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Abstract

Introduction: Coronary artery disease (CAD) poses significant morbidity and mortality globally. 

Despite significant advances in treatment interventions, residual cardiovascular risks remain 

unchecked. Recent clinical trials have shed light on the potential therapeutic benefits of targeting 

anti-inflammatory pathways. Myeloperoxidase (MPO) plays an important role in atherosclerotic 

plaque formation and destabilization of the fibrous cap; both increase the risk of atherosclerotic 

cardiovascular disease and especially CAD.

Areas covered: This article examines the role of MPO in the pathogenesis of atherosclerotic 

CAD and the mechanistic data from several key therapeutic drug targets. There have been 

numerous interesting studies on prototype compounds that directly or indirectly attenuate the 

enzymatic activities of MPO, and subsequently exhibit atheroprotective effects; these include 

aminobenzoic acid hydrazide, ferulic acid derivative (INV-315), thiouracil derivatives (PF-1355 

and PF-0628999), 2-thioxanthine derivative (AZM198), triazolopyrimidines, acetaminophen, N-

acetyl lysyltyrosylcysteine (KYC), flavonoids, and alternative substrates such as thiocyanate and 

nitroxide radical.

Expert opinion: Future investigations must determine if the cardiovascular benefits of direct 

systemic inhibition of MPO outweigh the risk of immune dysfunction, which may be less likely to 

arise with alternative substrates or MPO inhibitors that selectively attenuate atherogenic effects of 

MPO.

Keywords

Myeloperoxidase; Coronary Artery Disease; Inflammation; Oxidative Stress

Corresponding author: W. H. Wilson Tang, MD, 9500 Euclid Avenue, Desk J3-4, Cleveland, OH 44195., Phone: (216) 444-2121 / 
Fax: (216) 445-6165, tangw@ccf.org. 

Declaration of interest
The authors have no relevant affiliations or financial involvement with any organization or entity with a financial interest in or 
financial conflict with the subject matter or materials discussed in the manuscript. This includes employment, consultancies, 
honoraria, stock ownership or options, expert testimony, grants or patents received or pending, or royalties.

Reviewer disclosures
Peer reviewers on this manuscript have no relevant financial or other relationships to disclose

HHS Public Access
Author manuscript
Expert Opin Ther Targets. Author manuscript; available in PMC 2021 July 01.

Published in final edited form as:
Expert Opin Ther Targets. 2020 July ; 24(7): 695–705. doi:10.1080/14728222.2020.1762177.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



1. Introduction

Coronary artery disease (CAD) is the leading cause of morbidity and mortality throughout 

the world, especially in developed countries. Although the treatment of CAD has been 

significantly improved during the past decades, the mortality rate among patients with CAD 

is still undeniably high, which accounts for one-third of all deaths in adults 35 years of age 

or older [1]. The major pathogenesis of CAD is atherosclerosis caused by interaction 

between cardiovascular risk factors and the immune system [2, 3], resulting in the formation 

and growth of atherosclerotic plaques obstructing coronary arteries. Those plaques can 

become vulnerable over time due to persistent inflammatory activation, leading to plaque 

weakening and subsequent rupture, which results in acute myocardial ischemia and 

infarction [4]. Therefore, inflammation is apparently one of the main factors for 

development and progression of CAD, and many studies have demonstrated the ability of 

inflammatory biomarkers to predict the risk of future CAD, plaque stability, adverse clinical 

outcomes in CAD patients.

Recently, Ridker et al. studied the therapeutic results of Canakinumab, a monoclonal 

antibody antagonizing interleukin-1β, in the Canakinumab Anti-inflammatory Thrombosis 

Outcome Study (CANTOS) [5], in which over 10,000 patients with previous history of CAD 

and increased serum inflammatory marker (high-sensitivity C-reactive protein) were 

randomized to receive different doses of Canakinumab or placebo. They demonstrated that 

during 48 months follow up, Canakinumab treatment was significantly associated with lower 

incidence of nonfatal myocardial infarction without any alteration of lipid levels. However, 

higher risk of fatal infection was observed in the treatment group. These findings support 

that targeting inflammation could be a promising novel therapeutic approach for CAD 

patients, but the adverse effects on the immune function must be carefully considered.

Among all the inflammatory biomarkers, myeloperoxidase (MPO), an enzyme released from 

activated leukocytes, has been shown to be mechanistically linked to atherosclerosis, 

especially CAD, and previous studies suggested that MPO could be useful as a diagnostic 

marker and prognostic indicator for CAD patients [6–10]. Interestingly, recent research has 

focused on the hypothesis that MPO might be a potential therapeutic target for novel 

treatment of CAD. Also, several synthesized MPO inhibitors have been introduced in studies 

on their atheroprotective effects [11, 12]. This review summarizes current insights into the 

physiology of MPO, the pathogenic roles of MPO in atherosclerosis, and how it has recently 

been recognized as a promising therapeutic target for future CAD treatment.

2. Structure and Function of MPO

MPO, one of the heme peroxidase cyclooxygenase enzymes, is a 146 kDa glycosylated 

homodimeric protein composed of two monomers. Each monomer is formed by a 14.5 kDa 

light chain and a 58.5 kDa heavy glycosylated chain, which contain a prosthetic heme 

derivative and a calcium-binding site necessary for enzymatic reactions [13, 14]. MPO is 

synthesized in human promyelocytic cell line HL-60 and hematopoietic cells within bone 

marrow during myeloid lineage differentiation and can be found in neutrophils, 

macrophages, and lymphocyte antigen 6C (Ly-6C)-positive monocytes [15–17]. The 
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synthesis starts with the transcription and translation of the MPO gene located on the long 

arm of chromosome 17, resulting in a preproMPO, which is then processed in the 

endoplasmic reticulum to form an active monomeric proMPO by N-glycosylation, transient 

interaction between the molecular chaperones calnexin and calreticurin, and incorporation 

with heme from protoporphytin IX. ProMPO is subsequently cleaved by proteolytic 

enzymes, and dimerized by disulfide bond formation, before being transported to the Golgi 

and become a mature MPO [18]. This mature MPO is stored in azurophilic granules of 

neutrophils, mast cells, and tissue macrophages [13, 19, 20] to be used intracellularly and 

secreted extracellularly [18]. However, some evidence suggests that after differentiation 

from monocytes, macrophages do not actively synthesize MPO unless they are activated by 

local cytokines and signaling molecules under inflammatory conditions, especially 

atherosclerosis, which may initiate transcription of MPO gene in macrophages [21, 22].

The main function of MPO is to produce reactive oxidants for the destruction of ingested 

microorganisms within phagosomes [23, 24], by utilizing H2O2 and a halide (Cl−, Br−, I−) or 

the pseudohalide (SCN−) in the catalytic cycle (Figure 1), which starts with the ground state 

form of MPO (MPO-Fe(III)) [13, 25]. The first step of the catalytic cycle is the formation of 

compound I (MPO-Fe(IV).π+) by oxidizing the ground state MPO with H2O2. Compound I 

is then reduced to the ground state MPO by either the ‘halogenation cycle’ or the 

‘peroxidase cycle.’ In the halogenation cycle, compound I is reduced by a halide or the 

pseudohalide to the ground state MPO, resulting in a hypohalous acid (HOX), mostly HOCl 

under physiologic circumstances [23, 25]. On the other hand, with a high concentration of 

H2O2, compound I is likely to undergo a 2-step reduction in the peroxidation cycle, and 

become compound II (MPO-Fe(IV)) as an intermediate before being reduced to the ground 

state MPO by a variety of substrates such as, O2
.-, nitric oxide (NO), nitrite (NO2

−), 

tyrosine, serotonin, catecholamines, ascorbic acid, uric acid, and estrogen [24]. Moreover, 

the ground state MPO can also be reduced to an enzymatically inactive form MPO-Fe(II) or 

compound III (MPO-Fe(II)-O2) by a single electron addition, or O2
.-, respectively [25]. The 

redox form of MPO can be transformed to either compound III by binding to O2, or back to 

the ground state form by single-electron peroxidation. Likewise, compound III can be 

converted back to the ground state form by O2
.-, resulting in H2O2 formation as a byproduct 

[26].

MPO can produce a variety of products in different pathways. Firstly, HOCl is the most 

abundant physiological product of MPO, which can react with many kinds of protein, lipid, 

nucleic acids [27], glycosaminoglycans, and some components of extracellular matrix [28, 

29]. Interestingly, there are several methods to indirectly measure the enzymatic activities of 

HOCl which have been linked to atherosclerosis, such as 3-chlorotyrosine [25, 30], 5-

chlorouracil [31], and the antibody specific for hypochlorite oxidized protein (HOP-1) [32, 

33]. Secondly, MPO directly oxidizes tyrosine and produces tyrosine radicals that give rise 

to dityrosine, trityrosine, pulcherosine, and isodityrosine, which have been linked to the 

formation of atherosclerotic plaques [34, 35]. Thirdly, MPO can generate reactive nitrogen 

species from NO2
− either by MPO itself or through HOCl, resulting in .NO2 or NO2Cl, 

respectively [36, 37]. Interestingly, these nitrogen derivatives also have mechanistic links to 

atherosclerosis [36, 38]. Lastly, MPO produces reactive cyanate by utilizing urea, H2O2, and 

SCN−, accounting for up to 50% of overall H2O2 consumption by MPO under physiological 
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conditions [39, 40]. This MPO pathway is more common in patients with chronic kidney 

disease, due to elevated urea level, and also in patients who smoke, which indirectly 

increases SCN− [40]. Cyanate has the ability to interact with protein by carbamylation of 

nucleophilic side chains, such as lysine, resulting in homocitrulline (carbamyl lysine), which 

subsequently promotes atherosclerosis [40].

3. MPO and Pathogenesis of Atherosclerosis

MPO has been shown to be involved in the development and progression of atherosclerosis 

[13] since Daugherty et al. reported that MPO was found in atherosclerotic plaques [41]. 

Subsequently, Sugiyama et al. [42] demonstrated that MPO-containing macrophages were 

found abundantly within the vulnerable and ruptured plaques rather than earlier stages of 

atherosclerosis, which contained only a very low amount of MPO or MPO-negative 

macrophages. A genetic study on subjects with either partial or complete MPO deficiency 

revealed that the lack of MPO expression provided a significantly lower risk of developing 

cardiovascular disease [43]. In contrast, genetic polymorphism of MPO has been shown to 

be associated with increased risk of CAD [44]. Moreover, a study on a cohort of 158 patients 

with known history of CAD compared with 175 healthy controls, showed that serum MPO 

levels were significantly associated with CAD [9]. These results shed light on the pathogenic 

roles and potential clinical utilities of MPO in atherosclerosis and CAD. It is believed that 

MPO promotes atherosclerosis and CAD through different pathways including chemical 

modification of lipoproteins, endothelial dysfunction, and weakening of atherosclerotic 

plaque. Even though there are also few studies contradicting this hypothesis by showing that 

MPO deficiency is associated with increased atherosclerosis in mouse models [45–47], there 

is still much more evidence suggesting that MPO contributes to the development and 

progression of atherosclerosis.

3.1 Effects of MPO on lipoproteins

Among different lipoproteins, low-density lipoprotein (LDL) has been described as one of 

the key mediators of atherosclerosis, and therapeutic interventions on modifying LDL have 

provided favorable outcomes for both primary and secondary prevention of atherosclerosis 

and cardiovascular diseases [48]. MPO-derived HOCl can oxidize LDL by targeting lysine 

residues on apolipoprotein B-100, the most predominate component of LDL, and it makes 

LDL become more recognizable by the scavenger receptors on macrophages, leading to the 

formation of macrophage foam cells within the lipid core of atherosclerotic plaques [49–51]. 

Reactive nitrogen species produced by MPO are also able to modify LDL to form NO2LDL, 

another atherogenic form of LDL that macrophages can uptake [36, 52]. Moreover, 

carbamylation of lysine residues on LDL by MPO-derived cyanate also contributes to foam 

cell formation and atherosclerosis [40]. Furthermore, oxidized LDL is also able to increase 

atherosclerotic burden through endothelial dysfunction [53], cellular apoptosis of monocytes 

[54], and increased inflammatory response [51].

In addition to oxidizing LDL, MPO is capable of modifying high-density lipoprotein (HDL), 

the only lipoprotein that provides atheroprotective effects by transporting peripheral 

cholesterol back to the liver. This is also called macrophage reverse cholesterol transport, 
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through the interaction between ATP-binding cassette transporter A1 (ABCA1), G1 

(ABCG1) and apolipoprotein A-1 (apoA-1) [48, 55, 56]. MPO binds to helix 8 and oxidizes 

apoA-1 at tyrosine residues, resulting in impaired ABCA1-dependent cholesterol efflux 

from macrophages [57, 58]. Interestingly, MPO can also oxidize paraoxonase 1, which is an 

HDL-associated antioxidant protein that binds to apoA-1, resulting in decreased 

atheroprotective properties of HDL [59]. Similarly, methionine and tryptophan residues have 

also been shown to be important targets for MPO-mediated oxidation reactions, which 

further reduce anti-atherogenic properties of HDL [60–62]. Furthermore, MPO-produced 

HOCl also causes dysfunctional HDL that competes with native HDL on lipid uptake via 

scavenger receptors on macrophages [19, 63]. These findings might explain that the presence 

of dysfunctional HDL is responsible for an increase in cardiovascular risk observed among 

patients with normal or high serum HDL [6].

3.2 MPO and Endothelial Dysfunction

MPO indirectly causes endothelial dysfunction by interfering with NO metabolism, which is 

one of the key factors maintaining normal physiology of endothelial cells and the vascular 

system [6, 19]. Not only does MPO reduce NO bioavailability by consuming NO as a 

substrate in the catalytic cycle, it has also been shown to be involved in the synthesis of 

endogenous NO through HOCl [19]. MPO-produced HOCl is capable of chlorinating 

arginine, which is an important substrate for the formation of the enzyme necessary for the 

synthesis of NO, nitric oxide synthase (NOS). Interestingly, chlorinated arginine negatively 

affects the enzymatic activity of NOS [64]. Moreover, NOS can be destabilized by HOCl-

mediated direct oxidation, resulting in a further impairment of NO synthesis [65]. Marsche 

et al. [66] also demonstrated that HOCl-modified HDL is able to downregulate the 

expression of NOS in endothelial cells.

The association between MPO and endothelial dysfunction has been corroborated in several 

human studies. Vita et al. [67] studied a cohort of 298 patients which revealed that after 

adjusting for traditional cardiovascular risk factors, elevated serum MPO was independently 

associated with endothelial dysfunction assessed by brachial artery flow-mediated dilation. 

Similarly, another study on patients with symptomatic CAD showed that increased MPO 

levels in systemic circulation correlated with the degree of microvascular dysfunction 

measured by the capacity of endothelium-dependent vasodilation after an exposure to 

acetylcholine [68]. Interestingly, even though CAD patients underwent coronary 

revascularization, higher MPO levels were independently associated with incomplete ST-

segment resolution and lower myocardial blush grade, suggesting that MPO causes impaired 

myocardial microcirculation in patients with CAD despite coronary revascularization [69].

3.3 MPO and weakening of atherosclerotic plaques

Generally, vulnerability of atherosclerotic plaques is determined by the integrity of the 

fibrous cap that covers the lipid core created by foam cells [2, 70]. MPO can reduce the 

thickness of the fibrous cap through three main mechanisms. Firstly, MPO-derived HOCl 

has been shown to be involved in the apoptosis of endothelial cells by inhibiting Bcl-2 and 

promoting the expression of cytochrome C within endothelial cells [71]. Secondly, MPO and 

HOCl activate matrix metalloproteinases (MMPs), enzymes that can degrade the 
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extracellular matrix of the fibrous cap [72, 73]. Thirdly, since MPO is able to bind with 

some extracellular matrix structural proteins, such as type IV collagen and fibronectin [29], 

they can be directly oxidized by MPO-derived HOCl, resulting in decreased vascular smooth 

muscle cell adhesion, which may weaken atherosclerotic plaques and promote plaque 

rupture [74–76]. Furthermore, some other interesting mechanisms of MPO and weakening 

of atherosclerotic plaques have also been proposed. Firstly, HOCl has been shown to inhibit 

one of the isoforms of the enzyme that counteracts MMPs, tissue inhibitor of matrix 

metalloproteinase-1, by oxidizing cysteine residues at N-terminal, resulting in unopposed 

MMPs, which further weakens the fibrous cap, and promotes subsequent plaque rupture[77]. 

Secondly, Oxidized LDL and oxidant stress are also able to weaken atherosclerotic plaques 

by causing endoplasmic reticulum stress, which subsequently induces macrophage apoptosis 

within necrotic cores, resulting in more vulnerable plaques [78]. Lastly, MPO has been 

shown to be associated with the formation of neutrophil extracellular traps, which could 

activate inflammatory response, and release some atherogenic inflammatory mediators, such 

as MPO itself, MMPs, and oxidants, resulting in the formation, destabilization, and rupture 

of atherosclerotic plaques [79–81].

4. Targeting MPO in Coronary Artery Disease

Since MPO has been recognized as an important factor in the development and progression 

of atherosclerosis, and provides clinical utilities for diagnosis and prognosis in CAD patients 

[6, 82], recent research has focused on developing MPO inhibitors and alternative substrates 

as novel therapeutic interventions to improve the standard of care in patients with CAD. 

There are several pharmacological targets that can inhibit the enzymatic activities of MPO 

and potentially alter the progression of atherosclerotic plaques and CAD (table 1).

4.1 Benzoic Acid Hydrazides

Aminobenzoic acid hydrazide (ABAH) is the first potent MPO inhibitor that has been 

discovered [83]. ABAH inactivates MPO by undergoing oxidation reaction with MPO itself, 

resulting in the formation of the radical form of ABAH, which subsequently reduces ground 

state MPO to MPO-Fe(II) that can react with either O2 or H2O2, leading to enzyme turnover 

or irreversible inhibition of the enzymatic activities of MPO, respectively [83, 84]. 

Nonetheless, high O2 and low H2O2 concentration found in extracellular space reduce the 

potency of ABAH in inhibiting MPO, and under this condition, ABAH can only act as a 

competitive inhibitor [84, 85].

An in vitro study from Han et al. [86] using the peripheral blood of 20 CAD patients 

compared with 20 healthy controls, revealed that ABAH significantly reduced the enzymatic 

activity of MPO and the capability of neutrophils to attach to endothelial cells. The 

magnitude of these effects also correlated with the dose of ABAH. Tiyerili et al. [87] studied 

apolipoprotein in E-deficient mice fed a cholesterol-rich diet and two different doses of 

ABAH. They found that only high-dose ABAH was associated with lower inflammation, 

vascular oxidative stress, and atherosclerotic plaque area, with improved endothelial 

function. However, it is believed that to effectively inhibit MPO, ABAH requires an 

excessive amount of H2O2, which can hardly be found under physiological conditions in 

Chaikijurajai and Tang Page 6

Expert Opin Ther Targets. Author manuscript; available in PMC 2021 July 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



humans[85]. Moreover, the inhibitory effect of ABAH on MPO is reversible and would be 

ineffective against HOCl-mediated atherogenesis [88]. Therefore, ABAH theoretically 

seems to be an unsuccessful therapeutic intervention for modifying the progression of 

atherosclerosis and CAD.

4.2 Ferulic Acid Derivative

Ferulic acid, one of the phenolic antioxidants, has been shown to provide inhibitory effects 

on MPO-mediated tyrosine oxidation[89]. In 2012, Liu et al. [90] synthesized INV-315, a 

small molecule derived from ferulic acid and investigated its therapeutic effects on the 

progression of atherosclerotic lesions and endothelial function in a mouse model. They 

found that INV-315 treatment was associated with lower plaque area, decreased 

inflammatory cytokine (interleukin-6) levels, reduced MPO enzymatic activity, and 

improved endothelial function. Interestingly, they demonstrated that INV-315 treatment 

resulted in enhanced reverse cholesterol transport of HDL from macrophages measured by 

ex-vivo assays. However, they did not demonstrate the effect of INV-315 on lipoprotein 

oxidation, which is one of the main atherogenic pathways of MPO.

4.3 Thiouracil Derivatives

Since propylthiouracil, has been used for the treatment of hyperthyroidism by inhibiting 

thyroid peroxidase (TPO)[91], it has also been shown to have an antagonistic effect against 

MPO with unclear mechanism [92]. Research focused on discovering a thiouracil derivative 

that could be more specific for MPO than TPO. In 2015, Ruggeri et al. [93] introduced the 

synthetic thiouracil derivative, 2-(6-(5-chloro-2-methoxyphenyl)-4-oxo-2-thioxo-3,4-

dihydropyrimidin-1(2H)-yl)acetamide (PF-06282999) containing the thiouracil sulfur atom, 

which can be oxidized by compound I. This results in a thiyl radical that can selectively and 

irreversibly inhibit enzymatic activity of MPO by forming a covalent bond with the heme 

moiety within MPO [93, 94].

In 2016, Ali et al. [11] studied the therapeutic effect of another synthetic, thiouracil-derived 

MPO inhibitor that has similar chemical structure to PF-06282999, 2-(6-(2,5-

dimethoxyphenyl)-4-oxo-2-thioxo-3,4-dihydropyrimidin-1(2H)-yl)acetamide (PF-1355). 

They demonstrated that in myocardial infarcted mice with and without PF-1355 

administered orally for 2 days following the ligation of a coronary artery, PF-1355 was 

associated with significantly lower enzymatic activity of MPO in both intra- and extra-

cellular components compared with the control group. By using a magnetic resonance 

imaging (MRI) agent, MPO-Gd (bis-5hydroxytryptamide-diethylene-triaminepentaacetate-

gadolinium), to track extracellular MPO activity in vivo, PF-1355 was associated with less 

MPO activity, a lower degree of inflammation, and less ischemic reperfusion injury within 

the infarct lesion. Interestingly, these effects could also be seen on heart tissue obtained at 7 

days after ischemic injury, resulting in increased myocardial thickness at the infarct area 

seen in the treatment group. Furthermore, early initiation of PF-1355 resulted in improved 

cardiac function and remodeling. Prolonged use of PF-1355 also showed an inverse 

correlation between the duration of treatment and degree of cardiac remodeling. This was 

the first study that demonstrated both early and late cardioprotective effects of the thiouracil-

derived MPO inhibitor against CAD and ischemic cardiomyopathy.
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Recently, another animal study of the potential therapeutic effects of a 4-week 

supplementation of PF-0628999 on the development of atherosclerotic plaques in the aorta. 

It revealed that, although PF-0628999 did not reduce the overall plaque size, it was 

significantly associated with decreased plasma MPO, the necrotic core area of the plaques, 

and level of inflammation assessed by [18F]-Fluorodeoxyglucose-positron emission 

tomography (FDG-PET) scan [95]. These results suggested that PF-0628999 could be 

helpful for plaque stabilization and potentially prevent subsequent plaque rupture.

Nevertheless, there are few animal studies that demonstrate the cardiovascular benefits of 

MPO inhibitor developed from thiouracil. Although those effects were tested in young mice 

that could have a different drug metabolism than older mice, the majority of patients with 

atherosclerotic cardiovascular diseases are older. Hence, the atheroprotective effects of 

thiouracil-derived MPO inhibitor still need to be vetted by future research in both animal 

and human models. Unfortunately, the product development of PF-0628999 was 

discontinued in 2017 without an explanation [96], so PF-1355 is the only thiouracil 

derivative that can be used for further investigation on cardioprotective effects.

4.4 2-thioxanthines Derivatives

2-thioxanthines have been described as potent, irreversible, and selective MPO inhibitors 

[97]. They act as MPO’s suicide substrates after undergoing oxidation by MPO, resulting in 

radicals that form a covalent bond with the heme prosthetic group in MPO, and subsequently 

inactivate the enzymatic activity of MPO without affecting the ability of microbe killing by 

the immune cells [97, 98]. Rashid et al. [99] studied one of the 2-thioxanthine derivatives, 

AZM198, administered orally for 13 weeks in mice, and demonstrated that AZM198 was 

significantly associated with lower MPO activity within atherosclerotic plaques measured by 

MPO-Gd, and liquid chromatography with tandem mass spectrometry (LC-MS/MS), which 

measures HOCl production from chlorination of dihydroethidium [100]. AZM198 

supplementation was also associated with increased fibrous cap thickness without any 

alteration of inflammatory cells or lipid content in the necrotic cores of the plaques.

Furthermore, another AZM198 study from Cheng et al. [12] showed that mice treated with 

AZM198 had better endothelial function and decreased enzymatic activity of MPO 

measured by LC-MS/MS compared with the control group. Notably, there was no significant 

difference in plasma MPO levels and inflammatory cytokines, suggesting that AZM198 

selectively attenuates the effects of MPO on endothelial dysfunction and atherosclerosis. 

The mechanism by which AZM198 improves endothelial function was described as an 

increase in cyclic guanosine monophosphate (cGMP) observed in the treatment group, 

which suggested that there was improved activity of soluble guanylyl cyclase (sGC) as a 

result of increased NO bioavailability from MPO inhibition. These findings showed the 

possibility that AZM198 could be an MPO inhibitor to promote plaque stabilization and 

improve endothelial function, which could subsequently reduce the risk of CAD. However, 

those results were from young mice as well as the studies on thiouracil derivatives, and 

further investigation on the atheroprotective effects of 2-thioxanthine derivatives is 

warranted.
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4.5 Triazolopyrimidines

Recently, Duclos et al. [101] discovered a novel reversible MPO inhibitor, 

triazolopyrimidine (7-(benzyloxy)-3H-[1,2,3]triazolol[4,5-d]pyrimidin-5-amine), which 

selectively inhibits enzymatic activity of MPO by binding to its active side with matching 

polar amino acid residues, and interaction between the amine part and heme carboxylic acid. 

Interestingly, triazolopyrimidine has been shown to be capable of inhibiting the formation of 

oxidized apoA-1 found on HDL, and the production of HOCl from neutrophils. These 

proposed mechanisms of triazolopyrimidines on MPO needs to be vetted by future studies 

both in vitro and in vivo, to provide more details of pharmacokinetics and 

pharmacodynamics, especially the efficacy of triazolopyrimidines, since it reversibly inhibits 

MPO.

4.6 Acetaminophen

Acetaminophen (paracetamol) has been one of the most commonly used analgesic and 

antipyretic drugs, and also play a role in modulating the enzymatic activities of MPO [102, 

103]. In 1989, Van Zyl et al. [104] revealed that acetaminophen could attenuated MPO-

mediated HOCl production by competing with Cl−. This finding was supported by 

subsequent studies, which also revealed that this reaction requires high therapeutic 

concentration of acetaminophen [102, 103], whereas lower concentration of acetaminophen 

might promote the turnover of compound II and III to ground state MPO [103]. These 

findings raised the possibility that acetaminophen might be a potential therapeutic 

intervention for atherosclerosis. However, early preclinical studies showed the contradictory 

results of the effect of acetaminophen on LDL oxidation. Nenseter et al. [105] and Chou et 

al. [106] demonstrated that acetaminophen was able to inhibit LDL oxidation, while 

Kapiotis et al. [107] revealed that acetaminophen catalyzed MPO-mediated LDL oxidation 

via a phenoxyl radical, which could promote lipid oxidation in LDL. These contradictory 

results may be attributed to the different experimental strategies and conditions. Despite the 

controversies of the effect of acetaminophen on LDL oxidation, there is still limited 

evidence from in vivo studies. Ozsoy et al. [108]studied on hypercholesterolemic rabbits, 

and demonstrated that administration of acetaminophen at therapeutic dose was associated 

with reduced MPO-mediated LDL oxidation. Hence, according to the conflicting effects of 

acetaminophen on LDL oxidation, and limited evidence, acetaminophen might not be a 

promising candidate for future research on MPO inhibitors and atherosclerosis.

4.7 N-acetyl lysyltyrosylcysteine amide

In 2013, Zhang et al. [109] discovered a tripeptide, N-acetyl lysyltyrosylcysteine amide 

(KYC), and demonstrated that KYC was able to bind with the active side of MPO and 

interact with iron-heme site, resulting in decreased MPO-mediated HOCl production, and 

LDL oxidation. Interestingly, KYC was also found to increase the consumption of H2O2 by 

MPO, which could reduce oxidative injury to endothelial cells [109]. Although recent 

studies showed that inhibition of MPO by KYC provided neuroprotective effects in mouse 

model of stroke [110, 111], there is still limited evidence of the atheroprotective effects of 

KYC, which need to be investigated by future in vitro and in vivo studies.
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4.8 Flavonoids

Flavonoids, substances found fruits, vegetables, and some kinds of tea, have long been 

shown to be antioxidants and MPO inhibitors, especially quercetin, which is the most potent 

MPO inhibitor among all flavonoids [112–114]. Early studies demonstrated that flavonoids 

were able to inhibit LDL oxidation mediated by MPO in vitro [115–117]. Interestingly, 

Bhaskar et al. [118] studied on rabbit model, and revealed that quercetin was associated with 

lower MPO activity in the aorta of the rabbits fed with high cholesterol diet. In addition, 

squercetin was also shown to be able to attenuate the production of HOCl, and endothelial 

dysfunction in the aorta of mice [119]. These findings suggested potential mechanisms of 

atheroprotective effects of flavonoids which need to be focused by future research.

4.9 Ceruloplasmin

Ceruloplasmin (Cp), a copper-containing ferroxidase, is one of the acute phase proteins 

secreted by hepatocytes and macrophages in response to acute stress, and it has been shown 

to be an endogenous potent inhibitor of MPO [120, 121]. It is believed that Cp interacts with 

MPO by an electrostatic interaction due to the anionic and cationic nature of Cp and MPO, 

respectively [121]. However, the detailed mechanism remained largely unclear, and there 

have been discrepancies regarding the inhibitory efficacy of Cp on MPO, until Chapman et 

al. [122] demonstrated in vivo interaction between Cp and MPO and significantly reduced 

enzymatic activity of MPO observed in Cp knock-out (Cp−/−) compared with wild-type mice 

(Cp+/+). They revealed that Cp prevents the formation of HOCl by reducing compound I to 

compound II through the peroxidase cycle instead of turning back to the ground state. 

Ceruloplasmin is also capable of reducing the bioavailability of the ground state MPO by 

inhibiting the reduction reaction that converts compound II back to the ground state, and 

driving the formation of compound II from the ground state. These mechanisms may result 

in the accumulation of compound II and decreased production of HOCl. Preliminary data 

from Kennedy et al. [123] demonstrated that after coronary artery ligation in both Cp 

hemizygote (Cp+/−) and wild type mice, the Cp+/− group had increased in vivo MPO activity 

measured by 24-hour urine. Interestingly, increased myocardial fibrosis was observed in the 

Cp+/− group compared with the wild type. These findings suggest the cardioprotective effect 

of Cp and the possibility that Cp can be a novel target for MPO inhibition and 

atherosclerotic cardiovascular diseases.

4.10 Alternative Substrates

Supplementation of alternative substrates has also been shown to be another interesting 

approach for reducing the production of MPO-derived HOCl, or the enzymatic activities of 

MPO, which could attenuate the atherosclerotic burden, and potentially reduce risk of 

adverse effects of direct inhibition of MPO. Morgan et al. [124] demonstrated in mouse 

model that thiocyanate (SCN−) supplementation was associated with significantly decreased 

aortic root plaque areas without any significant changes in MPO levels. Similarly, Zietzer et 

al. [125] revealed that sodium thiocyanate treatment was associated with reduced 

atherosclerotic plaque formation and improved endothelial function in mouse model. 

Furthermore, Kim et al. [126] also showed that supplementation of the stable nitroxide 

radical, 4-hydroxy-2,2,6,6-tetramethylpiperidine-N-oxyl radical, could stabilize 
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atherosclerotic plaques by increasing the collagen content and decreasing the lipid content 

within the plaques. Hence, these findings provide insights into the use of alternative 

substrates as another potential therapeutic target for atherosclerosis, which still needs to be 

warranted by future research.

5. Conclusion

The role of inflammation in CAD has been increasingly recognized, and recent research 

focused on discovering novel targets for the treatment of CAD. Since the mechanistic links 

by which MPO promotes the development and progression of atherosclerosis have been well 

studied, as well as extensive clinical evidence on MPO and the prognosis of CAD patients, 

some MPO inhibitors have been developed recently with interesting results shown in both 

preclinical and animal studies, such as ABAH, INV-315, PF-06282999, PF-1355, AZM198, 

triazolopyrimidines, acetaminophen, KYC, flavonoids, and alternative substrates. In 

addition, endogenous Cp also has potential to be an alternative approach to attenuate the 

atherogenic properties of MPO. Even though some of them were discontinued in research, 

the findings from previous studies have raised the possibility that MPO may be a promising 

target for future treatment of CAD. Research needs to verify the therapeutic effects of the 

current candidates for MPO inhibitor, PF-1355, AZM198, triazolopyrimidines, 

acetaminophen, KYC, flavonoids, Cp, and alternative substrates, whereas an increase in 

susceptibility to infection also needs to be considered.

6. Expert Opinion

Among those compounds, findings from recent studies suggested that PF-1355, AZM198, 

nitroxide radical, and thiocyanate may be the most promising MPO inhibitors for the 

prevention and treatment of atherosclerotic cardiovascular diseases. Each compound shows 

different atheroprotective effects. Firstly, PF-1355 is the only MPO inhibitor that could 

improve cardiac function and prevent ischemic cardiomyopathy [11], which is one of the 

most common etiologies of heart failure. However, there has been only one study 

demonstrating cardioprotective effects of PF-1355, and effects of PF-1355 on atherosclerotic 

burden need to be investigated. Also, since PF-1355 is a thiouracil derivative, there are 

possible severe adverse effects on the immune system, such as agranulocytosis, which is 

well known in the use of propylthiouracil for patients with hyperthyroidism [91]. Secondly, 

AZM198 and nitroxide radical were shown to stabilize atherosclerotic plaque [99, 126], 

thereby reducing the risk of acute coronary syndrome. Of note, stabilizing atherosclerotic 

plaque alone may not be able to reduce atherosclerotic burden, improve coronary blood flow, 

or reduce symptoms for patients with stable CAD. Therefore, AZM198 and nitroxide radical 

may only be beneficial to patients who have developed significant amount of stable 

atherosclerotic plaque. Thirdly, thiocyanate has been shown to reduce atherosclerotic plaque 

formation and progression [124, 125], suggesting that thiocyanate can potentially be used 

for both primary and secondary prevention of CAD without direct inhibition of MPO.

Nevertheless, there are challenges for the development of MPO inhibitors that need to be 

considered. It is still unclear whether systemic inhibition of MPO is necessary if 

mechanisms that directly target regional inflammatory responses can be feasible. The timing 
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and the degree of inhibition may also influence its beneficial cardioprotective effects. 

Furthermore, whether such approaches can be effective in the subset of patients that have 

heightened inflammatory milieu would be intriguing. It is important to emphasize, however, 

that MPO levels tested by clinically available or research-based assays predominantly 

measure the mass concentration detected in the biospecimens and not their activities. On the 

other hand, there is a concern that direct inhibition of the inflammatory response may 

adversely affect the efficacy of the immune system to fight against infection. In addition, 

there is also relatively small evidence showing that MPO deficiency could be associated with 

increased atherosclerosis [47]. Hence, further investigations need to corroborate their 

cardioprotective effects, whereas possible adverse reactions, especially immune dysfunction, 

need to be monitored closely.

In the near future, based on accumulating evidence on atheroprotective effects of MPO 

inhibitors, we believe that research will continue to focus on developing different exogenous 

and endogenous MPO inhibitors, and there will be a variety of compounds discovered and 

demonstrated as potential novel therapeutic interventions for atherosclerotic cardiovascular 

diseases in in vitro and animal studies. Moreover, we also believe that the cardioprotective 

effects of the previous prototype compounds, especially PF-1355, AZM198, nitroxide 

radical, and thiocyanate will be further demonstrated in animal models, and potentially in 

clinical studies. However, adverse effects on the immune system may possibly be observed 

in direct systemic MPO inhibitors, whereas selective MPO inhibitors and alternative 

substrates, such as nitroxide radical and thiocyanate, may not or minimally affect the ability 

of immune cells to fight against infection. Therefore, targeting MPO has potential to be one 

of the most promising therapeutic approaches for CAD and other atherosclerotic 

cardiovascular diseases.
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Article Highlights

• Myeloperoxidase (MPO) has been mechanistically linked to the development 

and progression of coronary artery disease (CAD) and other atherosclerotic 

cardiovascular diseases.

• MPO plays a role in pathogenesis of atherosclerosis by oxidizing low-density 

lipoprotein, modifying high-density lipoprotein, promoting endothelial 

dysfunction, and weakening atherosclerotic plaque.

• A variety of MPO inhibitors that provide atheroprotective effects have been 

developed and investigated in preclinical studies, including benzoic acid 

hydrazides, ferulic acid derivative, thiouracil derivatives, 2-thioxanthines 

derivatives, triazolopyrimidines, acetaminophen, N-acetyl 

lysyltyrosylcysteine amide, flavonoids, ceruloplasmin and alternative 

substrates.

• Promising MPO inhibitors, such as PF-1355, AZM198, and alternative 

substrates, including nitroxide radical and thiocyanate, have been shown to 

reduce atherosclerotic burden, stabilize atherosclerotic plaque, and prevent 

cardiac complications from CAD in in vitro and animal studies.

• Direct systemic inhibition of MPO may be associated with immune 

dysfunction, which needs to be monitored along with potential cardiovascular 

benefits.

• Soon, there will be a variety of novel exogenous and endogenous MPO 

inhibitors developed and demonstrated in preclinical studies, whereas 

PF-1355, AZM198, nitroxide radical, and thiocyanate will be further 

investigated in animal models and potentially clinical studies.
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Figure 1: 
The catalytic cycle of myeloperoxidase. Ground state MPO (MPO-Fe(III)) is oxidized by 

H2O2 to become Compound I (MPO-Fe(IV).π+), which can be reduced to the ground state 

MPO by either halogenation cycle, or peroxidation cycle, depending on the concentration of 

H2O2. In halogenation cycle, halide (Cl−, Br−, or I−) or pseudohalide (SCN−) is used to 

produce hypohalous acid (HOCl, HOBr, HOI, or HOSCN). In peroxidation cycle, 

Compound II (MPO-Fe(IV)) is formed as an intermediate. Ground state MPO can also be 

reduced to MPO-Fe(II) or Compound III (MPO-Fe(II)-O2) by e− or O2
.-, respectively. MPO-

Fe(II) can be transformed back to the ground state form, or to Compound III by binding to 

O2. Compound III can also be converted back to the ground state form by O2
.-, resulting in 

the formation of H2O2.
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Table 1:

MPO inhibitors with cardioprotective effects shown in studies.

Drug Class Publication Type of study Finding

ABAH Benzoic acid 
hydrazides

Han et al. [86] (2012)
In vitro, human samples 
from CAD patients and 
healthy controls

ABAH inhibited MPO activity and 
neutrophil adhesion with endothelial 
cell in CAD patients

Tiyerili et al. [87] 
(2016)

In vitro, mouse model of 
atherosclerosis

High dose ABAH attenuated 
inflammation, vascular oxidative stress, 
and improved endothelial function

INV-315 Ferulic acid 
derivative Liu et al. [90] (2012) In vivo, mouse model of 

atherosclerosis

INV-315 was associated with lower 
inflammation, MPO activity, plaque 
size, and improved endothelial function

PF-1355 Thiouracil 
derivative Ali et al. [11] (2016) In vivo, mouse model of 

CAD

PF-1355 reduced inflammation, MPO 
activity, ischemic reperfusion injury, 
cardiac remodeling, and improved 
cardiac function

PF-0628999 Thiouracil 
derivative

Roth Flach et al. [95] 
(2019)

In vivo, mouse model of 
atherosclerosis

PF-0628999 decreased plaque 
inflammation and necrotic core area

AZM198 2-thioxanthines 
derivative

Rashid et al. [99] 
(2018)

In vivo, mouse model of 
atherosclerosis

AZM198 increased fibrous cap 
thickness, and decreased MPO activity

Cheng et al. [12] 
(2019)

In vivo, mouse model of 
atherosclerosis

AZM198 was associated with improved 
endothelial function, and lower MPO 
activity

Triazolopyrimidines - Duclos et al. [101] 
(2017)

In vitro, human and 
mouse samples

Triazolopyrimidine inhibited the 
oxidation of apoA-1 on HDL, and 
reduced the amount of HOCl produced 
from neutrophils

Acetaminophen -

Nenseter et al. [105] 
(1995) In vitro, human samples Acetaminophen inhibited MPO-

mediated LDL oxidation

Chou et al. [106] 
(2002) In vitro, human samples Acetaminophen inhibited MPO-

mediated LDL oxidation

Ozsoy et al. [108] 
(2007)

In vivo, rabbit model of 
atherosclerosis Acetaminophen reduced LDL oxidation

KYC - Zhang et al. [109] 
(2013)

In vitro, human and 
bovine samples

KYC inhibited HOCl production, and 
LDL oxidation mediated by MPO

Flavonoids 
(epicatechin, 
quercetin, taxifolin, 
and luteolin)

Flavonoids Kostyuk et al. [115] 
(2003) In vitro, human samples Flavonoids inhibited MPO-mediated 

LDL oxidation

Epicatechin Flavonoids Steffen et al. [117] 
(2006) In vitro, human samples

Epicatechin inhibited MPO-mediated 
LDL oxidation, and attenuated 
endothelial dysfunction caused by 
oxidized LDL

Quercetin Flavonoids

Loke et al. [116] 
(2008) In vitro, human samples Quercetin inhibited MPO-mediated 

LDL oxidation

Bhaskar et al. [118] 
(2013)

In vivo, rabbit model of 
atherosclerosis

Quercetin reduced MPO activity in the 
aorta of the rabbits

Lu et al. [119] (2018) In vitro, human samples
Quercetin inhibited production of 
HOCl, and improved endothelial 
function

Thiocyanate Alternative 
substrates

Morgan et al. [124] 
(2015)

In vivo, mouse model of 
atherosclerosis

Thiocyanate reduced plaque size with 
stable MPO level

Zietzer et al. [125] 
(2019)

In vivo, mouse model of 
atherosclerosis

Sodium thiocyanate was associated 
with decreased plaque formation, and 
improved endothelial function
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Drug Class Publication Type of study Finding

Nitroxide radical Alternative 
substrates

Kim et al. [126] 
(2015)

In vivo, mouse model of 
atherosclerosis

Nitroxide radical stabilized plaques by 
increasing the collagen and decreasing 
the lipid content

ABAH, aminobenzoic acid hydrazide; apoA-1, apolipoprotein A-1; CAD, coronary artery disease; HDL, high density lipoprotein; KYC, N-acetyl 
lysyltyrosylcysteine; MPO, myeloperoxidase.
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