

lnβopt = ln P sL V L, L
P sR V R, R

= lnP sL
P sR

+ ln V L, L
V R, R

. (3)

Thus, kopt = kp + kv, where kp is the optimal criterion location if only priors were symmetric 

and kv is the optimal criterion if only the payoffs were asymmetric. As can be seen in Eq. 3, 

the effects of priors and payoffs sum when determining the optimal criterion (illustrated in 

Figure 1b). When the priors are more similar, or the payoffs are closer to equal, kopt is closer 

to the neutral criterion kneu = 0. Note that in the case of symmetric payoffs, kopt maximizes 

both expected gain and expected accuracy, whereas when asymmetric payoffs are involved, 

kopt maximizes expected gain only (i.e., kopt ≠ kp) . This is because to maximize expected 

gain, from time to time the observer is incentivized to choose the less probable outcome 

because it is more rewarded.
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3.2 Conservatism

Often, human observers use a sub-optimal value of k1 when the prior probabilities or payoffs 

are not identical for each alternative. A common observation is that the criterion is not 

adjusted far enough from the neutral criterion towards the optimal criterion, 

kneu < k1 < kopt or kneu > k1 > kopt, a behavior referred to as conservatism (Green and Swets, 

1966; Maddox, 2002). It is useful to express conservatism as a weighted sum of the neutral 

and optimal criterion:

k1 = (1 − α)kneu + αkopt = αkopt, (4)

with 0 < α < 1 indicating conservative criterion placement. The degree of conservatism is 

greater the closer α is to 0 (Figure 1c). Several studies have contrasted the conservatism for 

unequal priors versus unequal payoffs, typically finding greater conservatism for unequal 

payoffs (Lee and Zentall, 1966; Ulehla, 1966; Healy and Kubovy, 1981; Ackermann and 

Landy, 2015) with few exceptions (Healy and Kubovy, 1978). This may result from an 

underlying criterion-adjustment strategy that depends on the shape of the expected-gain 

curve (as a function of criterion placement) and not just on the position of the optimal 

criterion maximizing expected gain (Busemeyer and Myung, 1992; Ackermann and Landy, 

2015) or a strategy that trades off between maximizing expected gain and maximizing 

expected accuracy (Maddox, 2002; Maddox and Bohil, 2003). Given that the effects of 

priors and payoffs sum in Eq. 3, we will consider a sub-optimal model of criterion 

placement that has separate conservatism factors for payoffs and priors:

k1 = 1
d′ αplnP sL

P sR
+ αvln V L, L

V R, R
= αpkp + αvkv . (5)

The conservatism factors, αp and αv, scale these individually before they are summed to 

give the final conservative criterion placement, taking into account both prior and payoff 

asymmetries. This formulation allows for differing degrees of conservatism for priors and 

payoffs.

3.3 Type 1 Decision Models

We consider four models of the Type 1 discrimination decision in this paper, including the 

optimal model (i) and three sub-optimal models that include varying forms of conservatism 

(ii-iv):

(i)
Ω1, opt:k1 = kopt = kp + kv

(ii)
Ω1, 1α:k1 = αkopt = α kp + kv

(iii)
Ω1, 2α:k1 = αpkp + αvkv
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(iv)

Ω1, 3α:
k1 = αpvkopt if kp ≠ 0 and kv ≠ 0 (i.e., both asymmetric)
k1 = αpkp if kv = 0 (i.e., payoffs symmetric)
k1 = αvkv if kp = 0 (i.e., priors symmetric).

Thus, we consider models with no conservatism (Ω1,opt), with an identical degree of 

conservatism due to asymmetric priors and payoffs (Ω1,1α), or different amounts of 

conservatism for prior versus payoff manipulations (Ω1,2α). In the fourth model, we drop the 

assumption (that was based on the optimal model) that effects of payoffs and priors on 

criterion sum, i.e., that behavior with asymmetric priors and payoffs can be predicted from 

behavior with each effect alone (Ω1,3α). We consider this final model because the additivity 

of criterion shifts (Eq. 3) has not yet been experimentally confirmed with human observers 

(Stevenson et al., 1990).

In all models, we also consider an additive bias term, γ, corresponding to a perceptual bias 

in perceived vertical. The bias is also included in the neutral criterion kneu = γ. For clarity, 

however, we have omitted it from the mathematical descriptions of the models. Note that any 

observer best fit by Ω1,opt but with a γ significantly different from 0 would no longer be 

considered as having optimal behavior.

3.4 Confidence Criteria

Confidence judgments should reflect the belief that the selected alternative in the 

discrimination decision correctly matches the true world state. Generally speaking, the 

further the internal measurement is from a well-placed decision boundary, the more evidence 

there is for the discrimination judgment. This is instantiated in the extended SDT framework 

by the addition of two or more confidence criteria, k2 (Maniscalco and Lau, 2012, 2014). 

There are two such criteria for a binary confidence task and more confidence criteria when 

more than two confidence levels are provided. We restrict our treatment to the binary case, 

which can be trivially extended to include more gradations of confidence.

As illustrated in Figure 1d, for the case of symmetric payoffs and priors, there is a k2 

confidence criterion on each side of the k1 decision boundary. If the measurement obtained 

is beyond one of these criteria relative to k1, then the observer will report high confidence, 

and otherwise will report low confidence. Stated another way, the addition of the confidence 

criteria effectively divides the measurement axis into four regions: high-confidence left, low-

confidence left, low-confidence right, and high-confidence right. The closer to the 

discrimination decision boundary that the observer places k2, the more high-confidence 

responses they will give. We denote this distance as δ. δ is not always assumed to be 

identical for both confidence criteria (e.g. Maniscalco and Lau, 2012), but we assumed a 

single value of δ for model simplicity. Type 2 judgments were not incentivized in our 

experiment to allow observers to make a discrimination decision that was not influenced by 

a monetary reward on the confidence decision. Thus, there is no explicit cost function to 

constrain the distance parameter δ, so the precise setting of δ will not factor into the 

evaluation of how well the normative model fits observer behavior.
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3.5 The Counterfactual Type 1 Criterion

The above description of how confidence responses are generated is well suited to cases 

where the payoffs are symmetric. This is because the optimal Type 1 decision criterion 

maximizes both gain and accuracy. For an internal measurement at the discrimination 

boundary, it is equally probable that the stimulus had a rightward versus leftward 

orientation. Expressed another way, the log-posterior ratio at kopt is 1. Thus, the distance 

from the discrimination boundary is a good measure for the probability that the Type 1 

response is correct (i.e., confidence as we defined it above). This, however, is not the case 

when payoffs are asymmetric (k1 = kp + kv = kopt where kv ≠ 0), as the ideal observer 

maximizes gain but not accuracy. The log-posterior ratio is not 1 at kopt but rather it is equal 

to 1 at kp.

To extend the SDT model of confidence to asymmetric payoffs, we introduce a new 

criterion. The counterfactual criterion, k1*, is the criterion the ideal observer would have used 

if they ignored the payoff structure of the environment and exclusively maximized accuracy 

and not gain (i.e., k1* = kp) . It is this discrimination criterion that confidence criteria are 

yoked to in our normative model (Figure 1e). Note that whenever payoffs are symmetrical, 

k1 = k1* . Figure 1f illustrates a situation unique to this model that may occur when payoffs 

are asymmetric. Here, the value of δ is sufficiently small that both k2 criteria fall on the 

same side of k1. As a result, the region between k1 and the left-hand k2 criterion results in a 

low-confidence response despite being beyond the k2 boundary (relative to k1*). This occurs 

because this region is to the right of k1 and thus, due to asymmetric payoffs, the observer 

will make the less probable choice, which then results in low confidence in that choice. 

Effectively, the left-hand confidence criterion is shifted from k2 to k1. Here, we rely on the 

assumption that the confidence system is aware of the Type 1 decision (for further 

discussion of this issue, see Fleming and Daw, 2017).

The notion of an observer computing additional criteria for counterfactual reasoning is not 

new. For example, in the model of Type 1 conservatism of Maddox and Bohil (1998), where 

observers trade off gain versus accuracy, k1 is a weighted average of the optimal criteria for 

maximizing expected gain (kopt) and for exclusively maximizing accuracy (kp). In 

Zylberberg et al. (2018), observers learned prior probabilities of each stimulus type by an 

updating decision-making mechanism that computes the confidence the observer would have 

had if they had used the neutral criterion (kneu) for their Type 1 judgment. We suggest that 

for determining confidence in the face of asymmetric payoffs, normative observers compute 

the confidence they would have reported if they had instead used the kp criterion for the 

discrimination judgment.

3.6 Type 2 Decision Models

In addition to the normative model we just described (i), we considered four sub-optimal 

models (ii-v) for the counterfactual Type 1 criterion about which the Type 2 criteria are 

yoked:
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(i)
Ω2, acc:k1* = kp

(ii)
Ω2, acc + cons:k1* = αpkp

(iii)
Ω2, gain:k1* = kopt

(iv)
Ω2, gain + cons:k1* = k1

(v)
Ω2, neu:k1* = kneu

All of these models are characterized by the placement of the counterfactual criterion, k1* the 

distance δ is the only free parameter for all models and only alters the probability of a Type 

2 response given the Type 1 response. That is, δ represents the propensity to respond low 

confidence, but the confidence criteria, k2, will be placed around k1* regardless of the 

particular value of δ. Thus, an observer’s overall confidence bias will be independent from a 

test of normativity. In the normative-shift model (Ω2,acc), the confidence criteria shift along 

with the discrimination criterion that maximizes accuracy and ignores possible payoffs. We 

also consider a gains-shift model in which confidence criteria shift with the criterion that 

maximizes expected gain (Ω2,gain), which is incorrect behavior in the case of asymmetric 

payoffs. In the neutral-fixed model (Ω2,neu), confidence criteria remain fixed around the 

neutral Type 1 criterion, regardless of the prior or payoff manipulation. Finally, for the 

classes of models that involve shifting confidence criteria (i.e., not the neutral-fixed model), 

we consider variants where conservatism in the discrimination criterion placement also 

affects k1*: for the normative-shift model (Ω2, acc + cons) or the gains-shift model 

(Ω2, gain + cons) .. For the gains-shift model with carry-over conservatism, k1* is identical to k1. 

For all other models, some combinations of priors and payoffs will decouple k1* from k1. For 

the normative-shift model with carry-over conservatism, the decoupling only occurs for 

asymmetric payoffs. For the three remaining models, this decoupling occurs whenever priors 

and/or payoffs are asymmetric.

For simplicity, our models assume that the k2 criteria are placed symmetrically around k1* at 

a distance of ±δ. However, the ability to identify the underlying Type 2 model should not be 

affected by this assumption. Consider an observer whose low-confidence region to the left of 

k1* was always greater than their low-confidence region to the right of k1*, such that 

k1* − k2 − > k2 + − k1* . Then, the estimate of δ would be similar because the experimental 

design tested the mirror prior-payoff condition (i.e., for fixed k2, one condition would have 

k1* attracted to neutral and the other repelled, which is not the behaviour of k1* in any Type 2 

model). Thus, the best-fitting model would be unlikely to change when δ is asymmetric, but 
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the quality of the model fit would be impaired. Alternatively, an asymmetry in δ could be 

mirrored about the neutral criterion (e.g., the low confidence region closest to the neutral 

criterion is always smaller). Then, the δ asymmetry would be indistinguishable from a bias 

in the conservatism parameter. Although the confidence criteria are still yoked to k1*, 

ultimately it is the patterns of confidence-criteria shift from all conditions jointly that are 

captured by the model comparison.

4 Methods

4.1 Participants

Ten participants (5 female, age range 22–43 years, mean 27.0 years) took part in the 

experiment. All participants had normal or corrected-to-normal vision, except one 

amblyopic participant. All participants were naive to the research question, except for three 

of the authors who participated. On completion of the study, participants received a cash 

bonus in the range of $0 to $20 based on performance. In accordance with the ethics 

requirements of the Institutional Review Board at New York University, participants 

received details of the experimental procedures and gave informed consent prior to the 

experiment.

4.2 Apparatus

Stimuli were presented on a gamma-corrected CRT monitor (Sony G400, 36 × 27 cm) with a 

1280 × 1024 pixel resolution and an 85 Hz refresh rate. The experiment was conducted in a 

dimly lit room, using custom-written code in MATLAB version R2014b (The MathWorks, 

Natick, MA), with Psych Toolbox version 3.0.11 (Brainard, 1997; Pelli, 1997; Kleiner et al., 

2007). A chin-rest was used to stabilize the participant at a viewing distance of 57 cm. 

Responses were recorded on a standard computer keyboard.

4.3 Stimuli

Stimuli were Gabor patches, either right (clockwise) or left (counterclockwise) of vertical, 

presented on a mid-gray background at the center of the screen. The sinusoidal grating had a 

spatial frequency of 2 cycle/deg, a peak contrast of 10%, and a Gaussian envelope (SD: 0.5 

deg). The phase of the grating was randomized on each trial to minimize contrast adaptation.

4.4 Experimental Design

Orientation discrimination (Type 1, 2AFC, left/right) and confidence judgments (Type 2, 

2AFC, low/high) were collected for seven conditions defined by the prior and payoff 

structure. The probability of a right-tilted Gabor could be 25, 50, or 75%. The points 

awarded for correctly identifying a right-versus a left-tilt could be 4:2, 3:3, or 2:4. In the 3:3 

payoff scheme, a correct response was awarded 3 points. In the 2:4 and 4:2 schemes, correct 

responses were awarded 2 or 4 points depending on the stimulus orientation. Incorrect 

responses were not rewarded (0 points). We were interested in people’s natural confidence 

behavior, so confidence responses were not rewarded, allowing participants to respond with 

their subjective sense of probability correct. The prior and payoff structure was explicitly 

conveyed to the participant before the session began (Fig. 2b) and after every 50 trials. There 
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were 7 prior-payoff conditions (Fig. 2c): no asymmetry (50%, 3:3), single asymmetry (50%, 

4:2; 50%, 2:4; 25%, 3:3; 75%, 3:3), or double asymmetry (25%, 4:2; 75%, 2:4). Note that 

two of the possible double asymmetry conditions (25%, 2:4; and 75%, 4:2) were not tested 

because these conditions incentivized one response alternative to such a degree that they 

would not be informative for model comparison. Participants first completed the full-

symmetry condition, followed by the single-asymmetry conditions in random order, and 

finally the double-asymmetry conditions, also in random order (Fig. 2d). Session order 

facilitated task completion and participants’ understanding of the prior and payoff 

asymmetries before encountering both simultaneously. Each condition was tested in a 

separate session with no more than one session per day. In all sessions, participants were 

instructed to report their confidence in the correctness of their discrimination judgment.

4.5 Thresholding Procedure

A thresholding procedure was performed prior to the main experiment to equate difficulty 

across observers to approximately d′ = 1. Observers performed a similar orientation-

discrimination judgment as in the main experiment. Absolute tilt magnitude varied in a 

series of interleaved 1-up-2-down staircases to converge on 71% correct. Each block 

consisted of three staircases with 60 trials each. Participants performed multiple blocks until 

it was determined that performance had plateaued (i.e., learning had stopped). Preliminary 

thresholds were calculated using the last 10 trials of each staircase. At the end of each block, 

if none of the three preliminary thresholds were better than the best of the previous block’s 

preliminary thresholds, then the stopping rule was met. As a result, participants completed a 

minimum of two blocks and no participant completed more than five blocks. A cumulative 

Gaussian psychometric function was fit by maximum likelihood to all trials from the final 

two blocks (360 trials total). The slope parameter was used to calculate the orientation 

corresponding to 69% correct for an unbiased observer (d′ = 1; Macmillan and Creelman, 

2005). This orientation was then used for this subject in the main experiment. Thresholds 

ranged from 0.36 to 0.78 deg, with a mean of 0.59 deg.

4.6 Main Experiment

Participants completed seven sessions, each of which had 700 trials with the first 100 treated 

as warm-up and discarded from the analysis. All subjects were instructed to hone their 

response strategy in the first 50 trials to encourage stable criterion placement. The trial 

sequence is outlined in Fig. 2a. Each trial began with the presentation of a fixation dot for 

200 ms. After a 300 ms inter-stimulus interval, a Gabor stimulus was displayed for 70 ms. 

Participants judged the orientation (left/right) and then indicated their confidence in that 

orientation judgment (high/low). Feedback on the orientation judgment was provided at the 

end of the trial by both an auditory tone and the awarding of points based on the session’s 

payoff structure. Additionally, the running percentage of potential points earned was shown 

on a leaderboard at the end of each session to foster inter-subject competition. Participants’ 

cash bonus was calculated by selecting one trial at random from each session and awarding 

the winnings from that trial, with a conversion of 1 point to $1, capped at $20 over the 

sessions. Total testing time per 361 subject was approximately 8 hrs.
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4.7 Model Fitting

Detailed description of the model-fitting procedure can be found in the Supplementary 

Information (Sections 1 and 2). Briefly, model fitting was performed in three sequential 

steps. First, we estimated a per-participant d′ and meta-d′ using a hierarchical Bayesian 

model. We used as inputs the empirical d′ and meta-d′ calculated separately for each prior-

payoff condition. These per-participant sensitivities were fixed for all subsequent modeling. 

Second, we fit the discrimination behaviour according to the Type 1 models, selecting the 

best-fitting Type 1 model for each participant before the final step of fitting the confidence 

behavior according to the Type 2 models. For the Type 1 and Type 2 models, we calculated 

the log likelihood of the data given a dense grid of parameters (α, γ, and δ) using 

multinomial distributions defined by the stimulus type, discrimination response, and 

confidence response. All seven prior-payoff conditions were fit jointly. Model evidence was 

calculated by marginalizing over all parameter dimensions and then normalizing to account 

for grid spacing.

5 Results

We sought to understand how observers make perceptual decisions and confidence 

judgments in the face of asymmetric priors and payoffs. Participants performed an 

orientation-discrimination task followed by a confidence judgment. To account for the 

behavior, we defined two sets of models. Type 1 models defined the contribution of 

conservatism to the discrimination responses. Type 2 models defined the role of priors, 

payoffs, and conservatism in the confidence reports. We were interested in which of three 

classes of models best fits confidence behavior: neutral-fixed, gains-shift, or normative-shift.

5.1 Model Fits

Type 1 models were first fit using the discrimination responses alone. Four models were 

compared: optimal criterion placement (Ω1,opt), equal conservatism for priors and payoffs 

(Ω1,1α), different degrees of conservatism for priors and payoffs (Ω1,2α), and a model in 

which there was a failure of summation of criterion shifts in the double-asymmetry 

condition (Ω1,3α). Fitting the Type 1 models also provided an estimate of left/right response 

bias, γ. We performed a Bayesian model selection procedure using the SPM12 Toolbox 

(Wellcome Trust Centre for Neuroimaging, London, UK) to calculate the protected 

exceedance probabilities (PEPs) for each model (Figure 3a). The exceedance probability 

(EP) is the probability that a particular model is more frequent in the general population than 

any of the other tested models. The PEP is a conservative measure of model frequency that 

takes into account the overall ability to reject the null hypothesis that all models are equally 

likely in the population (Stephan et al., 2009; Rigoux et al., 2014). Overall, an additional 

parameter in the double-asymmetry conditions was needed to explain Type 1 criterion 

placement, indicating a failure of summation of criterion shifts 399 (i.e., the best-fitting 

model was Ω1,3α).

In the second step, the Type 2 models were fit using each participant’s best Type 1 model 

and the associated maximum a posteriori (MAP) parameter estimates. The Type 2 models 

differed in the placement of the Type 2 criteria, which split the internal response axis into 
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“high” and “low” confidence regions, for each “right” and “left” discrimination response. 

We modeled the two Type 2 criteria as shifting to account for only the prior probability, 

maximizing accuracy with the confidence response (Ω2,acc; normative-shift class), shifting 

the confidence criteria in response to payoff manipulations (Ω2,gain; gains-shift class), or 

failing to move the confidence criteria away from neutral at all (Ω2,neu; neutral-fixed class). 

For the models with shifted confidence criteria, we also tested for effects of Type 1 

conservatism on Type 2 decision-making (Ω2,acc+cons and Ω2,gain+cons; both sub-optimal). We 

again compared the models quantitatively with PEPs (Figure 3b). The favored model was the 

gains-shift model with carry-over conservatism, Ω2,gain+cons. This model shifts the 

confidence criteria in response to both prior and payoff manipulations with the conservatism 

that participants exhibited in the Type 1 decisions affecting placement of the confidence 

criteria.

Figure 3c shows the best-fitting models for individual participants, according to the amount 

of relative model evidence (here the marginal log-likelihood). All of the sub-optimal Type 1 

models (i.e., not Ω1,opt) were a best-fitting model for at least one of the ten participants. 

Similarly, no one was best fit by the normative-shift without Type 1 conservatism either 

(Ω2,acc). Overall, there was no clear pattern between the pairings of Type 1 and Type 2 

models.

5.2 Model Checks

We performed several checks on the fitted data to ensure that parameters were capturing 

expected behavior and that the models could predict the data well (reported in detail in 

Section 3 of the Supplementary Information). The quality of a model is not only dependent 

on how much more likely it is than others, but it is also dependent on its overall predictive 

ability. To visualize each model’s ability to predict the proportion of each response type 

(“right” vs. “left” x “high” vs. “low”), we calculated the expected proportion of each 

response type given the MAP parameters for each model and participant. We compared the 

predicted response proportions to the empirical proportions (Figure 4). Larger residuals are 

represented by more saturated colors. For the best-fitting models, the residuals are small and 

unpatterned.

We also compared the Type 1 criteria and the counterfactual confidence criteria (Figure 5). 

We constrained the empirical counterfactual confidence criterion to be the midpoint between 

the two Type 2 criteria (i.e., k1* ≡ k2 − + k2 + )/2) . Using k1*, the predictions made by the 

Type 2 models are highly distinguishable. In the left-most column, predicted k1 and k1* for 

each session are shown for each model, assuming d′ = 1 and either Ω1,opt or Ω1,1α where α 
= 0.5. In the top row, empirical criteria from the same two example participants as in Figure 

4 are shown. Empirical criteria are calculated with the standard SDT method (detailed in 

Section 1 of the Supplementary Information, see Figure S1).

The visualization in the top row and left-most column of Figure 5 illustrates several 

behavioral phenomena. The response bias, γ, results in a shift in all criteria in the same 

direction, translating all data points parallel to the identity line. Conservatism is represented 

by an attraction of all data toward the origin on the x-axis for Type 1 and the y-axis for Type 
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2 judgments. The Type 2 models predict qualitatively different arrangements of the data 

points. If the prior and payoff asymmetries affect the placement of the Type 1 criterion but 

not the Type 2 criteria (Ω2,neu; neutral-fixed), the data are clustered along a single value on 

the y-axis. If the prior and the payoff affect the placement of the Type 1 and Type 2 criteria 

equally, (Ω2,gain; gains-shift), then the data fall on the identity line. With normative-shift 

behavior (Ω2,acc), the prior asymmetry conditions (grey triangles) fall on the identity line 

because confidence tracks the prior, while in the payoff asymmetry conditions (blue 

squares), the data have the same k2 midpoint as in the neutral condition (grey squares) 

because confidence does not track the payoff.

Vectors in all 10 of the bottom right polar plots represent the difference (i.e., the residual) 

between the empirical and the predicted criteria from the model fits. While the model 

prediction column is based on fixed parameters, the predicted data in the 10 polar plots use 

parameters that best fit the participant’s data using that model. It is immediately clear that 

the normative-shift model without carry-over conservatism (second row) does a poor job of 

describing participants’ behavior, and that, in general, conservatism is a necessary 

component of both the Type 1 and Type 2 models.

5.3 Type 1 Conservatism

While not the main focus of the study, it was important to consider the role of Type 1 

conservatism to properly capture the Type 1 decision-making behavior. First, we remark on 

the relative magnitude of conservatism due to priors and payoffs. Figure 6a shows fitted αp 

and αv under the most complex conservatism model (Ω1,3α) and Figure 6b shows them 

under the best-fitting model for each observer. These figures show that eight of the ten 

participants were conservative in their criterion placement for both prior and payoff 

manipulations, as indicated by data points in the gray regions. Of the eight participants that 

displayed conservatism, five were significantly more conservative for payoff asymmetries 

than prior asymmetries (αv < αp), whereas only one was significant in the opposite direction 

(αp < αv) . At the group level, however, we did not find a significant difference between the 

best fitting αv and αp, either for the best-fitting Type 1 model the winning model (paired t-
tests, p > 0.05). Note that the negative α values derive from a participant who shifted criteria 

consistently in the opposite direction expected from a rational observer in response to 

manipulations of payoffs and priors.

An additional implication of SDT is that an ideal observer’s criterion shift due to payoffs 

and due to priors should sum (Stevenson et al., 1990): kpv = kp + kv (Figure 1b). Figure 6c 

contrasts the prediction of this additive rule with the empirical results. The difference 

between the predicted and actual criterion shift is significant (t = 2.41, p =.039), with the 

effect primarily driven by the four observers best fit by the non-additive conservatism model, 

Ω1, 3α . Each of these four observers had 95% CIs that did not overlap 481 with the identity 

line. We show the criterion placement in the double-asymmetry cases in Figure 6d. Most 

observers did not shift their criterion far enough from neutral to the optimal placement, kopt. 

Three observers, however, placed their criterion beyond kopt, with two stopping short of the 

accuracy-maximizing criterion kp.
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6 Discussion

6.1 Confidence Behavior

The primary focus of this study was to assess how observers assigned confidence to the 

discrimination decision for different prior-payoff scenarios. Three Type 2 model classes 

were characterized by the placement rule for the counterfactual Type 1 criterion, k1*, to 

which the confidence criteria, k2, were yoked. The classes were defined by the 

counterfactual criterion coinciding with the accuracy-maximizing criterion (normative-shift), 

the gain-maximizing criterion (gains-shift), or the neutral criterion (neutral-fixed). The 

majority of observers were best explained by the gains-shift model with carry-over 

conservatism Ω2, gain + cons  or the neutral-fixed model (Ω2,neu), with the Bayesian model 

selection favoring the former. One participant was best fit by the normative-shift model with 

carry-over conservatism (Ω2,acc+cons). Furthermore, we found no clear pattern between the 

number of Type 1 conservatism parameters required to explain discrimination behavior and 

the placement strategy for confidence criteria.

For the subset of observers who were best fit by the neutral-fixed model, the perceived tilt 

magnitude was predictive of confidence in all prior-payoff scenarios. While these observers 

correctly did not allow the payoff structure of the environment to affect confidence, it was 

non-normative to ignore the additional information provided by the priors for the response 

alternatives. This notion of ‘sticky’ or fixed confidence criteria has been examined 

previously in the context of changing stimulus reliability, where confidence criteria should 

be shifted to avoid a preponderance of high-confidence reports for the low-reliability stimuli. 

Empirical results are mixed; Zylberberg et al. (2014) found participants were reluctant to 

shift their criteria sufficiently to account for the different reliabilities, whereas a fixed-

criterion model was rejected by Adler and Ma (2018). Our results suggest that some 

observers can be insensitive to the prior-payoff context when it comes to placing confidence 

criteria, despite our efforts to present each prior-payoff context in separate separate sessions, 

keep stimulus reliability and attentional factors constant, and provide substantial context 

information and training.

In contrast, the confidence criteria of gains-shift observers tracked the placement of the 

criterion used for the Type 1 judgment. As such, priors were correctly incorporated into 

confidence judgments but payoffs were inappropriately incorporated also. For such people, 

higher relative reward leads to selection of the highly rewarded alternative and, on average, 

higher confidence about reporting that outcome. In effect, gains-shift behavior can be 

viewed as a naïve optimism for selecting the highly rewarded outcome: “this highly 

rewarding perceptual alternative that I have selected is certainly the state of the world”. This 

bias for higher confidence with greater reward is consistent with what has been reported 

previously in the perceptual lottery tasks of Lebreton et al. (2018).

The finding that most observers did not appropriately dissociate Type 1 and Type 2 criteria is 

compelling, particularly so in the case of the gains-shift observers. By not selectively 

decoupling their k1 and k1* for asymmetric payoffs, these observers faced a trade-off between 

maximizing gains with the discrimination report and faithfully representing perceived 
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accuracy with the confidence report. Consider the following real-world example of a pilot 

judging whether their aircraft is heading for collision with an upcoming mountain peak 

using weak sensory evidence (e.g., night time or fog). A normative-shift pilot would make a 

corrective action because of the high cost of collision, but not be confident that a collision 

will occur. In contrast, a gains-shift pilot would similarly adjust the aircraft heading, but 

would also be likely to have high confidence that the collision was imminent despite the 

weak sensory evidence. The experience of the gains-shift pilot in a world full of dangerous 

possibilities would be unsettling. However, if this gains-shift pilot places their discrimination 

criterion somewhere between the gains-maximizing criterion and the accuracy-maximizing 

criterion (i.e., payoff conservatism), then their confidence judgments will better reflect the 

true state of the world. Subsequent laboratory experiments can examine this trade-off by 

using more complex reward structures and/or elaborated decision scenarios.

We also note some simple experimental factors that may have produced the observed pattern 

of confidence results. First, the lack of adaptability of the neutral-fixed observers should not 

be taken as evidence of an inability to adapt. It is possible that these observers ignored the 

prior-payoff structure entirely for confidence because it changed from session to session, and 

instead opted for a criterion-placement strategy that would work best for all conditions of the 

experiment. This is unlikely, however, because they did not adopt such a strategy for 

discrimination. For the gains-shift observers, we note that a failure to understand the task 

instructions could explain their behavior. It is possible that observers did not report the 

probability they were correct, as per the experimenter instructions, but instead considered 

their expected gain from the trial when reporting confidence. However, all participants 

deviated from normative behavior, making it unlikely that these experimental factors alone 

can explain our results.

6.2 Discrimination Behavior

Observers were generally conservative in the placement of the discrimination criterion, k1, 

as most participants were best described by a model with some form of conservatism, with 

the majority best fit with two or three separate α parameters. In the Type 1 model 

comparison, the winner was the non-additive conservative model (Ω1,3α), where three α 
parameters were needed to capture discrimination behaviour (Healy and Kubovy, 1981). 

Despite Bayesian model selection favoring the non-additivity model, only 40% of our 

sample population was best fit by this model, which is as similarly inconclusive as it was for 

previous attempts at testing additivity (Stevenson et al., 1990). We found significant 

differences at the individual-subject level, but not at the group level, that conservatism was 

stronger when the payoffs were asymmetric than when the priors were asymmetric. Thus, 

the observed differences in conservatism for priors and payoffs in our study were less 

apparent than in most previous studies (Lee and Zentall, 1966; Ulehla, 1966; Healy and 

Kubovy, 1981; Maddox, 2002; Ackermann and Landy, 2015), but not all (Healy and 

Kubovy, 1978).

Several factors may have contributed to the observed Type 1 conservatism. One hypothesis 

is that observers trade off between maximizing gains and maximizing accuracy (Maddox 

and Bohil, 1998), as it may be hard for the observer to sacrifice accuracy for expected gain. 
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In Section 4 of the Supplementary Information, we demonstrate that gain-accuracy trade-off 

model of conservatism is equivalent to our Ω1,2α model, indicating that the gain-accuracy 

trade-off strategy alone cannot account for the observed non-additivity. Alternatively, 

conservatism could depend on the criterion-adjustment strategy (Busemeyer and Myung, 

1992), which suggests that observers will not shift their criterion far from neutral for an 

inconsequential gain, causing them to fall short of optimal. Non-additivity is possible due to 

the non-linear effects on the slope of the expected-gain function from combining asymmetric 

priors and payoffs. However, 30% of observers placed their criterion beyond the optimal 

criterion in the double-asymmetry conditions, which is inconsistent with a reluctance to shift 

the criterion sufficiently from neutral. In fact, these criteria are biased in the direction of the 

accuracy-maximizing criterion, as would be expected under the gain-accuracy trade-off 

hypothesis. A mix of gain-accuracy trade-off strategy and criterion-adjustment strategy 

(Maddox and Bohil, 2003), that could produce both unequal conservatism and non-

additivity, would better explain our results.

A metacognitive source of conservatism proposed by Kubovy (1977) implicates d′ in Eq. 5. 

Observers likely form an estimate of their overall performance from experience with the 

task. If they happen to overestimate performance (i.e., d′ > d′), then it follows from Eq. 5 

that k1 < kopt. Note that this is not confidence for a given discrimination response, but a 

metacognitive appraisal of the difficulty of the task, such as the expected performance 

indicated by the uncertainty in the stimulus (Zylberberg et al., 2014). According to this 

hypothesis, most of the observers would have been overestimating performance to be 

conservative, with the one observer with liberal criterion placement underestimating their 

performance. Observations of overconfidence are a common finding in metacognitive 

studies (Baldassi et al., 2006; Mamassian, 2008; Zylberberg et al., 2014; Mamassian, 2016; 

Lebreton et al., 2018; Charles et al., 2020) as is conservatism (Lee and Zentall, 1966; 

Ulehla, 1966; Healy and Kubovy, 1981; Maddox, 2002; Ackermann and Landy, 2015). 

However, overestimation of discrimination performance by itself is an insufficient 

explanation for conservatism, as it cannot explain the differences in the degree of 

conservatism for priors versus payoffs, observed for some participants, or the non-additivity 

results. However, if performance estimations differ under manipulations of priors versus 

payoffs, specifically larger overestimations of performance for asymmetric payoffs, 

conservatism would be larger for payoffs than priors. Furthermore, it is entirely plausible 

that the contribution of priors and payoffs to performance estimation is non-linear, which 

602 would result in non-additivity of criteria.

Finally, we note that a simple experimental factor may have encouraged conservatism in 

general. By starting testing with the symmetrical prior-payoff design in the thresholding 

procedure and initial testing session, this session order may have encouraged participants to 

anchor the Type 1 decisions to the neutral criterion. However, this explanation cannot 

account for observed unequal conservatism or non-additivity. Overall, we conclude that the 

conservatism observed in this task is likely due to more than one of the following possible 

factors: noisy behavior, strategies to trade off gain versus accuracy, sub-optimal criterion 

adjustment, and biases in participants’ judgments of their own d′.
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6.3 Type 1 Conservatism Applied to Type 2 Judgments

It is currently a matter of debate whether the internal sensory measurement used by the 

perceptual decision-making system is the same or similar to that used by the metacognitive 

decision-making system (e.g., Resulaj et al., 2009; Fleming and Daw, 2017; Peters et al., 

2017). The standard SDT framework assumes the same internal measurement is used for 

both Type 1 and 2 judgments. However, there is substantial evidence to suggest that 

additional noise is applied to the internal measurement between the Type 1 and 2 judgments 

(Maniscalco and Lau, 2012; Fleming and Lau, 2014; Maniscalco and Lau, 2016; Bang et al., 

2019). We found supporting evidence of additional metacognitive noise in the form of 

reduced metacognitive sensitivity (a ratio of meta−d′ to d′ of 0.86 ± 0.04; see Section 1 of the 

Supplementary Information), which we incorporated into our SDT model. We also 

consistently found that Type 1 conservatism carried over into the Type 2 confidence-criteria 

placement for the observers best fit by the gains-shift and normative-shift model classes. 

This raises a different, but related question: to what extent are decision-related parameters of 

the system, such as criteria placement, shared between the perceptual and metacognitive 

systems? And how is this information shared from the Type 1 to the Type 2 response? We 

speculate on several possibilities.

First is the simplest scenario: the Type 1 and Type 2 processes are computed jointly using 

the same information, with confidence being an additional readout of the same decision 

mechanism. However, in addition to the evidence of additional metacognitive noise, there is 

considerable evidence that neural processing occurs in distinct regions for perceptual and 

metacognitive decision-making (Shimamura, 2000; Fleming and Dolan, 2012; Rahnev et al., 

2016; Shekhar and Rahnev, 2018), suggesting this is unlikely the case.

Second, the Type 1 system might convey only relative information to the Type 2 system, 

such as how far the measurement was from the decision boundary, rather than noisily 

propagating the internal measurement itself. In this scenario, the additional metacognitive 

noise could be a result of computing this difference. A relative measurement also has the 

advantage over the other hypotheses that it only requires one piece of information to be sent 

to the Type 2 system (i.e., the relative measurement and not context information). Despite 

being efficient, this hypothesis is not supported by our results. Given that the neutral-fixed 

observers were able to dissociate k1 and k1* by keeping the latter fixed at the neutral 

criterion, this suggests that the Type 2 system does not receive an internal measurement 

coded relative to the discrimination criterion k1.

Third, the Type 2 system might be independent of the Type 1 system, but receives the same 

context information. It also produces conservatism, but is flexible enough to allow k1* to be 

independent of k1. All types of observers (gains-shift, normative-shift, and neutral-fixed) can 

be explained by such a Type 2 system. However, given the flexibility of such a system, why 

weren’t observers able to reduce the influence of the payoff structure 650 at the second 

processing step?

Fourth, the Type 1 system might directly inform the Type 2 system of both its decision 

boundary k1 and the internal measurement. The gains-shift observers then can yoke their 
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confidence criteria to k1, whereas the neutral-fixed observers can ignore this extra k1 signal. 

This system is both relatively simple and explains the results of the majority of observers. 

Thus, we favor this interpretation, in which the discrimination decision boundary is 

propagated to the Type 2 system. Further work is required to understand why normative 

metacognitive behavior was not achieved, and why some observers may or may not 

incorporate k1 into their confidence judgment.

6.4 Criterion Stability

Often of concern when conducting psychophysical experiments is whether assumptions of 

criterion stability are valid. In some circumstances, criterion shifts within an experimental 

session are appropriate and expected, such as Type 1 criterion shifts in response to variable 

priors (Norton et al., 2017; Zylberberg et al., 2018) or Type 2 criterion shifts when 

intermixing stimuli of different difficulties (Zylberberg et al., 2014; Adler and Ma, 2018). In 

scenarios where they should be fixed, the best practices to encourage stable criteria are to 

only use one pair of stimuli (i.e., fixed difficulty), collect the data in a single session, and to 

not combine data across participants (Macmillan and Creelman, 2005). We met all 

recommendations, as we ensured context effects were kept constant within an individual 

session as would be done for fixing difficulty (although our models did include some 

assumptions about criterion stability across sessions, see Models). However, issues of 

unstable criteria can occur even in studies with unchanging contexts (e.g., Yu and Cohen, 

2009) or fixed difficulty (e.g., Maniscalco and Lau, 2012). Type 2 criterion instability, 

indicated in the latter example, is mathematically equivalent to additional noise between the 

perceptual and confidence decisions (Maniscalco and Lau, 2016), which our models 

incorporate as meta-d′ (see Supplementary Information, Section 1). But, more generally, 

how may criterion instability interact with our models? No particular patterns were evident 

between the best-fitting model and estimated d′, meta-d′, or their ratio (Supplementary 

Information, Section 1), although a larger sample of participants is likely needed to resolve 

any small differences. Otherwise, we predict that unstable criteria impact the overall quality 

of the model fits, but do not introduce a bias in the Type 2 model selection.

6.5 Conclusion

By manipulating priors and payoffs in a perceptual task, we found sub-optimal decision-

making at the Type 1 level and non-normative decision-making at the Type 2 level. 

Discrimination judgments were conservative, with similar conservatism for payoffs and 

priors, and non-additivity of criterion shifts when both priors and payoffs were asymmetric. 

Confidence judgments were non-normative in one of two ways: 1) observers did not 

consider the role of priors or 2) they incorporated payoffs, which accord with the neutral-

fixed and gains-shift classes of models respectively. Both of these strategies hinder decision-

making. For example, a radiologist who ignores prior probabilities when assigning 

confidence might hesitate to recommend further tests for a patient who is a heavy smoker. 

Similarly, a radiologist who inappropriately incorporates payoffs may be more confident in a 

positive diagnosis if he receives kickbacks from the imaging center to encourage future 

scans. The patterns of behavior found in this task point to explanations of why humans may 

consider trade-offs between maximizing gain and maximizing accuracy, as well as provide 

new insights about the role of the decision boundary in Type 1 versus Type 2 computations.
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Refer to Web version on PubMed Central for supplementary material.
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Figure 1: 
Illustration of the full SDT model. a) On each trial, an internal measurement of stimulus 

orientation is drawn from a Gaussian probability distribution conditional on the true stimulus 

value. The Type 1 criterion, k1, defines a cut-off for reporting “left” or “right”. The ideal 

observer in a symmetrical priors and payoffs scenario is shown. b) The ideal observer’s 

criterion placement with both prior and payoff asymmetry. This prior asymmetry encourages 

a rightward criterion shift to kp and the payoff asymmetry a leftward shift to kv. The optimal 

criterion placement that maximizes expected gain, kopt, is a sum of these two criterion shifts. 
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For comparison, the neutral criterion, kneu is shown. As the prior asymmetry is greater than 

the payoff asymmetry, 3:1 vs 1:2, kopt ≠ kneu, c) A sub-optimal conservative observer will 

not adjust their Type 1 criterion far enough from kneu to be optimal. The parameter α 
describes the degree of conservatism, with values closer to 0 being more conservative and 

closer to 1 less conservative. d) In the case of symmetric payoffs and priors, the Type 2 

confidence criteria, k2, are placed equidistant from the Type 1 decision boundary by ±δ, 

carving up the internal measurement space into a low- and high-confidence region for each 

discrimination response option. e) For the normative Type 2 model, the confidence criteria 

are placed symmetrically around a hypothetical Type 1 criterion that only maximizes 

accuracy (k1* = kp) . This figure shows the division of the measurement space as per the prior-

payoff scenario in (b). As a left-tilted stimulus is much more likely, this results in many 

high-confidence left-tilt judgments and few high-confidence right-tilt judgments. Note that 

left versus right judgments still depend on k1. f) The same as in (e) but with a small value of 

δ. Note the low-confidence region where confidence should be high (left of the left-hand k2). 

This happens because in this region the observer will choose the Type 1 response that 

conflicts with the accuracy-maximizing criterion, hence they will report low confidence in 

their decision. Note that the displacements of the criteria from the ne9utral criterion in this 

figure are exaggerated for illustrative purposes.
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Figure 2: 
Experimental methods. a) Trial sequence including an outline of the initial condition 

information screen (see part (b) for details) and final (mock) leaderboard screen. Participants 

were shown either a right- or left-tilted Gabor and made subsequent Type 1 and Type 2 

decisions before being awarded points and given auditory feedback based on the Type 1 

discrimination judgment. b) Sample condition-information displays from a double-

asymmetry condition. Below: Example Gabor stimuli, color-coded blue for left- and orange 

for right-tilted. The exact stimulus orientations depended on the the participant’s sensitivity. 

c) Condition matrix. Pie charts show the probability of stimulus alternatives (25, 50, or 75%) 

and dollar symbols represent the payoffs for each alternative (2, 3, or 4 pts). Squares are 

colored and labeled by the type of symmetry. d) Timeline of the eight sessions. The order of 

conditions was randomized within the single- and within the double-asymmetry conditions.
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Figure 3: 
Model comparison for the Type 1 and Type 2 responses. a) The protected exceedance 

probabilities (PEPs; see text for details) of the four Type 1 models. b) PEPs of the five Type 

2 models. Note that model comparisons were performed first for Type 1 and then for Type 2 

responses, using the best-fitting Type 1 model and parameters, on a per-subject basis, in the 

Type 2 model evaluation. c) Best-fitting models for each participant. Purple: normative-shift 

models, green: gains-shift models, yellow: neutral-fixed model.
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Figure 4: 
Visualization of the raw and predicted response rates for two example participants. Grids are 

formed of the seven conditions (rows) and the eight possible stimulus-response-confidence 

combinations (columns). See Figure S3 in the Supplement for condition order. The fill 

indicates the proportion of trials for that condition and stimulus that have that combination 

of response and confidence. Top row: Raw response rates of two example subjects. 

Subsequent rows, columns 1 and 3: Predicted response rates for each Type 2 model using the 

best-fitting parameters of the best-fitting Type 1 model for that individual. Columns 2 and 4: 
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Difference between raw and predicted response rates. Green boxes: winning models (Subject 

7: Ωgain+cons; subject 9: Ωneu). Colored circles by model names indicate purple: normative-

shift models, green: gains-shift models, yellow: neutral-fixed model.
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Figure 5: 
Comparison of the empirical and predicted k1 and k1*. Top row: empirical criteria of two 

example observers. The k1* was calculated as the midpoint between the two empirical k2 (see 

Figure S1 for k2 calculation details). Left column: predicted relationship between the Type 1 

and Type 2 criteria (d′ = 1; all Ω1,1α with α = 0.5). Grey and square symbols: symmetry 

conditions. Triangles: prior asymmetry. Blue symbols: payoff asymmetry. Polar plots: 

residuals between empirical data and model prediction based on best-fitting parameters, 

plotted as vectors. Arrowheads: residuals greater than plot bounds. Colored circles by model 
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names indicate purple: normative-shift models, green: gains-shift models, yellow: neutral-

fixed model.
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Figure 6: 
Conservatism for Type 1 decision-making. a) A comparison of the extent of conservatism 

under payoff versus prior asymmetries. Each data point represents the best-fitting 

conservatism parameters of a single observer when fit by Ω1,3α. These parameters are only 

contingent on the conservatism in the single-asymmetry conditions. In this model, 

conservatism in the double-asymmetry conditions is captured by a separate model parameter. 

Darker marker fill: additional conservatism parameters were required to fit to that observer’s 

data. Dashed line: equality line. Dark grey region: conservatism greater for prior than payoff 
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manipulations (i.e., αp < αv . Light grey region: conservatism is greater for payoffs 

(i.e., αp > αv) . Data points outside these regions are not consistent with conservative criterion 

placement. b) Same as (a) using fit parameters from the best-fitting Type 1 model for each 

observer. c) Test of summation of criterion shifts using the Ω1, 3α model fits. Observers who 

required a third α to capture their data (i.e., were best fit by Ω1,3α) had criterion shifts for the 

double-asymmetry conditions that were not well predicted as the sum of the shifts in the 

single-asymmetry conditions. d) Criterion placement in the double-asymmetry conditions. 

These are the same data as in the y-axis of (c), but extended to more easily compare the 

actual criterion placement with potential other task-relevant criteria. Horizontal criteria lines 

assume d′=1.
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